
Zowe 3.3 Documentation

Table of contents:

Zowe announcements

Hello Zowe V3!​

Future Zowe V2 releases​

Archiving Zowe Version 1.0​

Release Notes

Accessing older release notes​

Version 3.3.0 (September 2025)

New features and enhancements​

Server Install​

Zowe Application Framework​

Zlux Server Framework​

Zlux App-Server​

Zowe Common C​

ZSS​

Basic TN3270 Display Emulator​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

CICS Plug-in for Zowe CLI​

Zowe Explorer​

Zowe Explorer (Core)​

Zowe Explorer API​

Zowe Explorer FTP Extension​

Zowe Explorer ESLint Plug-in​

Bug fixes​

Server Install​

Zowe Application Framework​

Zlux Server Framework​

Zowe Common C​

ZSS​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

DB2 Plug-in for Zowe CLI​

Zowe Explorer​

Zowe Explorer (Core)​

Zowe Explorer API​

Zowe Explorer FTP Extension​

Zowe Explorer ESLint Plug-in​

Vulnerabilities fixed​

Version 3.2.0 (May 2025)

New features and enhancements​

Server Install​

Zowe Application Framework​

ZSS​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

Zowe Explorer​

Zowe Explorer (Core)​

Zowe Explorer API​

Zowe Explorer FTP Extension​

Zowe Explorer ESLint Plug-in​

Bug fixes​

Zowe Application Framework​

ZSS​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

Zowe Explorer​

Zowe Explorer (Core)​

Zowe Explorer API​

Zowe Explorer FTP Extension​

Zowe Explorer ESLint Plug-in​

Vulnerabilities fixed​

Version 3.1.1 (April 2025)

New features and enhancements​

Bug fixes​

Zowe CLI​

DB2 Plug-in for Zowe CLI​

Version 3.1.0 (February 2025)

New features and enhancements​

Server Install​

Zowe Application Framework​

Zlux App Server package​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

DB2 Plug-in for Zowe CLI​

Zowe Explorer​

Zowe Explorer (Core)​

Zowe Explorer API​

Zowe Explorer FTP Extension​

Zowe Explorer ESLint Plug-in​

Bug fixes​

Server Install​

Zowe Application Framework​

Zlux App Server package​

Zlux Server Framework​

Zowe Common C​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

CICS Plug-in for Zowe CLI​

Zowe Explorer​

Zowe Explorer (Core)​

Zowe Explorer API​

Zowe Explorer FTP Extension​

Zowe Explorer ESLint Plug-in​

Vulnerabilities fixed​

Version 3.0.0 (October 2024)

Important updates​

Zowe installation and packaging​

Breaking changes in Zowe installation and packaging​

New features and enhancements in Zowe installation and packaging​

Zowe Application Framework​

Breaking changes in Zowe Application Framework​

New features and enhancements in Zowe Application Framework​

Zlux App Manager​

Zlux App Server​

Zowe Common C​

ZSS​

Bug fixes in Zowe Application Framework​

Zowe Common C​

ZSS​

Known Issues​

API Mediation Layer (API ML)​

Breaking changes in API ML​

New features and enhancements in API ML​

Bug Fixes in API ML​

ZSS​

Breaking changes in ZSS​

Explorer for Intellij IDEA​

New features and enhancements in Explorer for Intellij IDEA​

Explorer for Visual Studio Code​

Breaking changes in Explorer for Visual Studio Code​

New features and enhancements in Explorer for Visual Studio Code​

Bug fixes in Explorer for Visual Studio Code​

Complete changelogs for Zowe Explorer for Visual Studio Code and Zowe Explorer plug-ins​

Zowe CLI (Core)​

Breaking changes in Zowe CLI​

New features and enhancements in Zowe CLI​

Bug fixes in Zowe CLI​

Complete changelogs for Zowe CLI and Zowe CLI plug-ins​

Version 2.18.2 (July 2025)

New features and enhancements​

Zowe Application Framework​

ZSS​

Zowe API Mediation Layer​

Bug fixes​

Zowe Application Framework​

ZSS​

Zowe API Mediation Layer​

Zowe CLI​

DB2 Plug-in for Zowe CLI​

Zowe Explorer​

Zowe Explorer (Core)​

Zowe Explorer API​

Zowe Explorer FTP Extension​

Zowe Explorer ESLint Plug-in​

Vulnerabilities fixed​

Version 2.18.1 (March 2025)

New features and enhancements​

Zowe API Mediation Layer​

Bug fixes​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

CICS Plug-in for Zowe CLI​

DB2 Plug-in for Zowe CLI​

Zowe Explorer​

Zowe Explorer (Core)​

Zowe Explorer API​

Zowe Explorer FTP Extension​

Zowe Explorer ESLint Plug-in​

Vulnerabilities fixed​

Version 2.18.0 (August 2024)

New features and enhancements​

Zowe Application Framework​

ZSS​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI Imperative Framework​

Zowe Explorer​

Zowe Explorer (Core)​

Zowe Explorer API​

Zowe Explorer FTP Extension​

Zowe Explorer ESLint Plug-in​

Bug fixes​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

DB2 Plug-in for Zowe CLI​

Zowe Explorer​

Zowe Explorer (Core)​

Zowe Explorer API​

Zowe Explorer FTP Extension​

Zowe Explorer ESLint Plug-in​

Vulnerabilities fixed​

Version 2.17.0 (July 2024)

New features and enhancements​

Zowe installation and packaging​

Zowe Application Framework​

Zlux App Server​

Zlux Server Framework​

Zowe Common C​

ZSS​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

Zowe Explorer​

Zowe Explorer (Core)​

Zowe Explorer API​

Zowe Explorer FTP Extension​

Zowe Explorer ESLint Plug-in​

Bug fixes​

Zowe installation and packaging​

Zowe Application Framework​

Zlux Server Framework​

Zowe Common C​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

Zowe Explorer​

Zowe Explorer (Core)​

Zowe Explorer API​

Zowe Explorer FTP Extension​

Zowe Explorer ESLint Plug-in​

Vulnerabilities fixed​

Version 2.16.0 (May 2024)

New features and enhancements​

Zowe Install Packaging​

Zowe Application Framework​

Zowe Common C​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe Explorer​

Zowe Explorer (Core)​

Zowe Explorer API​

Zowe Explorer FTP Extension​

Zowe Explorer ESLint Plug-in​

Bug fixes​

Zowe Install Packaging​

Zowe Application Framework​

Zluz App Server​

ZSS​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

DB2 Plug-in for Zowe CLI​

FTP Plug-in for Zowe CLI​

Zowe Explorer​

Zowe Explorer (Core)​

Zowe Explorer API​

Zowe Explorer FTP Extension​

Zowe Explorer ESLint Plug-in​

Vulnerabilities fixed​

Version 2.15.0 (March 2024)

New features and enhancements​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

IMS Plug-in for Zowe CLI​

z/OS FTP Plug-in for Zowe CLI​

Zowe Explorer​

Zowe Explorer (Core)​

Zowe Explorer API​

Zowe Explorer FTP Extension​

Zowe Explorer ESLint Plug-in​

Bug fixes​

Zowe installation and packaging​

Zowe Application Framework​

Zowe Common C​

Zlux Server Framework​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

IMS Plug-in for Zowe CLI​

z/OS FTP Plug-in for Zowe CLI​

Zowe Explorer​

Zowe Explorer (Core)​

Zowe Explorer API​

Zowe Explorer FTP Extension​

Zowe Explorer ESLint Plug-in​

Vulnerabilities fixed​

Version 2.14.0 (January 2024)

New features and enhancements​

Zowe installation and packaging​

Zowe Application Framework​

Zlux App Server​

Zowe API Mediation Layer​

Zowe Explorer​

Zowe Explorer (Core)​

Explorer API​

Explorer FTP Extension​

Zowe Explorer ESLint Plug-in​

Bug fixes​

Zowe installation and packaging​

Zowe Application Framework​

Zlux Server Framework​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

DB2 Plug-in for Zowe CLI​

Zowe Explorer​

Zowe Explorer (Core)​

Explorer API​

Explorer FTP Extension​

Zowe Explorer ESLint Plug-in​

Vulnerabilities fixed​

Version 2.13.0 (December 2023)

New features and enhancements​

Zowe installation and packaging​

Zowe Application Framework​

ZLUX App Server​

ZLUX Server Framework​

Zowe Common C​

ZSS​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

z/OS FTP Plug-in for Zowe CLI​

Zowe Explorer​

Zowe Explorer (Core)​

Zowe Explorer API​

Zowe Explorer FTP Extension​

Zowe Explorer ESLint Plug-in​

Bug fixes​

Zowe installation and packaging​

Zowe API Mediation Layer​

ZSS​

Zowe CLI​

Zowe CLI Imperative Framework​

Zowe CLI Imperative Framework​

DB2 Plug-in for Zowe CLI​

z/OS FTP Plug-in for Zowe CLI​

Zowe Explorer​

Zowe Explorer (Core)​

Zowe Explorer API​

Zowe Explorer FTP Extension​

Zowe Explorer ESLint Plug-in​

Vulnerabilities fixed​

Version 2.12.0 (October 2023)

New features and enhancements​

Zowe Application Framework​

Zlux App Server​

ZLUX Server Framework​

ZSS​

Zowe API Mediation Layer​

Zowe Explorer​

Zowe Explorer (Core)​

Zowe Explorer API​

Zowe Explorer FTP Extension​

Zowe Explorer ESLint Plug-in​

Bug fixes​

Zowe Installation and packaging​

Zowe Application Framework​

ZLUX App Server​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

Zowe Explorer​

Zowe Explorer (Core)​

Zowe Explorer API​

Zowe Explorer FTP Extension​

Zowe Explorer ESLint Plug-in​

Vulnerabilities fixed​

Version 2.11.0 (September 2023)

New features and enhancements​

Zowe Installation and Packaging​

Zowe Application Framework​

Zowe Common C​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

Bug fixes​

Zowe Installation and Packaging​

Zowe Application Framework​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

Vulnerabilities fixed​

Version 2.10.0 (July 2023)

New features and enhancements​

Zowe installation and packaging​

Zowe Application Framework​

Zowe API Mediation Layer​

Zlux App Server​

Zlux Server Framework​

Zowe Common C​

Zowe CLI​

Zowe CLI Imperative Framework​

Bug fixes​

Zowe Application Framework​

Zlux App Server​

Zlux App Manager​

ZSS​

Zowe Common C​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

Vulnerabilities fixed​

Version 2.9.0 (June 2023)

New features and enhancements​

Zowe installation and packaging​

Zowe Application Framework​

Zlux Server Framework​

Zowe Common C​

Zowe API Mediation Layer​

Imperative CLI Framework​

Zowe CLI​

Zowe Explorer​

Bug fixes​

Zowe Application Framework​

ZLux App Server​

Zowe API Mediation Layer​

Imperative CLI Framework​

Zowe CLI​

IBM Db2 Database Plug-in for Zowe CLI​

Zowe Explorer​

Vulnerabilities fixed​

Version 2.8.0 (April 2023)

New features and enhancements​

Zowe installation and packaging​

Zowe Application Framework​

ZSS​

Zowe Common C​

Zlux App Manager​

Zlux Server Framework​

Zlux Editor​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Imperative CLI Framework​

z/OS FTP Plug-in for Zowe CLI​

Zowe Explorer​

Bug fixes​

Zowe installation and packaging​

Zowe Application Framework​

ZSS​

Zowe Common C​

Zlux App Manager​

Zlux Editor​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

CICS Plug-in for Zowe CLI​

MQ Plug-in for Zowe CLI​

Zowe Explorer​

Vulnerabilities fixed​

Version 2.7.0 (March 2023)

New features and enhancements​

Zowe installation and packaging​

Zowe Application Framework​

ZSS​

Zlux Editor​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

Zowe Explorer​

Bug fixes​

Zowe installation and packaging​

Zowe Application Framework​

Zlux App Server​

ZSS​

Zlux Editor​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

Zowe Explorer​

Vulnerabilities fixed​

Version 2.6.1 (February 2023)

Version 2.6.0 (January 2023)

New features and enhancements​

Zowe API Mediation Layer​

Zowe Explorer​

Bug fixes​

Zowe installation and packaging​

Zowe Application Framework​

zLUX Editor​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

z/OS FTP Plug-in for Zowe CLI​

Zowe Explorer​

Vulnerabilities fixed​

Version 2.5.0 (December 2022)

New features and enhancements​

Zowe installation and packaging​

Zowe Application Framework​

ZSS​

zLUX Editor​

Zowe Common C​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

Zowe Explorer​

Bug fixes​

Zowe installation and packaging​

Zowe Application Framework​

ZSS​

zLUX Editor​

Zowe Common C​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

Zowe Explorer​

Vulnerabilities fixed​

Version 2.4.0 (October 2022)

New features and enhancements​

Zowe installation and packaging​

Zowe Application Framework​

ZSS​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

z/OS FTP Plug-in for Zowe CLI​

Zowe Explorer​

Zowe Explorer FTP Extension​

Bug fixes​

Zowe Application Framework​

Zowe App Server​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

Zowe Explorer​

Vulnerabilities fixed​

Version 2.3.1 (September 2022)

Version 2.3.0 (September 2022)

New features and enhancements​

Zowe installation and packaging​

Zowe Application Framework​

Zowe App Server​

Zowe Common C​

ZSS​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

Zowe Explorer​

Extensibility API for Zowe Explorer​

Bug fixes​

Zowe installation and packaging​

Zowe Application Framework​

Zowe App Server​

Zowe Common C​

ZSS​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

Db2 Plug-in for Zowe CLI​

Zowe Explorer​

Zowe Explorer Extension for FTP​

Extensibility API for Zowe Explorer​

Vulnerabilities fixed​

Version 2.2.0 (July 2022)

New features and enhancements​

Zowe installation and packaging​

Zowe Application Framework​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe Explorer​

Bug fixes​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

z/OS FTP Plug-in for Zowe CLI​

Zowe Explorer​

Version 2.1.0 (June 2022)

New features and enhancements​

Zowe API Mediation Layer​

Zowe Application Framework​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

Bug fixes​

Zowe API Mediation Layer​

Zowe CLI​

Zowe CLI (Core)​

Zowe CLI Imperative Framework​

Zowe Application Framework​

Zowe Explorer​

Version 2.0.0 (April 2022)

Breaking changes​

Zowe installation​

API Mediation Layer​

Zowe Application Framework​

Zowe CLI​

New features and enhancements​

Zowe installation​

Zowe API Mediation Layer​

Zowe Application Framework​

Zowe CLI​

Zowe CLI Plug-ins​

Imperative CLI Framework​

Nodejs SDK​

Zowe Explorer​

Bug fixes​

Zowe API Mediation Layer​

Zowe Application Framework​

Conformance and release compatibility​

Backward compatibility​

Forward compatibility​

Conformance compatibility​

Zowe overview

Zowe demo video​

Zowe component overview​

Zowe Launcher​

API Mediation Layer​

Key features​

API Mediation Layer structural architecture​

Components​

Onboarding APIs​

Zowe Application Framework​

Zowe CLI​

Zowe CLI capabilities​

Zowe Explorer​

Zowe Client Software Development Kits (SDKs)​

Zowe Chat (Technical Preview)​

Zowe Chat key features​

Zowe Chat architecture​

ZEBRA (Zowe Embedded Browser for RMF/SMF and APIs) - Incubator​

Zowe Explorer plug-in for IntelliJ IDEA​

Zowe Bill of Materials​

Zowe architecture

Zowe architecture with high availability enablement on Sysplex​

Zowe architecture when running in Kubernetes cluster​

App Server​

ZSS​

ZIS​

API Mediation Layer​

API Gateway​

API Catalog​

API Discovery Service​

Caching Service​

Desktop Apps​

Zowe Security Overview

Digital certificates​

Digital certificates usage​

User Authentication​

Access Authorization​

SAF resource check​

Additional resources​

Glossary of Zowe Security terminology

Certificate concepts​

Keystore​

Truststore​

PKCS12​

z/OS Key Ring​

Server certificate​

Client certificate​

Self-signed certificates​

Certificate verification​

DISABLED verification​

NON-STRICT verification​

STRICT verification​

Zowe certificate requirements​

Extended key usage​

Hostname validity​

z/OSMF access​

Certificate setup types​

File-based (PKCS12) certificate setup​

z/OS key ring-based certificate setup​

Zowe Certificates overview

Digital certificates definition​

Digital certificates usage​

Public key infrastructure​

Transport Layer Security​

Digital certificates types​

Certificates storage​

Keystore and Truststore​

Keystores​

Truststores​

SAF Keyring​

Zowe User Authentication

Authentication with JSON Web Tokens (JWT)​

Authentication with client certificates​

Authentication with Personal Access Token (PAT)​

Multi-factor authentication (MFA)​

Advanced Authentication Mainframe (AAM)​

High Availability

Sysplex architecture and configuration​

Caching service setup and configuration​

Zowe FAQs

Zowe FAQ​

What is Zowe?​

Who is the target audience for using Zowe?​

What language is Zowe written in?​

What is the licensing for Zowe?​

Why is Zowe licensed using EPL2.0?​

What are some examples of how Zowe technology might be used by z/OS products and applications?​

What is the best way to get started with Zowe?​

What are the prerequisites for Zowe?​

What's the difference between using Zowe with or without Docker?​

Is the Zowe CLI packaged within the Zowe Docker download?​

Does ZOWE support z/OS ZIIP processors?​

How is access security managed on z/OS?​

How is access to the Zowe open source managed?​

How do I get involved in the open source development?​

Where can I submit an idea for a future enhancement to Zowe?​

When will Zowe be completed?​

Can I try Zowe without a z/OS instance?​

Zowe CLI FAQ​

Why might I use Zowe CLI versus a traditional ISPF interface to perform mainframe tasks?​

With what tools is Zowe CLI compatible?​

Where can I use the CLI?​

Which method should I use to install Zowe CLI?​

How can I get Zowe CLI to run faster?​

How can I manage profiles for my projects and teams?​

Does Zowe CLI support multi-factor authentication (MFA)?​

How can I get help with using Zowe CLI?​

How can I use Zowe CLI to automate mainframe actions?​

How can I contribute to Zowe CLI?​

Zowe Explorer FAQ​

Why might I use Zowe Explorer versus a traditional ISPF interface to perform mainframe tasks?​

How can I get started with Zowe Explorer?​

Where can I use Zowe Explorer?​

How do I get help with using Zowe Explorer?​

How can I use Secure Credential Storage for Zowe Explorer?​

What if Secure Credential Storage does not work in my environment?​

What if I do not want Zowe Explorer to store my credentials?​

What types of profiles can I create for Zowe Explorer?​

Does Zowe Explorer support multi-factor authentication (MFA)?​

Is it possible to change the detected language of a file or data set opened in Zowe Explorer?​

How can I use FTP as my back-end service for Zowe Explorer?​

How can I contribute to Zowe Explorer?​

Zowe Explorer plug-in for IntelliJ IDEA FAQ​

Why would I use the plug-in versus a traditional ISPF interface to perform mainframe tasks?​

How can I get started with Zowe Explorer plug-in for IntelliJ IDEA?​

Where can I use Zowe Explorer plug-in for IntelliJ IDEA?​

How do I get help with using Zowe Explorer plug-in for IntelliJ IDEA?​

How can I contribute to Zowe Explorer plug-in for IntelliJ IDEA?​

Zowe glossary

All Core Zowe Projects​

Zowe API Mediation Layer (API ML)​

API Catalog​

API Discovery Service​

API Gateway ​

Caching Service​

Zowe Application Framework​

Zowe CLI​

Zowe client projects​

Zowe Client SDKs​

Zowe Explorer​

Zowe server components​

Zowe Systems Services Server (ZSS)​

Architecture and other components​

Configuration Manager​

Core component​

Explorer​

Extension​

Imperative CLI Framework​

Plug-in​

Secure credential store​

Service​

Team configuration​

Web Explorers​

Versions​

ZIS (Zowe Interprocess Services)​

zLUX (V1 only) ​

Zowe App Server​

Zowe Chat​

Zowe Component​

Zowe Desktop​

Zowe Embedded Browser for RMF/SMF and APIs (ZEBRA)​

Zowe install packaging ​

Zowe Explorer plug-in for IntelliJ IDEA​

Zowe Launcher​

Community​

Open Mainframe Project (OMP)​

Squad​

Technical Steering Committee (TSC)​

Zowe Conformance Program​

Installation and configuration​

Base profile​

Convenience build​

Extension directory​

Log directory​

OMVS​

Parent profile​

Runtime directory​

Service profile​

SMP/E​

SMP/E with z/OSMF workflow​

Started task (STC)​

Workspace directory​

Zowe configuration file​

Zowe instance directory (V1 only)​

Zowe runtime​

Sample library​

ZWEADMIN​

ZWESIUSR​

ZWESVUSR​

Plug-ins and extensions​

API Mediation Layer​

API Catalog​

Zowe Application Framework​

3270 Terminal​

File Tree​

IP Explorer​

JES Explorer​

MVS (Multiple Virtual Storage) Explorer​

USS Explorer​

Virtual (VT) Terminal​

Zowe Editor​

Zowe CLI Extensions​

IBM® CICS® Plug-in for Zowe CLI​

IBM® Db2® Plug-in for Zowe CLI​

Use and development​

API Mediation Layer​

Micronaut Enabler​

Node.js Enabler​

Plain Java Enabler (PJE)​

Sprint Boot Enablers​

Zowe Application Framework​

Accessing the Desktop​

App2App​

Config Service​

Zowe learning resources

Blogs​

Videos​

Webinars​

Community​

Join us on Slack​

Learn more about the community​

Connect with the community through meetings​

Training​

Courses​

Important updates in Zowe V3

API Mediation Layer (API ML)​

Breaking changes​

Important API ML updates​

Application Framework​

Breaking changes​

CLI​

Breaking changes​

Pre-release availability​

Application Framework​

Breaking changes​

Explorer for Intellij IDEA​

Important updates​

Explorer for Visual Studio Code​

Breaking changes​

Important updates​

Pre-release availability​

Installation and Packaging​

Breaking changes​

Important updates​

ZSS​

Breaking changes​

Zowe V3 FAQs

Extender questions​

API Mediation Layer​

Zowe Explorer for Visual Studio Code​

Zowe Application Framework, ZSS​

Zowe System Installation and Configuration​

User questions​

Zowe API Mediation Layer​

Zowe V3 Office Hours

Zowe V3 conformance criteria

Zowe API Mediation Layer​

Zowe CLI​

Zowe Explorer​

Zowe Application Framework​

Support providers​

Migrating from Zowe Vx to Zowe V3

Upgrading to the latest version of Zowe v2 (v2.18)​

Migrating from Zowe v2.16.0 or Lower​

Migrating from Zowe v2.15.0 or Lower​

Migrating from Zowe v2.10.0 or Lower​

Migrating from Zowe v2.9.0 or Lower​

Migrating from Zowe v2.3.0 or Lower​

Migrating from Zowe v1​

V3 Prerequisite Changes​

System and Security Changes​

Configuration changes​

New Configuration​

Updated Configuration Parameters​

Keyrings​

Gateway z/OSMF service configuration​

Caching Service​

ZSS Server​

Deprecated Settings​

Upgrade from Convenience Build to PSWI or SMP/E installation

Prerequisites before upgrade​

Installing Zowe via PSWI or SMP/E​

PSWI Installation (Portable Software Instance)​

SMP/E Installation​

Configuring to the same or newer version​

Upgrade to the same version​

Upgrade to a newer version​

Switching between Zowe versions​

Validating after upgrade​

Important updates in Zowe V2

Zowe V2 FAQs

Where can I find the V1 and V2 LTS conformance criteria?​

Whats the difference between "server.json" and "example-zowe.yaml"?​

What are the new default ports?​

How do I access Zowe through the API Mediation Layer in V2?​

What new frameworks are supported in V2?​

Why aren't the explorers appearing on my desktop anymore?​

Zowe V2 Office Hours

Office hours for Zowe extenders​

General information​

Zowe component updates​

Installation and V2 conformance​

Office hours for Zowe consumers​

Zowe component updates​

Migrating from Zowe V1 to Zowe V2

Component manifest​

Lifecycle scripts​

Environment variables​

Packaging one component deliverable for both Zowe v1 and v2​

Zowe conformance and release compatibility

Backward compatibility​

Forward compatibility​

Conformance compatibility​

Need help?​

Zowe CLI quick start

Installing Zowe

Zowe server-side installation overview

Zowe runtime​

The Zowe Cross Memory Server (ZIS)​

Roles and responsibilities for server-side component installation​

Security administrator​

Storage administrator​

Network administrator​

System programmer​

End-to-end installation​

Stage 1: Prepare for installation​

Stage 2: Installing the Zowe z/OS runtime​

Stage 3: Configuring the Zowe z/OS runtime​

Stage 4: (Optional) Customizing the configuration​

Stage 5: (Optional) Installing and managing extensions​

How to troubleshoot problems with the installation​

Next step​

Preparing for installation

Key concepts in Zowe server-side installation​

z/OS UNIX System Services (USS)​

Runtime directory​

Topology of the Zowe z/OS launch process​

Runtime directory​

zwe command​

Zowe started tasks​

z/OS Data sets used by Zowe​

Zowe configuration file (zowe.yaml)​

Workspace directory​

Log directory​

Keystore directory​

Extension directory​

Next step​

Zowe z/OS components installation checklist

Preparing for installation​

Installing the Zowe z/OS runtime​

Configuring Zowe z/OS Components​

Configuring security​

Configuring certificates​

Configuring the Zowe cross memory server (ZIS)​

Configuring High Availability (optional)​

Starting and Stopping Zowe​

Verifying Zowe installation on z/OS​

Addressing z/OS requirements

z/OS system requirements​

z/OS​

Mainframe Resources Consumption​

Resource consumption during Zowe startup​

Resource consumption when Zowe is idling​

Node.js​

Java​

z/OSMF (Optional)​

Addressing Node.js requirements

Supported Node.js versions​

How to obtain IBM SDK for Node.js - z/OS​

Hardware and software prerequisites​

Installing the PAX edition of Node.js - z/OS​

Installing the SMP/E edition of Node.js - z/OS​

Addressing security requirements

Tasks performed by your security administrator​

Assign security permissions to users​

(Recommended) Addressing authentication requirements

Multi-Factor Authentication (MFA)​

Single Sign On (SSO)​

API Mediation Layer OIDC Authentication​

Addressing UNIX System Services (USS) Requirements

What is USS?​

Setting up USS for the first time​

Language environment​

OMVS segment​

Address space region size​

Temporary files management​

How to customize temporary files​

Customizing temporary files in STC​

Customizing temporary files in zowe.yaml​

Addressing storage requirements

Installing Zowe Server Runtime​

Installing with SMP/E​

Memory requirements for API Mediation Layer​

JVM Memory​

Customizing memory limits in Zowe API Mediation Layer​

Setting a direct memory buffer limit​

Establishing a fixed thread pool​

Addressing network requirements

Component Ports​

Application Server Jobname for Port​

Caching Service Infinispan ports​

IP Addresses​

Addressing browser requirements

Zowe Desktop requirements (client PC)​

Browser limitations in API Catalog​

Installing Zowe via Zowe Server Install Wizard

Benefits of Wizard installation​

Prerequisites of the Wizard​

Downloading the Wizard​

Installing Zowe server-side components​

Connecting the Wizard to z/OS​

Setting z/OSMF Attributes​

Choosing the Server Installation Type​

Configuring the Zowe Server​

Final Review​

Troubleshooting Zowe Server Install Wizard

Failure to establish a TLS connection​

Unable to continue with Wizard installation​

Unable to save setting to zowe.yaml via the Wizard's UI or editor​

Installing Zowe SMP/E overview

End-to-end installation diagram​

Zowe FMIDs​

Program materials​

Basic machine-readable material​

Program source materials​

Publications useful during installation​

Program support​

Statement of support procedures​

Program and service level information​

Program level information​

Service level information​

Installation requirements and considerations​

Driving system requirements​

Driving system machine requirements​

Driving system programming requirements​

Target system requirements​

Target system machine requirements​

Target system programming requirements​

DASD storage requirements​

FMIDs deleted​

Installing Zowe via SMP/E instructions

SMP/E considerations for installing Zowe​

SMP/E options subentry values​

Overview of the installation steps​

Download and unzip the Zowe SMP/E package​

Allocate the file system to hold the download package​

Upload the download package to the host​

Extract and expand the compressed SMPMCS and RELFILEs​

GIMUNZIP​

Customize sample installation jobs​

ZWE2RCVE​

ZWE1SMPE and ZWE4ZFS​

ZWEMKDIR, ZWE1SMPE, ZWE2RCVE, ZWE3ALOC, ZWE4ZFS and ZWE5MKD​

Create SMP/E environment (Optional)​

Perform SMP/E RECEIVE​

Allocate SMP/E target and distributions libraries​

Allocate, create and mount ZSF files (Optional)​

Allocate z/OS UNIX paths​

Create DDDEF entries​

Perform SMP/E APPLY​

Sample APPLY commands​

Perform SMP/E ACCEPT​

Run REPORT CROSSZONE​

Cleaning up obsolete data sets, paths, and DDDEFs​

Activating Zowe​

File system execution​

Zowe customization​

Installing Zowe via z/OSMF from PSWI and SMP/E workflow

z/OS requirements for z/OSMF configuration​

Addressing z/OSMF requirements

Configure z/OSMF​

Configure z/OSMF security​

Confirm that the installer has read, create, update, and execute privileges in z/OS​

Address USS requirements​

Configure SMP/E Internet Service Retrieval​

Configuring z/OSMF

z/OSMF REST services for Zowe clients​

Configuring z/OSMF to properly work with API ML​

Disable Cache in z/OSMF​

Configuring z/OSMF Lite (for non-production use)

Introduction​

Assumptions​

Software Requirements​

Minimum Java level​

WebSphere® Liberty profile (z/OSMF V2R3 and later)​

System settings​

Web browser​

Creating a z/OSMF nucleus on your system​

Running job IZUNUSEC to create security​

Before you begin​

Procedure​

Results​

Common errors​

Running job IZUMKFS to create the z/OSMF user file system​

Before you begin​

Procedure​

Results​

Common errors​

Copying the IBM procedures into JES PROCLIB​

Before you begin​

Procedure​

Results​

Common errors​

Starting the z/OSMF server​

Before you begin​

Procedure​

Results​

Accessing the z/OSMF Welcome page​

Before you begin​

Procedure​

Results​

Common errors​

Mounting the z/OSMF user file system at IPL time​

Before you begin​

Procedure​

Results​

Adding the required REST services​

Enabling the z/OSMF JOB REST services​

Procedure​

Results​

Common errors​

Enabling the TSO REST services​

Before you begin​

Procedure​

IZUTSSEC​

Results​

Enabling the z/OSMF data set and file REST services​

Before you begin​

Procedure​

Results​

Common errors​

Enabling the z/OSMF Workflow REST services and Workflows task UI​

Before you begin​

Procedure​

Results​

Troubleshooting problems​

Common problems and scenarios​

System setup requirements not met​

Tools and techniques for troubleshooting​

Common messages​

Appendix A. Creating an IZUPRMxx parmlib member​

Appendix B. Modifying IZUSVR1 settings​

Appendix C. Adding more users to z/OSMF​

Before you Begin​

Procedure​

Results​

Installing Zowe from a Portable Software Instance

End-to-end installation diagram​

Prerequisites​

Procedure​

Acquiring a z/OSMF Portable Software Instance

Download the Portable Software Instance from Zowe Downloads​

Register Portable Software Instance in z/OSMF​

Installing Product Software Using z/OSMF Deployments

Prerequisite - Define a new deployment​

Installing process​

Recommendations​

Cleanup​

Resources ​

Installing Zowe SMP/E build with z/OSMF workflow

Activating Zowe​

File system execution​

Zowe customization​

Installing the z/OS Build via Convenience Build (PAX file)

Introduction​

End-to-end installation diagram​

Step 1: Obtain the convenience build​

Step 2: Transfer the convenience build to USS and expand it​

Step 3: (Optional) Add the zwe command to your PATH​

Step 4: Copy the zowe.yaml configuration file to preferred location​

Step 5: Install the MVS data sets​

About the MVS data sets​

Procedure​

Next steps​

Installing Zowe via a containerization build (PAX file)

End-to-end container installation​

Stage 1: Plan and prepare for the installation​

Stage 2: Download Zowe containers​

Stage 3 & 4: Install and configure Zowe containers​

Stage 5: Start Zowe containers​

(Optional) Stage 6: Monitor Zowe containers​

Known limitations​

Preparing for Zowe server containers installation

Kubernetes cluster​

kubectl tool​

Downloading and installing Zowe containers

Downloading​

Downloading configuration samples​

Downloading container images​

Installing​

Upgrading​

Configuring Zowe containers

1. Create namespace and service account​

Verification​

2. Create Persistent Volume Claim (PVC)​

Verification​

3. Create and modify ConfigMaps and Secrets​

Verification​

4. Expose API Mediation Layer components​

4a. Create service​

Defining api-catalog service​

Applying Gateway Service​

Applying Discovery service​

4b. Create Ingress (Bare-metal)​

4c. Create Route (OpenShift)​

Customizing or manually creating ConfigMaps and Secrets​

PodDisruptionBudget​

HorizontalPodAutoscaler​

Kubernetes v1.21+​

Starting, stopping, and monitoring Zowe containers

Starting Zowe containers​

Port forwarding (for minikube only)​

Verifying Zowe containers​

Monitoring Zowe containers​

Monitoring Zowe containers via UI​

Monitoring Zowe containers via CLI​

Stopping, pausing or removing Zowe containers​

Configuring Overview

Configuring Zowe runtime​

Configuring the z/OS system for Zowe​

Assigning security permissions​

Configuring the Zowe cross memory server (ZWESISTC)​

Initializing Zowe z/OS runtime

Initialize Zowe manually using zwe init command group​

Configure Zowe with z/OSMF workflows​

Configuring Zowe with zwe init

About the zwe init command​

zwe init arguments​

Zowe initilization command​

Next steps​

zwe init subcommand overview

Initializing Zowe custom data sets (zwe init mvs)​

Procedure to initialize Zowe custom data sets​

Initializing Zowe security configurations (zwe init security)​

Performing APF authorization of load libraries (zwe init apfauth)​

Configuring Zowe to use TLS certificates (zwe init certificate)​

Installing Zowe main started tasks (zwe init stc)​

(Deprecated) Creating VSAM caching service datasets (zwe init vsam)​

Next steps​

Configuring Zowe via JCL

Core Tasks​

Keyring Tasks​

(Deprecated) Caching Service VSAM Task​

Configuring API ML with z/OSMF Workflows

Prerequisites​

Overview of Stand-alone Zowe API ML Configuration workflow​

Executing Stand-alone Zowe API ML Configuration workflow from PSWI​

Sequence to execute each workflow step​

Define variables​

Create configuration​

Perform Zowe Installation​

Schema information and next steps​

Configuring Zowe with z/OSMF Workflows

Prerequisites​

Overview of Full Zowe server-side configuration for Zowe 3.0 workflow​

Executing Full Zowe server-side configuration for Zowe 3.0 workflow from PSWI​

Define variables​

Sequence to execute steps and sub-steps in the workflow​

Create configuration​

Perform Zowe installation​

Schema information and next steps​

Configuring security

Validate and re-run zwe init commands​

Initialize Zowe security configurations​

Perform APF authorization of load libraries​

Customize security of your z/OS system​

Assign security permissions to users​

Zowe Feature specific configuration tasks​

Next steps​

Performing APF authorization of load libraries

Making APF auth be part of the IPL​

Customizing z/OS system security

Configure address space job naming​

Configure multi-user address space (for TSS only)​

Configure user IDs and groups for the Zowe started tasks​

Configure ZWESLSTC to run Zowe high availability instances under ZWESVUSR user ACID​

Multi-Factor Authentication (MFA)​

Configure main Zowe server to use client certificate identity mapping​

Configure main Zowe server to use distributed identity mapping​

Configure the main Zowe server to issue SMF records​

API Mediation Layer OIDC Authentication​

Configure security environment switching​

Single Sign-On (SSO)​

Configure signed SAF Identity tokens (IDT)​

Configure an ICSF cryptographic services environment​

Configure the cross memory server for SAF​

Assigning security permissions to users

Overview of user categories and roles​

Security Permissions Reference Table​

Granting users permission to access z/OSMF​

Next step​

Configuring certificates

Certificate concepts​

Keystore​

Truststore​

PKCS12​

z/OS key ring​

Server certificate​

Client certificate​

Self-signed certificates​

Certificate verification​

DISABLED verification​

NON-STRICT verification​

STRICT verification​

Zowe certificate requirements​

Extended key usage​

Supported algorithm​

Hostname validity​

z/OSMF access​

Certificate setup type​

File-based (PKCS12) certificate setup​

z/OS key ring-based certificate setup​

Next steps: Creating or importing certificates to Zowe​

Zowe certificates configuration questionnaire

Certificate configuration questionnaire​

Next steps​

Certificate configuration scenarios

* What is a valid certificate in Zowe?​

Considerations for certificate scenario selection​

Scenario 1: Use a file-based (PKCS12) keystore with Zowe generated certificates​

Scenario 2: Use a file-based (PKCS12) keystore and import a certificate generated by another CA​

Scenario 3: Use a z/OS keyring-based keystore with Zowe generated certificates​

Scenario 4: Use a z/OS keyring-based keystore and connect to an existing certificate​

Scenario 5: Use a z/OS keyring-based keystore and import a certificate stored in a data set​

Importing and configuring a certificate

Importing an existing PKCS12 certificate​

Importing a certificate Authority (CA)​

Manually importing a certificate authority into a web browser​

Importing commands according to your operating system​

Importing a local CA certificate on Linux​

Importing an existing JCERACFKS certificate​

Importing a certificate stored in an MVS data set into a Zowe key ring​

Next steps​

Generating a certificate

Creating a PKCS12 keystore​

Configure the PKCS12 setup section in zowe.yaml​

Run the command to generate a PKCS12 keystore​

Next steps after PKCS12 setup​

Creating a JCERACFKS certificate​

Configure the JCERACFKS setup section in zowe.yaml​

Run the command to generate a JCERACFKS certificate​

Next steps after JCERACFKS setup​

Using certificates

Use PKCS12 certificates​

Use JCERACFKS certificates​

Setting up Zowe certificates using workflows

Customizing Native TLS

Server Parameters​

IP Addresses​

TLS Versions​

TLS Ciphers​

Client parameters​

Default and example​

Enabling AT-TLS

AT-TLS configuration for Zowe​

Limitations when using AT-TLS with ICSF Hardware keyring​

Prevent API ML from reading the private key​

Use an alternative non-hardware keyring​

AT-TLS rules​

Inbound rules​

Outbound rules​

Outbound rule for z/OSMF​

Outbound rule for communication between Zowe core components​

Outbound rule for communication between API Gateway and extensions' servers​

Outbound rule for services that validate tokens against the API Mediation Layer​

Ciphers​

Using AT-TLS for API ML in High Availability​

Multi-tenancy deployment​

AT-TLS Troubleshooting​

The message This combination of port requires SSL is thrown when accesing an API ML service through a

Browser​

AT-TLS rules are not applied​

Non matching ciphers / protocols​

Additional troubleshooting​

Full example of AT-TLS configuration​

Configuring the Zowe cross memory server (ZIS)

PDS sample library and PDSE load library​

Load module​

APF authorize​

Configuring using zwe init apfauth​

Key 4 non-swappable​

PARMLIB​

PROCLIB​

SAF configuration​

Zowe auxiliary service​

Installing the auxiliary service​

Zowe Auxiliary Address space​

Summary of cross memory server installation​

Starting and stopping the cross memory server on z/OS​

Troubleshooting​

Next step​

Configuring high availability (optional)

Enable high availability when Zowe runs in Sysplex​

Known limitations​

Enable high availability when Zowe runs in Kubernetes​

Configuring Sysplex for high availability

Sysplex environment requirements​

Configuring Sysplex Distributor​

Configuring z/OSMF for high availability in Sysplex

Sysplex environment requirements​

Setting up z/OSMF nucleus​

Requirements of z/OSMF HA parmlib member in Sysplex​

Configuring z/OSMF for high availability​

Configuring the Caching Service for high availability

inMemory​

Infinispan​

VSAM (Deprecated)​

Redis​

Starting and stopping Zowe

Starting and stopping the cross memory server ZWESISTC on z/OS​

Starting and stopping the cross memory auxiliary server ZWESASTC on z/OS​

Starting and stopping Zowe main server ZWESLSTC on z/OS with zwe server command​

Starting and stopping Zowe main server ZWESLSTC on z/OS manually​

Stopping and starting a Zowe component without restarting Zowe main server​

Verifying Zowe installation on z/OS

Verifying Zowe Application Framework installation​

Verifying API Mediation Layer installation​

Verifying z/OS Services installation​

Advanced API Mediation Layer Configuration

Enabling Single-Service deployment of API Mediation Layer

Architecture​

Limitations​

Breaking Changes​

Update network configuration​

Update log prefix​

Update AT-TLS rules​

Enable single-service deployment of API Mediation Layer​

Roll back changes from single to multi-service deployment​

Planned updates to single-service deployment mode​

Enabling single sign on for clients

Enabling single sign on for clients via X.509 client certificate configuration

General prerequisites​

Configure Internal API ML Mapper​

Configure ZSS​

Prerequisites for ZSS​

Enabling zowe.yaml to use an X.509 client certificate​

Enabling single sign on for clients via Personal Access Token configuration

Prerequisite using the Caching Service​

Enabling Personal Access Tokens​

Enabling single sign on for clients via JSON Web Token (JWT) configuration

Using SAF as an authentication provider​

Enabling a JWT refresh endpoint​

Authorization​

Additional customizable properties when using JWTs​

Enabling single sign on for extending services

Enabling single sign on for extending services via JSON Web Token (JWT) configuration

Adding a custom HTTP Auth header to store Zowe JWT​

Enabling single sign on for extending services via PassTicket configuration

Overview of PassTickets​

Configuring Zowe to use PassTickets​

Enabling the use of PassTickets in your External Security Manager (ESM)​

Enabling PassTickets with ACF2​

Enabling PassTickets with Top Secret​

Enabling PassTickets with RACF​

Configuring security to allow Zowe API Gateway to generate PassTickets for an API service​

Generating PassTickets using ACF2​

Generating PassTickets using Top Secret​

Generating PassTickets using RACF​

Verifying your PassTicket Application​

Verifying PassTickets using ACF2​

Verifying PassTickets using Top Secret​

Verifying PassTickets using RACF​

(Optional) Adding custom HTTP Auth headers to store user ID and PassTicket​

Customizing routing behavior

Configuring routing in a multi-tenant environment

Customizing Cross-Origin Resource Sharing (CORS)

Using encoded slashes

Customizing Gateway retry policy

Configuring a unique cookie name for a specific API ML instance

Retrieving a specific service within your environment

Output a routed instance header​

Distributing the load balancer cache

Setting a consistent service ID

Customizing management of API ML load limits

Customizing connection limits

TCP/IP Connection Limits​

Websocket Limits​

Customizing Gateway timeouts

Customizing Gateway rate limiter

Customizing Java Heap sizes

Recommendation​

Configuring authorization for API ML

Limiting access to information or services in the API Catalog

Hide service information​

Configuring SAF resource checking

SAF Resource Checking Providers​

Setting the native provider to perform SAF resource check (Default setting)​

Setting the endpoint provider to perform SAF resouce check​

Setting the dummy provider to perform SAF resource check​

Configuring Health Check Protection

Environment Recommendations​

Configuring an authentication provider for API Mediation Layer

z/OSMF Authentication Provider​

SAF Authentication Provider​

Using Infinispan as a storage solution through the Caching Service

Understanding Infinispan​

Infinispan replica instances​

Infinispan configuration​

Using VSAM as a storage solution through the Caching service **Deprecated**

Understanding VSAM​

VSAM configuration​

VSAM performance​

Using Redis as a storage solution through the Caching service

Understanding Redis​

Redis replica instances​

Redis Sentinel​

Redis SSL/TLS​

Redis and Lettuce​

Redis configuration​

Customizing the API Catalog UI

API Catalog branding​

Replace or remove the Catalog with another service​

Customizing Zowe API Mediation Layer logging

Default logging configuration file​

Customization example​

Configuring initial API Mediation Layer startup message for SYSLOG

Zowe Configuration Manager

Validation error reporting​

Example​

JSON-Schema validation​

Splitting configuration into multiple storage types​

Parmlib support​

Configuration templates​

Template functions​

Using System Properties in Templates​

std​

zos​

Configuration Manager Unix executable​

Server Component and Extension Management

Installing a component​

Enable and disable component​

Limiting Zowe to specific service groups​

Upgrading a component​

Uninstalling a component​

Searching for a component​

Manual Component management​

Zowe core components​

Zowe z/OS extensions​

Advanced Application Framework Configuration

Accessing ZSS​

Configuration file​

app-server configuration​

zss configuration​

Configuring the framework as a Mediation Layer client​

Setting up terminal app plugins​

Setting up the TN3270 mainframe terminal app plugin​

Setting up the VT Terminal app plugin​

Network configuration​

Port configuration​

IP configuration​

Native TLS​

AT-TLS​

AT-TLS Rule Suggestions​

Native TLS​

Configuration Directories​

App plugin configuration​

Logging configuration​

Enabling tracing​

Log files​

Retaining logs​

Controlling the logging location​

ZSS configuration​

ZSS 64 or 31 bit modes​

Verifying which ZSS mode is in use​

Verifying which ZSS mode plugins support​

Setting ZSS 64 bit or 31 bit mode​

Customizing ZSS session duration​

Using multiple ZIS instances​

Controlling access to apps​

Enabling RBAC​

Controlling app access for all users​

Controlling app access for individual users​

Controlling access to dataservices​

Creating authorization profiles​

Creating generic authorization profiles​

Configuring basic authorization​

Endpoint URL length limitations​

Customizing Security Plugins​

Session duration and expiration​

Administering the servers and plugins using an API​

Managing Cluster Mode for app-server​

To turn the cluster mode on​

To turn the cluster mode off​

Installing Zowe client-side components

Configuring z/OSMF

Obtaining z/OSMF installation and configuration materials​

Installing and configuring z/OSMF​

Selecting and configuring your z/OSMF plug-ins​

Configuring z/OSMF Security

Configuring z/OS REST services SAF security​

Configuring z/OS console REST interface​

Configuring z/OS data set and file REST interface​

Configuring z/OSMF plug-in security​

Installing Zowe CLI

About Zowe CLI​

Zowe CLI quick start​

Getting the most from Zowe CLI​

Contributing to Zowe CLI​

Zowe CLI community resources​

Community resources​

Zowe CLI installation checklist

Preparing for installation​

Installing Zowe CLI and Zowe CLI plug-ins​

Configuring Zowe CLI​

Zowe CLI system requirements

Client-side requirements​

Node.js​

npm​

Secure credential storage​

Plug-in client requirements​

Host-side requirements​

IBM z/OSMF​

Plug-in services​

Zowe CLI on z/OS is not supported​

Free disk space​

Zowe CLI plug-ins software requirements

Configuring your PC to install from an online registry by proxy

Installing Zowe CLI and Zowe CLI plug-ins

Installing Zowe CLI and Zowe CLI plug-ins from a local package​

Installing Zowe CLI and Zowe CLI plug-ins from an npm online registry​

Other installation options​

Installing Zowe CLI on z/Linux​

Installing with secure credential storage​

Installing without secure credential storage​

Installing Zowe CLI on a USS system, or an OS without secure credential storage​

Next steps​

Configuring secure credential storage on headless Linux operating systems

Headless Linux operating systems​

Requirements for headless Linux operating systems​

Unlocking the keyring manually​

Unlocking the keyring automatically​

z/Linux operating systems​

Configuring z/Linux​

Configuring RHEL V7.X​

Configuring Zowe CLI where secure credential storage is not available

Team configuration​

Stopping automatic storage of prompted values​

Updating Zowe CLI and Zowe CLI plug-ins

Identifying the currently installed version of Zowe CLI and Zowe CLI plug-ins​

Updating to the Zowe CLI V3 Long-term Support (v3-lts) version​

Updating from an npm online registry​

Updating from a local package​

Updating or reverting Zowe CLI and Zowe CLI plug-ins to a specific version​

Updating or reverting from an npm online registry​

Updating or reverting from a local package​

Next steps​

Configuring Zowe CLI environment variables

Setting the Zowe CLI home directory​

Setting a shared plug-in directory​

Setting CLI log levels​

Setting CLI daemon mode properties​

Showing secure values​

Using Zowe CLI with a proxy​

Configuring an environment variables file

How .zowe.env.json works​

Creating the configuration file​

Using daemon mode​

Initializing team configuration

Creating a global team configuration file​

Creating team plug-in profiles​

Connecting profiles to API Mediation Layer​

Configuring daemon mode

Preparing for installation​

Enabling daemon mode​

Restarting daemon mode​

Changes that require daemon mode restart​

Disabling daemon mode​

Configuring daemon mode on z/Linux operating systems

Verifying your Zowe CLI installation

Testing connections to z/OSMF​

Connecting to z/OSM without a profile​

Connecting to z/OSMF with a default profile​

Connecting to z/OSM with a specific profile​

Troubleshooting Zowe CLI connection​

Accessing Zowe CLI help​

Viewing top level Zowe CLI help​

Uninstalling Zowe CLI and Zowe CLI plug-ins

Installing Zowe Explorer

About Zowe Explorer​

Installing and configuring​

Getting the most out of Zowe Explorer​

Contributing to Zowe Explorer​

Zowe Explorer community resources​

Community resources​

Zowe Explorer installation checklist

Preparing for installation​

Installing Zowe Explorer​

Configuring Zowe Explorer​

Zowe Explorer system requirements

Client side requirements​

Operating systems​

Integrated development environments:​

Server side requirements​

Installing and updating Zowe Explorer

Installing Zowe Explorer​

Installing from VS Code Extensions​

Installing from a VSIX file​

Changing the installed version of Zowe Explorer​

Preventing automatic updates to retain a specific version​

Installing Zowe Explorer extensions​

Installing from VS Code Extensions​

Installing Zowe Explorer Extension for FTP from a VSIX file​

Updating Zowe Explorer and Zowe Explorer extensions​

Installing Zowe Explorer extensions

Zowe Explorer CICS Extension system requirements​

Client side requirements​

Server side requirements​

Zowe Explorer FTP Extension system requirements​

Client side requirements​

Server side requirements​

Installing Zowe Explorer CICS Extension

Installation methods​

Installing from Visual Studio Code Extensions​

Installing from a VSIX file​

Zowe Explorer FTP Extension

Installing​

Creating Zowe Explorer profiles

Configuring Zowe profiles​

Creating team configuration files​

Managing profiles​

Example profiles configuration​

Using base profiles and tokens with existing profiles​

Accessing services through API ML using SSO​

Logging out of API ML using SSO​

Configuring Zowe Explorer

Modifying creation settings for data sets, USS files, and jobs​

Modifying REST timeout settings​

Modifying pagination options for data sets​

Modifying the Secure Credentials Enabled setting​

Setting confirmation requirements for submitting jobs​

Modifying level of detail included in logs​

Modifying the default sort order for data sets and jobs​

Examples​

Verifying your Zowe Explorer installation

Using your profile to search data sets​

Uninstalling Zowe Explorer

Uninstalling the Zowe Explorer VS Code extension​

Uninstalling Zowe Explorer CICS Extension​

Uninstalling Zowe Explorer FTP Extension​

Prerequisites

Installing the plug-in

Installing inside IntelliJ IDEA​

Downloading binaries​

Downloading binaries from JetBrains Marketplace page​

Downloading binaries from GitHub Releases​

Downloading binaries from GitHub Actions​

Installing binaries​

Configuring the plug-in

Creating z/OSMF connection​

Creating the connection using the plug-in's connection configurations​

Creating the connection using Zowe Config v2​

Zowe SDKs installation

Fundamentals​

SDK documentation​

SDK software requirements and dependencies​

Java SDK​

Kotlin SDK​

Node.js​

Python SDK technical preview​

Installing a Zowe Client SDK​

Installing an SDK from an online registry​

Installing an SDK from a local package​

Zowe Chat (Technical Preview)

Deployment diagram​

System requirements

Linux system requirements​

Node.js​

Zowe CLI (Optional)​

z/OS system requirements​

z/OSMF​

Network requirements​

Ports​

Connectivity Requirements​

Chat Tool Requirements​

Configuring chat platforms

Mattermost​

Microsoft Teams​

Slack​

Configuring Mattermost

Installing Mattermost chat platform server

Installing​

Next steps​

Creating administrator account and Mattermost team

Creating the bot account

Next steps​

Inviting the created bot to your Mattermost team

Next steps​

Inviting the created bot to your Mattermost channel

Enabling insecure outgoing connections for mouse navigation

Configuring Microsoft Teams

Creating Microsoft Teams bot app with Developer Portal

Creating a bot for Microsoft Teams bot app

Creating a bot with Microsoft Bot Framework

Creating a bot with Microsoft Azure

Configuring messaging endpoint for Microsoft Teams

Configuring messaging endpoint for the Microsoft Bot Framework bot

Configuring messaging endpoint for the Microsoft Azure bot

Configuring Slack

Creating a new Slack App

Configuring the Slack App

Connecting to Slack using Socket mode

Connecting to Slack using public HTTP endpoint

Installing the Slack App

Adding your bot user to your Slack channel

Mention your bot user directly​

Use the channel link​

Installing Zowe Chat

Prerequisites​

Installing​

Configuring Zowe Chat

Zowe Chat server configuration​

Zowe Chat z/OSMF endpoint configuration​

Chat tool configuration​

Configuring Zowe Chat with Mattermost

Prerequisite​

Configuring Mattermost​

Configuring Zowe Chat with Microsoft Teams

Prerequisite​

Configuring Microsoft Teams​

Configuring Zowe Chat with Slack

Prerequisite​

Configuring Slack​

Starting and stopping Zowe Chat

Starting Zowe Chat​

Stopping Zowe Chat​

Uninstalling Zowe Chat

Using Zowe

Zowe server-side components​

Zowe client-side components​

Explore available plug-ins​

Incubator components​

Using Zowe Desktop

Enabling Server Components for the Desktop​

Navigating the Zowe Desktop​

Accessing the Zowe Desktop​

Alternative Desktop access​

Logging in and out of the Zowe Desktop​

Changing user password​

Updating an expired password​

Pinning applications to the task bar​

Open application in new tab​

Keyboard shortcuts​

Changing application elements size​

Personalizing the Desktop​

Changing the desktop language​

Zowe Desktop application plugins​

VT Terminal​

API Catalog​

Editor​

JES Explorer​

IP Explorer​

MVS Explorer​

USS Explorer​

Using the Editor

Specifying a highlighting language​

Open a dataset​

Deleting a file or folder​

Opening a directory​

Creating a new directory​

Creating a new file​

Keyboard shortcuts​

Using the 3270 Terminal

Keyboard shortcuts​

Key sequences​

Default key sequences​

Syntax of the JSON​

Example​

Using Zowe API Mediation Layer

API Mediation Layer Use Cases​

Using Single Sign On (SSO)​

Using multi-factor authentication​

API Routing​

Learning more about APIs​

Administrating APIs​

Using the Caching Service​

Using API Catalog​

Additional use case when using API Mediation Layer​

Information roadmap for Zowe API Mediation Layer

Fundamentals​

Installing​

Configuring and updating​

Using Zowe API Mediation Layer​

Onboarding APIs​

Security​

Contributing to Zowe API Mediation Layer​

Troubleshooting and support​

Community resources​

Using Zowe API ML Single Sign On

Zowe API ML client​

API service accessed via Zowe API ML​

Existing services that cannot be modified​

Further resources​

Authenticating with a JSON Web Token (JWT)

JWT-based Login Flow and Request/Response Format​

Obtaining a JWT​

Making an authenticated request​

Allow the API client to pass the JWT as a cookie header​

Pass the JWT in the Authorization: Bearer header​

Validating JWTs​

Refreshing the JWT​

Token format​

Authenticating with client certificates

Configure your z/OS system to support client certificate authentication for specific users​

Validate the client certificate functionality​

Java sample application​

How the Gateway resolves authentication​

Authenticating with a Personal Access Token

User APIs​

Generate a token​

Validate a token​

Invalidate a specific token​

Invalidate all tokens​

Security Administrator APIs​

Invalidate all tokens for a user​

Invalidate all tokens for a service​

Evict non-relevant tokens and rules​

Using the Personal Access Token to authenticate​

Authenticating with OIDC

Usage​

Authentication Flow​

Workflow description between OICD participants​

Prerequisites​

OIDC provider prerequisites​

ESM configuration prerequisites​

Parameters in the ESM commands​

API ML OIDC configuration​

OIDC client configuration​

OIDC resource server configuration​

Troubleshooting​

API ML fails to validate the OIDC access token with the Distributed Identity Provider​

The access token validation fails with HTTP error​

Using multi-factor authentication (MFA)

Prerequisite​

Known Limitations and Recommendations​

Unintentional Reuse of MFA Token​

No Notification when Additional Input is Required​

Token Expiration when Stored in the Authorization Dialog in "Try it out"​

Routing requests to REST APIs

Terminology​

Basic Routing​

API ML Routing to the Versioned service​

Implementation details for routing​

Zowe architecture with high availability enablement on Sysplex​

API Versioning​

Guidelines​

Routing with WebSockets

Security and Authentication​

Subprotocols​

High availability​

Idle Timeout​

Diagnostics​

Limitations​

Using GraphQL APIs

Difference between GraphQL APIs and traditional REST APIs​

Routing to GraphQL example​

How GraphQL Works​

Key Concepts of GraphQL​

Displaying GraphQL in API Catalog​

Multitenancy Configuration

Overview of API MLs​

Multitenancy component enablement settings​

Onboarding a Gateway service in one domain to the Discovery service of API ML in another domain​

Dynamic configuration via zowe.yaml​

Dynamic configuration via Environment variables​

Validating successful configuration​

Establishing a trust relationship between the API MLs​

Commands to establish trust between the API MLs​

Using the /registry endpoint in the Central Cloud Gateway​

Configuration for /registry​

Authentication for /registry​

Authorization with /registry​

Requests with /registry​

Response with /registry​

Response with /registry{apimlId}​

Response with GET /gateway/api/v1/registry/{apimlId}?apiId={apiId}&serviceId={serviceId}​

Validating successful configuration with /registry​

Troubleshooting multitenancy configuration​

ZWESG100W​

Obtaining Information about API Services

Using API ID in API ML to locate APIs in different instances​

Protecting Service Information​

Using API Endpoints​

Obtaining Information about a Specific Service​

Obtaining Information about All Services​

Obtaining Information about All Services with a Specific API ID​

Response Format​

Using Swagger "Try it out" in the API Catalog

Make a request​

Using Swagger Code Snippets in the API Catalog

Generate the code snippets​

Using Static API services refresh in the API Catalog

Onboarding a REST API service with the YAML Wizard

Onboarding your REST service with the Wizard​

Using the Caching Service

Architecture​

Storage methods​

Infinispan (recommended)​

VSAM (deprecated)​

Redis​

InMemory​

How to start the Service​

Methods to use the Caching Service API​

Configuration properties​

Authentication​

Direct calls​

Routed calls through API Gateway​

Viewing Service Information and API Documentation in the API Catalog

Changing an expired password via API Catalog

Updating user password

SMF records

Configure the main Zowe server to issue SMF records​

SMF record configurable parameters​

Configure rauditx parameters​

Using Zowe CLI

Supported platforms​

CPU architecture​

Operating systems​

Package/resource managers​

Zowe CLI authentication methods

Order of precedence​

Checking availability of authentication​

Using basic authentication​

Using a token for Single Sign-On (SSO)​

Logging in with username and password​

Logging in with a client certificate​

Logging out​

Accessing a service through API ML​

Specifying a base path with Zowe team configuration​

Specifying a base path with Zowe V1 profiles​

Using client certificates​

Using multi-factor authentication (MFA)​

Displaying help

Top-level help​

Group, action, and object help​

Launching local web help​

Viewing web help in other ways​

How command precedence works

Command precedence in action​

Understanding core command groups

auth​

config​

daemon​

plugins​

provisioning​

zos-console​

zos-files​

zos-jobs​

zos-logs​

zos-ssh​

zos-tso​

zos-workflows​

zosmf​

Issuing your first command

Team configurations

Types of configuration files​

Zowe CLI profile types​

Updating secure credentials​

Benefits of team configuration

Editing team configurations

Adding, modifying team profiles​

Available service profile types​

Core z/OS service profiles​

Zowe CLI plug-in service profiles​

Profile properties​

base​

ca7​

cics​

db2​

dbm-db2​

dbm-db2-options​

endevor​

endevor-location​

ims​

jclcheck​

mat​

mq​

omspool​

omview​

ops​

pma​

rse​

ssh​

sysview​

sysview-format​

tso​

zftp​

zosmf​

Creating profiles

Accessing LPARs that contain services that share the same credentials​

Accessing LPARs that contain services that do not share the same credentials​

Accessing LPARs that access services through one API Mediation Layer​

Accessing LPARs that access services through one API Mediation Layer using certificate authentication​

Accessing services through multiple API ML gateways​

Sharing team configuration

Network drive​

Project repository and web server​

Initializing user configuration

Creating user profiles​

How Zowe CLI uses configurations

Learning the terminology​

How configuration files and profiles work together​

Using a profile found in multiple configuration files​

Using multiple properties found in multiple profiles​

Managing credential security

Secure credential storage​

Configuring secure properties​

Updating secure properties​

Setting secure properties programmatically​

Storing properties automatically

Integrating API ML with Zowe CLI

How token management works​

Logging in with username and password​

Logging in with a client certificate​

Logging out​

Specifying a base profile​

Accessing a service through API ML​

Specifying a base path with Zowe team configuration​

Specifying a base path with Zowe V1 profiles​

Accessing multiple services with SSO​

Accessing services through SSO and a service not through API ML​

Accessing services through SSO and a service through API ML but not SSO​

Working with certificates

Configure certificates signed by a Certificate Authority (CA)​

Extend trusted certificates on client​

Bypass certificate requirement​

Using environment variables

Store credentials securely in CI/CD pipelines​

Formatting environment variables

Examples of transformed CLI options​

Setting environment variables in an automation server

Using the prompt feature

Enabling a one-time prompt​

Always prompting for a particular option​

Writing scripts

Sample script library​

Example: Clean up Temporary Data Sets​

Example: Submit Jobs and Save Spool Output​

Using a z/OS attributes file

What is a .zosattributes file​

Using a .zosattributes file with Zowe CLI​

.zosattributes file location​

Using a .zosattributes file with Zowe Explorer for VS Code​

Creating a .zosattributes file​

Zowe CLI plug-ins

Installing Zowe CLI plug-ins

Installing plug-ins from an online registry​

Installing plug-ins from a local package​

Validating plug-ins​

Updating plug-ins​

Update plug-ins from an online registry​

Update plug-ins from a local package​

Uninstall Plug-ins​

IBM® CICS® Plug-in for Zowe CLI

Use cases​

Commands​

Software requirements​

Installing​

Creating a user profile​

Creating plug-in profiles using a configuration file​

Creating a CICS profile with a command​

Creating a CICS profile manually​

IBM® Db2® Database Plug-in for Zowe CLI

Use cases​

Using commands​

Software requirements​

Installing​

Installing from an online registry​

Installing from a local package​

Downloading the ODBC driver​

Installing Xcode on MacOS​

Installing the plug-in​

Addressing the license requirement​

Server-side license​

Client-side license​

Creating a user profile​

Creating plug-in profiles using a configuration file​

Creating a Db2 profile with a command​

Creating a Db2 profile manually​

IBM® z/OS FTP Plug-in for Zowe CLI

Use cases​

Using commands​

Software requirements​

Installing​

Creating a user profile​

Creating plug-in profiles using a configuration file​

Creating an FTP profile with a command​

Creating an FTP profile manually​

Issuing test commands​

IBM® MQ Plug-in for Zowe CLI

Use cases​

Using IBM MQ plug-in commands​

Software requirements​

Installing​

Creating a user profile​

Creating plug-in profiles using a configuration file​

Creating an MQ profile with a command​

Creating an MQ profile manually​

IDF Plug-in for Zowe CLI

Use case​

Commands​

Software requirements​

Installing​

Using​

CSV Format​

Output​

Using Zowe Explorer

Using Zowe Explorer in remote environments​

Credentials in Zowe Explorer​

Preventing Zowe Explorer from storing credentials​

Disabling Secure Credential Storage of credentials​

Zowe Explorer V2 and V3​

Managing and using profiles

Profiles​

Managing a profile​

Deleting a profile​

Hiding a profile​

Configuration files​

Using configurations across VS Code multi-root workspaces​

Using a single project configuration​

Using multiple project configurations​

Zowe Explorer authentication methods

Using basic authentication​

Using tokens​

Using a token to log in with Single Sign-On (SSO)​

Using a token to log in to a specific service​

Logging out to invalidate your token​

Using client certificates​

Multi-factor authentication (MFA) support​

Usage tips

Data sets, USS, and jobs persistence settings​

Identify syntax errors with a syntax highlighter​

Configure the detected language of a file or data set​

Multi-select functionality​

Access resources with virtual workspaces​

Working with data sets

Viewing and accessing multiple profiles simultaneously​

Viewing data sets and using multiple filters​

Viewing data sets with member filters​

Refreshing the list of data sets​

Renaming data sets​

Copying data set members​

Editing and uploading a data set member​

Uploading a local file to a data set​

Comparing data set members​

Preventing merge conflicts​

Creating data sets and specifying parameters​

Creating data sets and data set members​

Deleting a data set member and a data set​

Viewing data set, member attributes​

Filtering partitioned data set members​

Filtering all partitioned data set members under a specific profile​

Filtering members for a single partitioned data set​

Sorting partitioned data set members​

Sorting all partitioned data set members under a specific profile​

Sorting members for a single partitioned data set​

Submitting a JCL​

Submitting a local file as JCL​

Allocate like​

Open selected text as data set​

Data sets table view

Using the data sets table view​

Opening from the Data Sets tree​

Opening from the Command Palette​

Table view layouts​

Data sets layout​

Members layout​

Managing data sets and members​

Using the context menu​

Opening data sets and members​

Pinning and unpinning rows​

Pinning a row​

Unpinning a row​

Navigating PDS members​

Focusing on a PDS​

Returning to the parent view​

Using tree mode (hierarchical view)​

Advanced features​

Sorting options​

Bulk operations​

Keyboard shortcuts​

Working with USS files

Viewing and accessing multiple USS profiles simultaneously​

Viewing Unix System Services (USS) files​

Dragging and dropping USS files​

Refreshing the list of files​

Renaming USS files​

Copying and pasting USS folders and files​

Downloading, editing, and uploading existing USS files​

Uploading a local file to a USS directory​

Comparing USS files​

Creating and deleting USS files and directories​

Creating a directory​

Creating a file​

Deleting a file​

Deleting a directory​

Working with jobs

Viewing job spool output​

Viewing job contents​

Creating a job search filter​

Downloading spool content​

Downloading spool files from a job​

Downloading a single spool file​

Sorting jobs​

Polling a spool file​

Defining a default interval for polling spool files​

Polling a spool file at set intervals​

Stopping spool file polling​

Polling a spool file manually​

Configuring the keyboard shortcut for manual polling​

Jobs table view

Using the jobs table view​

Opening from the Jobs tree​

Table view layout​

Managing jobs​

Using the context menu​

Bulk job operations​

Downloading jobs​

Canceling jobs​

Deleting jobs​

Advanced features​

Sorting and filtering​

Table navigation​

Dynamic title updates​

Integration with Jobs tree view​

Keyboard shortcuts​

Working with commands

Issuing MVS commands​

Issuing SSH commands​

Issuing TSO commands​

Using Zowe Explorer CICS Extension

Features​

Usage tips

Multi-select functionality​

Refreshing the resources view​

Managing Zowe Explorer CICS Extension profiles

Using Zowe team configuration​

Updating profiles​

Hiding and unhiding profiles​

Deleting profiles​

Using CICS resources

Showing and filtering resources in a region​

Showing and filtering resources in a plex​

Showing and filtering resources in an 'All' resource tree​

Showing attributes​

Enabling and disabling​

New copy and phase in​

Opening and closing local files​

Overriding untrusted TLS certificates

Updating the CICS profile with Zowe Explorer​

Updating the CICS profile manually​

Using Zowe Explorer FTP Extension

Using​

Creating an FTP profile with Zowe Explorer​

Supported functionality

Supported data set functionalities​

Supported USS functionalities​

Supported jobs functionalities​

Using Zowe Explorer plug-in for IntelliJ IDEA

What can I do using the plug-in for IntelliJ IDEA?​

Who is the plug-in for IntelliJ IDEA intended for?​

Working with plug-in's settings

Batch amount to show per fetch​

Enable auto-sync with mainframe​

Working with plug-in's Working Sets

The concept​

Files Working Set​

JES Working Set​

Working with z/OS data sets

Allocating a data set​

Working with z/OS PS data sets​

Working with z/OS PDS / PDS/E data sets​

"Allocate Like" feature​

"Submit Job" feature​

Sort a data sets mask​

Working with USS Files

Basic operations​

Working with permissions​

Working with files encoding​

Sort a USS path​

Copying and moving data using the plug-in

Copy and move: the same system​

Copy and move: a data set member copy and move examples​

Copy and move: a PS data set to a PDS member copy example​

Copy and move: a USS file to a USS folder move example​

Copy and move: a PDS / PDS/E member to a USS folder copy example​

Copy and move: a PDS / PDS/E data set to a USS folder move example​

Copy and move: a USS file to a PDS / PDS/E data set move example​

Cross-system copy and move​

Copy and move: a PDS / PDS/E data set to a USS path cross-system copy example​

Downloading USS files and folders and z/OS data sets and members​

Download feature: a USS file download as a copy operation​

Uploading files to a USS subsystem and z/OS data sets​

Upload feature: a file to a PDS / PDS/E member upload as a copy operation​

Current limitations​

Working with JES Explorer

Creating a jobs filter​

Viewing a job status​

Viewing job spool files and job's run logs​

View and edit job's JCL code​

Purge a job​

Sort jobs​

Working with TSO console

Creating a TSO Session​

Creating a TSO Console​

Using Zowe SDKs

SDK documentation​

Software requirements​

Java SDK​

Node.js SDK​

Python SDK​

Getting started​

Install Java SDK from an online registry​

Install Node.js SDK from an online registry​

Install Python SDK from an online registry​

Install Node.js and Python SDKs from a local package​

Using​

Using - Java​

Using - Node.js​

Using Python​

Using Kotlin​

Using Java​

Using Zowe Chat

Mouse navigation​

Interacting through commands​

Zowe Chat commands​

Zowe CLI commands​

Providing feedback and contributing

Zowe CLI​

Chatting with the Zowe CLI community​

Filing an issue for Zowe CLI​

Zowe Explorer​

Chatting with the Zowe Explorer community​

Filing an issue for Zowe Explorer and Zowe Explorer extensions​

Zowe Explorer plug-in for IntelliJ IDEA​

Chatting with the Zowe Explorer plug-in for IntelliJ IDEA community​

Filing an issue for Zowe Explorer plug-in for IntelliJ IDEA​

Zowe Client SDKs​

Chatting with the Zowe Client SDKs community​

Filing an issue for Zowe Client Java SDK​

Filing an issue for Zowe Client Kotlin SDK​

Filing an issue for Zowe Client Node.js SDK​

Filing an issue for Zowe Client Python SDK technical preview​

Zowe Chat technical preview​

Chatting with the Zowe Chat community​

Filing an issue for Zowe Chat​

Extending Zowe

Extending the server side​

Extending Zowe API Mediation Layer​

Developing for Zowe Application Framework​

Extending the client side​

Extend Zowe CLI​

Extend Zowe Explorer​

Add a plug-in to the Zowe Desktop​

Sample extensions​

Sample Zowe API and API Catalog onboarded service​

Sample Zowe Desktop extension​

Zowe Conformance Program

Introduction​

How to participate​

How to suggest updates to the Zowe conformance program​

Packaging z/OS extensions

Zowe server component package format​

Packaging default YAML properties​

Server component schemas

Requirements​

Additional information​

Example​

Example manifest​

Example schema​

Validation​

Component package registries

Registry examples​

Installing an extension​

Upgrading an extension​

Uninstalling extensions​

Searching for extensions​

Configuring zwe to use a registry​

Using multiple registries​

Setting up a registry​

npm​

Making your own handler​

Handler code​

Component Packaging Requirements​

npm​

Additional resources​

Zowe server component runtime lifecycle

Zowe runtime lifecycle​

Zowe component runtime lifecycle​

Validate​

Configure​

Start​

Creating and adding Zowe extension containers

1. Build and publish an extension image to a registry​

2. Define Deployment or Job object​

3. Start your component​

Zowe Containerization Conformance Criteria

Image​

Base Image​

Multi-CPU Architecture​

Image Label​

Tag​

Files and Directories​

User zowe​

Multi-Stage Build​

Runtime​

General rules​

Persistent Volume(s)​

Files and Directories​

ConfigMap and Secrets​

ompzowe/zowe-launch-scripts Image and initContainers​

Command Override​

Environment Variables​

CI/CD​

Build, Test and Release​

Onboarding Overview

Prerequisites​

Service Onboarding Guides​

Recommended guides for services using Java​

Recommended guides for services using Node.js​

Recommended guides for services using Python​

Guides for Static Onboarding and Direct Call Onboarding​

Documentation for legacy enablers​

Verify successful onboarding to API ML​

Verifying service discovery through Discovery Service​

Verifying service discovery through the API Catalog​

Sample REST API Service​

Managing certificates in Zowe API Mediation Layer

Running on localhost​

How to start API ML on localhost with full HTTPS​

Certificate management guide​

Generate a certificate for a new service on localhost​

Add a service with an existing certificate to API ML on localhost​

Service registration to Discovery Service on localhost​

Zowe runtime on z/OS​

Import the local CA certificate to your browser​

Generate a keystore and truststore for a new service on z/OS​

Add a service with an existing certificate to API ML on z/OS​

Procedure if the service is not trusted​

Truststore and keystore or SAF keyring​

API ML truststore and keystore​

API ML SAF Keyring​

Quick Start for Development

Deploying API Mediation Layer locally

General information​

Dummy Authentication Provider​

Libraries for onboarding APIs to Zowe API ML

Onboarding an API service with the Plain Java Enabler (PJE)

Introduction​

Onboarding your REST or GraphQL service with API ML​

Prerequisites​

Configuring your project​

Gradle build automation system​

Maven build automation system​

Configuring your service​

Service identification​

Administrative endpoints​

API info​

API routing information​

API Catalog information​

Authentication parameters​

API Security​

SAF Keyring configuration​

Eureka Discovery Service​

Custom Metadata​

Registering your service with API ML​

Validating the discoverability of your API service by the Discovery Service​

Troubleshooting​

Log messages during registration problems​

API Mediation Layer onboarding configuration

Introduction​

Configuring a REST service for API ML onboarding​

Plain Java Enabler service onboarding API​

Automatic initialization of the onboarding configuration by a single method call​

Validating successful onboarding with API Mediation Layer​

Loading YAML configuration files​

Loading a single YAML configuration file​

Loading and merging two YAML configuration files​

Onboarding a Spring Boot based REST API Service

Outline of onboarding a REST service using Spring Boot​

Configuring your project​

Gradle build automation system​

Maven build automation system​

Configuring your Spring Boot based service to onboard with API ML​

Sample API ML Onboarding Configuration​

Authentication properties​

API ML Onboarding Configuration Sample​

SAF Keyring configuration​

Custom Metadata​

Registering and unregistering your service with API ML​

Unregistering your service with API ML​

Basic routing​

Adding API documentation​

Validating the discoverability of your API service by the Discovery Service​

Troubleshooting​

Log messages during registration problems​

Onboarding a Micronaut based REST API service

Set up your build automation system​

Configure the Micronaut application​

Add API ML configuration​

Add Micronaut configuration​

(Optional) Set up logging configuration​

Validate successful registration​

Onboarding a Node.js based REST API service

Introduction​

Onboarding your Node.js service with API ML​

Prerequisites​

Installing the npm dependency​

Configuring your service​

Registering your service with API ML​

Validating the discoverability of your API service by the Discovery Service​

Onboarding a Python based REST API service

Introduction​

Prerequisites​

Installing the Python dependency​

Configuring your service​

Registering your service with API ML​

Validating the discoverability of your API service by the Discovery Service​

Onboarding a REST or GraphQL API without code changes required

Identify the APIs that you want to expose​

Define your service and API in YAML format​

Route your API​

Customize configuration parameters​

Add and validate the definition in the API Mediation Layer running on your machine​

Add a definition in the API Mediation Layer in the Zowe runtime​

(Optional) Check the log of the API Mediation Layer​

(Optional) Reload the services definition after the update when the API Mediation Layer is already started​

Optional features to use with onboarded APIs

Using API Mediation Layer Message Service

Message Definition​

Creating a message​

Mapping a message​

API ML Logger​

Customizing Metadata (optional)

API ML Routing Overview

Basic Routing​

Deployments​

Making a GET call to a service through single instance of API ML​

A GET call to a service with a single version on a single instance​

A GET call to a service with multiple versions on a single instance​

GET calls to multiple instances of a service​

A GET call to a service through multiple API Mediation Layer Instances​

Same LPAR Multiple API Mediation Layer Instances​

Different LPAR Multiple API Mediation Layer Instances​

Advanced Configuration​

Understanding service routing through the Gateway

Routing with versioning​

Routing without versioning​

Routing Websocket based APIs

Configure the service for Websockets​

Creating an Extension for API ML

Call the REST endpoint for validation​

Implementing a new SAF IDT provider

How to create a SAF IDT provider​

How to integrate your extension with API ML​

How to use the SAF IDT provider​

How to use an existing SAF IDT provider​

Single Sign On Integration for Extenders

Accepting JWT​

Accepting SAF IDT​

Accepting PassTickets​

Bypassing authentication for the service​

Accepting client certificates via x509 scheme​

Accepting z/OSMF LTPA token​

Forwarding x509 client certificate​

API ML Gateway Requirements​

Downstream service requirements​

ZAAS Client

Pre-requisites​

API Documentation​

Obtain a JWT token (login)​

Validate and get details from the token (query)​

Validate the OIDC token (validateOidc)​

Invalidate a JWT token (logout)​

Obtain a PassTicket (passTicket)​

Getting Started (Step by Step Instructions)​

Advanced Server Configuration

Configuration file​

Environment variables (app-server only)​

Parameter details​

Configuration directories​

Directories example​

App configuration​

Plug-ins directory example​

Logging configuration​

ZSS Configuration​

Connecting ZSS to App Server​

Zowe Application Framework overview

How Zowe Application Framework works​

Tutorials​

Samples​

Sample Iframe App​

Sample Angular App​

Sample React App​

User Browser Workshop Starter App​

Plug-ins definition and structure

pluginDefinition.json​

Application Plugin filesystem structure​

Root files and directories​

Dev and source content​

nodeServer​

webClient​

Runtime content​

lib​

web​

Packaging applications as compressed files​

Default user configuration​

App-to-App Communication​

Documentation​

Location of Plugin files​

pluginsDir directory​

Application Dataservices​

Application Configuration Data​

Building plugin apps

Building web content​

Building app server content​

Building zss server content​

Tagging plugin files on z/OS​

Building Javascript content (*.js files)​

Installing​

Packaging​

Installing Plugins

By filesystem​

Adding/Installing​

Removing​

Upgrading​

Modifying without server restart (Exercise to the reader)​

By REST API​

Plugin management during development​

Installing​

Removing​

Embedding plugins

How to interact with embedded plugin​

How to destroy embedded plugin​

How to style a container for the embedded plugin​

Applications that use embedding​

Dataservices

Defining dataservices​

Schema​

Defining Java dataservices​

Prerequisites​

Defining Java dataservices​

Defining Java Application Server libraries​

Java dataservice logging​

Java dataservice limitations​

Using dataservices with RBAC​

Dataservice APIs​

Router-based dataservices​

HTTP/REST Router dataservices​

WebSocket Router dataservices​

Router dataservice context​

Router storage API​

ZSS based dataservices​

HTTP/REST ZSS dataservices​

ZSS dataservice context and structs​

ZSS storage API​

Documenting dataservices​

Authentication API

Handlers​

Handler installation​

Handler configuration​

Handler context​

Handler capabilities​

Examples​

High availability (HA)​

REST API​

Check status​

Authenticate​

User not authenticated or not authorized​

Not authenticated​

Not authorized​

Refresh status​

Logout​

Password changes​

Internationalizing applications

Internationalizing Angular applications​

Internationalizing React applications​

Internationalizing application desktop titles​

Zowe Desktop and window management

Loading and presenting application plug-ins​

Plug-in management​

Application management​

Windows and Viewports​

Viewport Manager​

Injection Manager​

Plug-in definition​

Logger​

Launch Metadata​

Viewport Events​

Window Events​

Window Actions​

Framework API examples​

Configuration Dataservice

Resource Scope​

REST API​

REST query parameters​

REST HTTP methods​

GET​

PUT​

DELETE​

Administrative access and group​

Application API​

Internal and bootstrapping​

Packaging Defaults​

Plug-in definition​

Aggregation policies​

Examples​

URI Broker

Accessing the URI Broker​

Natively:​

In an iframe:​

Functions​

Accessing an application plug-in's dataservices​

HTTP Dataservice URI​

Websocket Dataservice URI​

Accessing application plug-in's configuration resources​

Standard configuration access​

Scoped configuration access​

Accessing static content​

Accessing the application plug-in's root​

Server queries​

Accessing a list of plug-ins​

Application-to-application communication

Why use application-to-application communication?​

Actions​

Action target modes​

Action types​

Loading actions​

App2App via URL​

Samples​

Dynamically​

Saved on system​

Recognizers​

Recognition clauses​

Loading Recognizers at runtime​

Dynamically​

Saved on system​

Recognizer example​

Dispatcher​

Registry​

Pulling it all together in an example​

Configuring IFrame communication

Error reporting UI

ZluxPopupManagerService​

ZluxErrorSeverity​

ErrorReportStruct​

Implementation​

Declaration​

Usage​

HTML​

Logging utility

Logging objects​

Logger IDs​

Accessing logger objects​

Logger​

App Server​

Web​

Component logger​

App Server​

Logger API​

Component Logger API​

Log Levels​

Logging verbosity​

Configuring logging verbosity​

Server startup logging configuration​

Using log message IDs​

Message ID logging examples​

Developing for Zowe CLI

How to contribute​

Getting started​

Contribution guidelines​

Plug-in development overview​

Imperative CLI Framework documentation​

Tutorials

Setting up your development environment

Prerequisites​

Initial setup​

Clone and build your project​

Optional step: Run automated tests​

Next steps​

Installing the sample plug-in

Installing the sample plug-in to Zowe CLI​

Viewing the installed plug-in​

Using the installed plug-in​

Testing the installed plug-in​

Next steps​

Extending a plug-in

Overview​

Creating a Typescript interface for the Typicode response data​

Creating a programmatic API​

Exporting the interface and programmatic API for other Node.js applications​

Verify that you can build the programmatic API​

Creating a command definition​

Defining the syntax of your command​

Adding a command to a command group​

Creating a command handler​

Verify that you can build your plug-in​

Using the installed plug-in​

Summary​

Next steps​

Developing a new Zowe CLI plug-in

Overview​

Setting up the new sample plug-in project​

Updating package.json​

Adjusting Imperative CLI Framework configuration​

Adding third-party packages​

Creating a Node.js client-side API​

Building your plug-in source​

Creating a Zowe CLI command​

Trying your command​

Bringing together new tools​

Next steps​

Implementing profiles in a plug-in

Editing the plug-in definition file​

Authentication mechanisms

Default order of precedence​

Creating plug-in lifecycle actions

Implementing lifecyle actions​

Extending Zowe Explorer

Information roadmap for Zowe Client SDKs

Troubleshooting and support​

Community resources​

Developing for Zowe SDKs

Contributing to Zowe Client SDKs​

Community resources​

Troubleshooting Zowe

How to start troubleshooting​

Known problems and solutions​

Troubleshooting Zowe server-side components​

Troubleshooting Zowe client-side components​

Verifying a Zowe release's integrity​

Understanding the Zowe release​

Understanding Zowe release versions

Zowe releases​

Major release​

Conformance programs​

SMP/E builds​

Minor release​

Patch​

Checking your Zowe version release number

Server side​

Using other commands​

Using the manifest file​

Client side​

Zowe CLI​

Zowe CLI plug-ins​

Zowe Explorer for Visual Studio Code​

Zowe Explorer for Visual Studio Code Extensions​

Zowe Explorer plug-in for IntelliJ IDEA​

Gathering Information for Support or Troubleshooting

Describe your environment​

Tips on gathering this information​

z/OS release level​

Zowe version​

Describe your issue​

Provide the logs​

Enabling debugging and tracing​

Screenshots​

Verify Zowe runtime directory

Troubleshooting Kubernetes environments

ISSUE: Deployment and ReplicaSet failed to create pod​

ISSUE: Failed to create services​

Diagnosing Return Codes

Troubleshooting certificate configuration

PKCS12 server keystore generation fails in Java 8 SR7FP15, SR7 FP16, and SR7 FP20​

Eureka request failed when using entrusted signed z/OSMF certificate​

Zowe startup fails with empty password field in the keyring setup​

Certificate error when using both an external certificate and Single Sign-On to deploy Zowe​

Browser unable to connect due to a CIPHER error​

API Components unable to handshake​

Java z/OS components of Zowe unable to read certificates from keyring​

Java z/OS components of Zowe cannot load the certificate private key pair from the keyring​

Exception thrown when reading SAF keyring {ZWED0148E}​

ZWEAM400E Error initializing SSL Context when using Java 11​

Failed to load JCERACFKS keyring when using Java 11​

Troubleshooting startup of Zowe z/OS components

How to check if ZWESLSTC startup is successful​

Check the startup of API Mediation Layer​

Check the startup of Zowe Desktop​

Check the startup of Zowe System Services​

Troubleshooting Zowe API Mediation Layer

Install API ML without Certificate Setup​

Enable API ML Debug Mode​

Change the Log Level of Individual Code Components​

Gather atypical debug information​

Services that are not running appear to be running​

Debug and Fix Common Problems with SSL/TLS Setup​

SDSF Job search fails​

Known Issues with API ML​

Error messages from TCP/IP​

API ML stops accepting connections after z/OS TCP/IP stack is recycled​

API ML throws I/O error on GET request and cannot connect to other services​

SEC0002 error when logging in to API Catalog​

Connection refused​

Configure z/OSMF​

Missing z/OSMF host name in subject alternative names​

Secure fix​

Insecure fix​

Invalid z/OSMF host name in subject alternative names​

Request a new certificate​

Re-create the Zowe keystore​

Error Message Codes

API mediation utility messages​

ZWEAM000I​

ZWEAM001I​

API mediation common messages​

ZWEAO102E​

ZWEAO104W​

ZWEAO105W​

ZWEAO106W​

ZWEAO400E​

ZWEAO401E​

ZWEAO402E​

ZWEAO404E​

ZWEAO405E​

ZWEAO415E​

ZWEAO500E​

ZWEAO503E​

Common service core messages​

ZWEAM100E​

ZWEAM101E​

ZWEAM102E​

ZWEAM103E​

ZWEAM104E​

ZWEAG120E​

ZWEAG140E​

ZWEAG141E​

ZWEAM400E​

ZWEAM500W​

ZWEAM501W​

ZWEAM502E​

ZWEAM503E​

ZWEAM504E​

ZWEAM505E​

ZWEAM506E​

ZWEAM507E​

ZWEAM508E​

ZWEAM509E​

ZWEAM510E​

ZWEAM511E​

ZWEAM600W​

ZWEAM700E​

ZWEAM701E​

Security common messages​

ZWEAT100E​

ZWEAT103E​

ZWEAT403E​

ZWEAT409E​

ZWEAT410E​

ZWEAT411E​

ZWEAT412E​

ZWEAT413E​

ZWEAT414E​

ZWEAT415E​

ZWEAT416E​

ZWEAT500E​

ZWEAT501E​

ZWEAT502E​

ZWEAT503E​

ZWEAT504E​

ZWEAT601E​

ZWEAT602E​

ZWEAT603E​

ZWEAT604E​

ZWEAT605E​

ZWEAT606E​

ZWEAT608E​

ZWEAT609W​

ZWEAT610E​

Security client messages​

ZWEAS100E​

ZWEAS101E​

ZWEAS103E​

ZWEAS104E​

ZWEAS105E​

ZWEAS120E​

ZWEAS121E​

ZWEAS123E​

ZWEAS130E​

ZWEAS131E​

ZAAS client messages​

ZWEAS100E​

ZWEAS120E​

ZWEAS121E​

ZWEAS122E​

ZWEAS170E​

ZWEAS400E​

ZWEAS401E​

ZWEAS404E​

ZWEAS417E​

ZWEAS130E​

ZWEAS500E​

ZWEAS501E​

ZWEAS502E​

ZWEAS503E​

ZWEAS504E​

Discovery service messages​

ZWEAD400E​

ZWEAD401E​

ZWEAD700W​

ZWEAD701E​

ZWEAD702W​

ZWEAD703E​

ZWEAD704E​

Gateway service messages​

ZWEAG111E​

ZWEAG501E​

ZWEAG701E​

ZWEAG702E​

ZWEAG717E​

ZWEAG718E​

ZWEAG719I​

ZWEAG101E​

ZWEAG105E​

ZWEAG167E​

ZWEAM400E​

ZWEAT403E​

ZWEAG510E​

ZWESG100W​

ZWESG101E​

ZWESG429E​

API Catalog messages​

ZWEAC100W​

ZWEAC101E​

ZWEAC102E​

ZWEAC103E​

ZWEAC104E​

ZWEAC105W​

ZWEAC106E​

ZWEAC700E​

ZWEAC701W​

ZWEAC702E​

ZWEAC703E​

ZWEAC704E​

ZWEAC705W​

ZWEAC706E​

ZWEAC707E​

ZWEAC708E​

ZWEAC709E​

Troubleshooting Zowe Application Framework

Desktop apps fail to load​

NODEJSAPP disables immediately​

Cannot log in to the Zowe Desktop​

ZSS server unable to communicate with ZIS​

Application Framework unable to communicate with zssServer​

Slow performance of the VT terminal on SSH​

Application Framework unable to communicate with API Mediation Layer​

Server startup problem ret=1115​

Server error EACCESS on z/os​

Application plug-in not in Zowe Desktop​

Error: You must specify MVD_DESKTOP_DIR in your environment​

Error: Exception thrown when reading SAF keyring {ZWED0148E}​

Warning: Problem making eureka request { Error: connect ECONNREFUSED }​

Warning: Zowe extensions access to ZSS security endpoints fail​

Fail when launching MVS, USS, and JES Explorers​

Gathering information to troubleshoot Zowe Application Framework

Basic information​

Javascript console output​

Raising a Zowe Application Framework issue on GitHub

Enabling tracing

Basic debugging​

Advanced debugging for App Server​

Advanced debugging for ZSS​

App-server Return Codes

App-server Error Message Codes

App-server informational messages​

ZWED0020I​

ZWED0021I​

ZWED0022I​

ZWED0023I​

ZWED0024I​

ZWED0025I​

ZWED0026I​

ZWED0027I​

ZWED0028I​

ZWED0029I​

ZWED0031I​

ZWED0033I​

ZWED0036I​

ZWED0037I​

ZWED0038I​

ZWED0039I​

ZWED0040I​

ZWED0041I​

ZWED0042I​

ZWED0043I​

ZWED0044I​

ZWED0045I​

ZWED0046I​

ZWED0047I​

ZWED0048I​

ZWED0049I​

ZWED0050I​

ZWED0052I​

ZWED0053I​

ZWED0054I​

ZWED0055I​

ZWED0056I​

ZWED0059I​

ZWED0062I​

ZWED0064I​

ZWED0066I​

ZWED0067I​

ZWED0070I​

ZWED0072I​

ZWED0086I​

ZWED0087I​

ZWED0090I​

ZWED0091I​

ZWED0092I​

ZWED0093I​

ZWED0094I​

ZWED0095I​

ZWED0096I​

ZWED0109I​

ZWED0110I​

ZWED0111I​

ZWED0112I​

ZWED0114I​

ZWED0115I​

ZWED0116I​

ZWED0117I​

ZWED0118I​

ZWED0119I​

ZWED0120I​

ZWED0124I​

ZWED0125I​

ZWED0129I​

ZWED0130I​

ZWED0154I​

ZWED0158I​

ZWED0159E​

ZWED0160I​

ZWED0205I​

ZWED0211I​

ZWED0212I​

ZWED0213I​

ZWED0214I​

ZWED0287I​

ZWED0290I​

ZWED0292I​

ZWED0294I​

ZWED0295I​

ZWED0299I​

ZWED0300I​

ZWED0301I​

ZWED0302I​

App-server warning messages​

ZWED0004W​

ZWED0006W​

ZWED0007W​

ZWED0008W​

ZWED0013W​

ZWED0014W​

ZWED0015W​

ZWED0016W​

ZWED0017W​

ZWED0018W​

ZWED0019W​

ZWED0020W​

ZWED0021W​

ZWED0027W​

ZWED0028W​

ZWED0029W​

ZWED0030W​

ZWED0032W​

ZWED0033W​

ZWED0034W​

ZWED0035W​

ZWED0036W​

ZWED0037W​

ZWED0038W​

ZWED0039W​

ZWED0040W​

ZWED0041W​

ZWED0042W​

ZWED0043W​

ZWED0044W​

ZWED0045W​

ZWED0046W​

ZWED0048W​

ZWED0049W"​

ZWED0051W​

ZWED0052W​

ZWED0053W​

ZWED0054W​

ZWED0055W​

ZWED0056W​

ZWED0057W​

ZWED0058W​

ZWED0059W​

ZWED0060W​

ZWED0061W​

ZWED0062W​

ZWED0063W​

ZWED0064W​

ZWED0065W​

ZWED0066W​

ZWED0068W​

ZWED0069W​

ZWED0070W​

ZWED0071W​

ZWED0072W​

ZWED0073W​

ZWED0074W​

ZWED0075W​

ZWED0076W​

ZWED0077W​

ZWED0078W​

ZWED0079W​

ZWED0080W​

ZWED0081W​

ZWED0082W​

ZWED0083W​

ZWED0084W​

ZWED0085W​

ZWED0086W​

ZWED0087W​

ZWED0146W​

ZWED0148W​

ZWED0149W​

ZWED0150W​

ZWED0151W​

ZWED0152W​

ZWED0153W​

ZWED0154W​

ZWED0155W​

ZWED0156W​

ZWED0157W​

ZWED0158W​

ZWED0159W​

ZWED0166W​

ZWED0167W​

ZWED0168W​

ZWED0169W​

ZWED0170W​

ZWED0171W​

ZWED0172W​

ZWED0173W​

ZWED0174W​

ZWED0175W​

ZWED0177W​

ZWED0178W​

ZWED0179W​

App-server error messages​

ZWED0001E​

ZWED0002E​

ZWED0003E​

ZWED0004E​

ZWED0005E​

ZWED0006E​

ZWED0007E​

ZWED0008E​

ZWED0009E​

ZWED0010E​

ZWED0011E​

ZWED0012E​

ZWED0013E​

ZWED0014E​

ZWED0015E​

ZWED0016E​

ZWED0017E​

ZWED0018E​

ZWED0019E​

ZWED0020E​

ZWED0021E​

ZWED0022E​

ZWED0023E​

ZWED0024E​

ZWED0025E​

ZWED0026E​

ZWED0027E​

ZWED0028E​

ZWED0038E​

ZWED0039E​

ZWED0040E​

ZWED0041E​

ZWED0042E​

ZWED0043E​

ZWED0044E​

ZWED0045E​

ZWED0046E​

ZWED0047E​

ZWED0049E​

ZWED0050E​

ZWED0051E​

ZWED0052E​

ZWED0053E​

ZWED0111E​

ZWED0112E​

ZWED0113E​

ZWED0114E​

ZWED0115E​

ZWED0145E​

ZWED0146E​

ZWED0147E​

ZWED0148E​

ZWED0149E​

ZWED0150E​

ZWED0151E​

ZWED0152E​

ZWED0153E​

ZWED0154E​

ZWED0155E​

ZWED0156E​

ZWED0157E​

ZWED0158E​

ZSS Error Message Codes

ZSS informational messages​

ZWES1007I​

ZWES1008I​

ZWES1010I​

ZWES1013I​

ZWES1014I​

ZWES1035I​

ZWES1038I​

ZWES1039I​

ZWES1061I​

ZWES1063I​

ZWES1064I​

ZWES1100I​

ZWES1101I​

ZWES1102I​

ZWES1600I​

ZWES1601I​

ZSS error messages​

ZWES1001E​

ZWES1002E​

ZWES1006E​

ZWES1011E​

ZWES1016E​

ZWES1017E​

ZWES1020E​

ZWES1021E​

ZWES1022E​

ZWES1034E​

ZWES1036E​

ZWES1037E​

ZWES1065E​

ZWES1500E​

ZSS warning messages​

ZWES1000W​

ZWES1004W​

ZWES1005W​

ZWES1009W​

ZWES1012W​

ZWES1060W​

ZWES1103W​

ZWES1200W​

ZWES1201W​

ZWES1202W​

ZWES1103W​

ZWES1200W​

ZWES1202W​

ZWES1400W​

ZWES1401W​

ZWES1402W​

ZWES1403W​

ZWES1404W​

ZWES1406W​

ZWES1407W​

ZWES1408W​

ZWES1409W​

ZWES1410W​

ZWES1411W​

ZWES1412W​

ZWES1413W​

ZWES1414W​

ZWES1415W​

ZWES1416W​

ZWES1417W​

ZWES1418W​

ZWES1419W​

ZWES1602W​

ZWES1603W​

ZWES1604W​

ZWES1605W​

ZWES1606W​

ZIS Error Message Codes

ZIS cross-memory server messages​

ZWES0001I​

ZWES0002I​

ZWES0003I​

ZWES0004I​

ZWES0005E​

ZWES0006E​

ZWES0007E​

ZWES0008E​

ZWES0009E​

ZWES0010E​

ZWES0011E​

ZWES0012I​

ZWES0013E​

ZWES0014E​

ZWES0015E​

ZWES0016I​

ZWES0017W​

ZWES0018W​

ZWES0019W​

ZWES0020E​

ZWES0021E​

ZWES0098I​

ZWES0099I​

ZIS Auxiliary Server messages​

ZWES0050I​

ZWES0051I​

ZWES0052I​

ZWES0053E​

ZWES0054E​

ZWES0055E​

ZWES0056E​

ZWES0057E​

ZWES0058E​

ZWES0059E​

ZWES0060E​

ZWES0061E​

ZWES0062E​

ZWES0063E​

ZWES0064W​

ZWES0065W​

ZWES0066E​

ZWES0067E​

ZWES0068W​

ZWES0069W​

ZWES0070I​

ZWES0071I​

ZWES0072I​

ZWES0073I​

ZWES0074W​

ZWES0075W​

ZWES0076W​

ZWES0077W​

ZWES0078I​

ZWES0079I​

ZWES0080I​

ZWES0081E​

ZWES0082W​

Core cross-memory server messages​

ZWES0100I​

ZWES0101I​

ZWES0102E​

ZWES0103I​

ZWES0104I​

ZWES0105I​

ZWES0106E​

ZWES0107I​

ZWES0108W​

ZWES0109I​

ZWES0110E​

ZWES0111I​

ZWES0112E​

ZWES0113I​

ZWES0114I​

ZWES0115E​

ZWES0116E​

ZWES0117E​

ZWES0118E​

ZWES0200I​

ZWES0201E​

ZWES0202E​

ZWES0203E​

ZWES0204E​

ZWES0205E​

ZWES0206E​

ZWES0207E​

ZWES0208E​

ZWES0209E​

ZWES0210W​

ZWES0211E​

ZWES0212E​

ZWES0213E​

ZWES0214E​

ZWES0215E​

ZWES0216E​

ZWES0217E​

ZWES0218E​

ZWES0219E​

ZWES0220I​

ZWES0221I​

ZWES0222I​

ZWES0223I​

ZWES0224W​

ZWES0225W​

ZWES0226W​

ZWES0227W​

ZWES0228W​

ZWES0229W​

ZWES0230W​

ZWES0231E​

ZWES0232E​

ZWES0233E​

ZWES0234E​

ZWES0235E​

ZWES0236E​

ZWES0237E​

ZWES0238E​

ZWES0239E​

ZWES0240W​

ZWES0241E​

ZWES0242W​

ZWES0243W​

ZWES0244E​

ZWES0245E​

ZWES0246E​

ZWES0247W​

ZWES0248W​

ZWES0249E​

ZWES0250E​

ZWES0251I​

ZWES0252I​

ZWES0253I​

ZWES0254W​

ZWES0255E​

ZWES0256I​

ZWES0257W​

ZIS Dynamic Linkage Base plug-in messages​

ZWES0700I​

ZWES0701I​

ZWES0702E​

ZWES0703E​

ZWES0704I​

ZWES0705I​

ZWES0706E​

ZWES0707I​

ZWES0708I​

ZWES0710I​

ZWES0711I​

ZWES0712W​

ZWES0713W​

ZWES0714E​

Troubleshooting Zowe Launcher

Enabling Zowe Launcher Debug Mode​

Troubleshooting port validation​

Resolving port validation failures​

Error Message Codes

Zowe Launcher informational messages​

ZWEL0001I​

ZWEL0002I​

ZWEL0003I​

ZWEL0004I​

ZWEL0005I​

ZWEL0006I​

ZWEL0007I​

ZWEL0008I​

ZWEL0009I​

ZWEL0010I​

ZWEL0011I​

ZWEL0012I​

ZWEL0013I​

ZWEL0014I​

ZWEL0015I​

ZWEL0016I​

ZWEL0017I​

ZWEL0018I​

ZWEL0019I​

ZWEL0021I​

ZWEL0022I​

ZWEL0023I​

ZWEL0024I​

ZWEL0025I​

ZWEL0058I​

ZWEL0069I​

Zowe Launcher error messages​

ZWEL0026E​

ZWEL0027E​

ZWEL0028E​

ZWEL0029E​

ZWEL0030E​

ZWEL0031E​

ZWEL0032E​

ZWEL0033E​

ZWEL0034E​

ZWEL0035E​

ZWEL0036E​

ZWEL0037E​

ZWEL0038E​

ZWEL0039E​

ZWEL0040E​

ZWEL0041E​

ZWEL0042E​

ZWEL0043E​

ZWEL0044E​

ZWEL0045E​

ZWEL0046E​

ZWEL0047E​

ZWEL0048E​

ZWEL0049E​

ZWEL0050E​

ZWEL0055E​

ZWEL0056E​

ZWEL0057E​

ZWEL0059E​

ZWEL0060E​

ZWEL0061E​

ZWEL0062E​

ZWEL0064E​

ZWEL0065E​

ZWEL0067E​

ZWEL0068E​

ZWEL0070E​

ZWEL0071E​

ZWEL0072E​

ZWEL0073E​

ZWEL0074E​

Zowe Launcher warning messages​

ZWEL0051W​

ZWEL0052W​

ZWEL0053W​

ZWEL0054W​

ZWEL0063W​

ZWEL0066W​

Troubleshooting Zowe CLI

When there is a problem​

Applicable environments​

Reaching out for support​

Resolving the problem​

Gathering information to troubleshoot Zowe CLI

Generating a working environment report​

Finding configuration file properties and locations​

Finding configuration file locations​

Finding property values used by a Zowe command​

Using individual commands for Zowe CLI troubleshooting

Identify the currently installed CLI version​

Identify the currently installed versions of plug-ins​

Environment variables​

Log levels​

CLI daemon mode​

Home directory​

Home directory structure​

Location and types of logs​

Node.js and npm​

npm configuration​

npm log files​

Using cURL to troubleshoot Zowe CLI

Installing cURL​

Understanding cURL commands​

--location​

--request <API method>​

"https://<host>:<port>/<API>"​

--header "X-CSRF-ZOSMF-HEADER;"​

--insecure​

--user "<ID>:<PASSWORD>"​

Comparing commands​

z/OSMF Info API​

Submitting the cURL command:​

Submitting the Zowe CLI command:​

z/OSMF Files API​

Submitting the cURL command:​

Submitting the Zowe CLI command:​

z/OSMF Jobs API​

Submitting the cURL command:​

Submitting the Zowe CLI command:​

z/OSMF troubleshooting

Alternate methods​

Troubleshooting Zowe CLI credentials

Secure credentials​

Authentication mechanisms​

PEM certificate files​

Known Zowe CLI issues

Zowe commands fail with secure credential errors​

Chain commands fail in a batch script​

Command not found message displays when issuing npm install commands​

EACCESS error when issuing npm install command​

Installation fails on Oracle Linux 6​

Node.js commands do not respond as expected​

npm install -g command fails due to an EPERM error​

Paths converting in Git Bash​

Sudo syntax required to complete some installations​

Missing data set search results with --mainframe-search option​

Error message with PowerShell scripts​

Raising a CLI issue on GitHub

Raising a bug report​

Raising an enhancement report​

Troubleshooting Zowe CLI plug-ins

When there is a problem​

Error codes​

Reaching out for support​

IBM Db2 Database Plug-in troubleshooting

Incompatible glibc version​

ODBC driver install failure​

Timeout error​

Unpacking error​

Troubleshooting Zowe Explorer

Before reaching out for support​

Connection issues with Zowe Explorer​

Resolving invalid profiles​

Missing write access to VS Code extensions folder​

Common issues with Zowe Explorer table view​

Table does not load​

Slow performance with large number of results​

Data set table view: members view shows no data​

Jobs table view: action buttons are disabled​

Known Zowe Explorer issues

Bidirectional languages​

Client certificate support​

Data Set creation error​

Opening binary files error​

Visual Studio Code mainframe connection error​

Known Zowe Explorer limitations

Data set pagination and descending sort for PDS members​

Limitation​

Workarounds​

Mismatched credentials when using Zowe Explorer and Zowe CLI​

Limitation​

Workaround​

Raising a Zowe Explorer issue on GitHub

Raising a bug report​

Submitting a feature request​

Troubleshooting Zowe Explorer plug-in for IntelliJ IDEA

Troubleshooting IntelliJ IDEA platform issues​

Troubleshooting the plug-in​

Troubleshooting Zowe Chat

Check the chatServer.log​

Raising a Zowe Chat issue on GitHub​

Contacting support via Slack​

Contributing to Zowe

Report bugs and enhancements​

Fix issues​

Send a Pull Request​

Report security issues​

Contribution guidelines​

Promote Zowe​

Helpful resources​

Code categories

Programming languages​

Component-specific guidelines and tutorials​

General code style guidelines

Whitespaces​

Naming Conventions​

Functions and methods​

Variables​

Pull requests guidelines

Documentation Guidelines

Contributing to external documentation​

Component Categories​

Server Core​

Server Security​

Microservices​

Zowe Desktop Applications​

Web Framework​

CLI Plugins​

Core CLI Imperative CLI Framework​

Programming Languages​

Typescript​

Java​

C​

UI Guidelines

Introduction​

Clear​

Consistent​

Smart​

Colors

Color palette​

Light theme​

Dark theme​

Color contrast | WCAG AA standards​

Typography

Typeface​

Font weight​

Body copy​

Line scale​

Line-height​

Embed font​

Import font​

Specify in CSS​

Grid

12 column grid​

Gutters​

Columns​

Margins​

Iconography

Application icon

General rules​

Shape, size, and composition​

Colors and shades​

Verify the contrast​

Use the Zowe palette​

Layer Shadows​

Use the long shadow for consistency.​

Contributing to Zowe Documentation

Before You Get Started​

Getting started checklist​

The Zowe documentation repository​

Sending a GitHub Pull Request​

Opening an issue for Zowe documentation​

Documentation style guide​

Headings and titles​

Use sentence-style capitalization for headings​

For tasks and procedures, use gerunds for headings​

For conceptual and reference information, use noun phrases for headings​

Use headline-style capitalization for only these items​

Technical elements​

Variables​

Message text and prompts to the user​

Code and code examples​

Command names, and names of macros, programs, and utilities that you can type as commands​

Interface controls​

Directory names​

File names, file extensions, and script names​

Search or query terms​

Citations that are not links​

Tone​

Use simple present tense rather than future or past tense, as much as possible​

Use simple past tense if past tense is needed​

Use active voice as much as possible​

Using second person such as "you" instead of first person such as "we" and "our"​

End sentences with prepositions selectively​

Avoid anthropomorphism​

Avoid complex sentences that overuse punctuation such as commas and semicolons.​

Release notes​

Word usage and punctuation​

Admonitions​

Use of "following"​

Use a consistent style for referring to version numbers​

Avoid "may"​

Use "issue" when you want to say "run"/"enter" a command​

Use of slashes​

Punctuation in lists​

Punctuation in numbered lists​

Abbreviations​

Do not use an abbreviation as a noun unless the sentence makes sense when you substitute the spelled-out

form of the term​

Do not use abbreviations as verbs​

Do not use Latin abbreviations​

Spell out the full name and its abbreviation when the word appears for the first time. Use abbreviations in

the texts that follow​

Structure and format​

Word usage​

Zowe CLI command reference guide

Zowe YAML server configuration file reference

High-level overview of YAML configuration file​

Extract sharable configuration out of zowe.yaml​

Creating portable references​

Configuration override - defaults.yaml​

Configuration override - inside zowe.yaml​

YAML configurations - certificate​

YAML configurations - zowe​

Directories​

Zowe Job​

Domain and port to access Zowe​

Extra environment variables​

Certificate​

Launcher and launch scripts​

Setup​

YAML configurations - java​

YAML configurations - node​

YAML configurations - zOSMF​

YAML configurations - components​

Configure component gateway​

Configure component discovery​

Configure component api-catalog​

Configure component Caching Service​

Configure component app-server​

Configure component zss​

Configure external extension​

YAML configurations - haInstances​

Auto-generated environment variables​

Troubleshooting your YAML with the Red Hat VS Code extension​

ZWE Server Command Reference

Using the zwe command​

Accessing zwe help​

zwe

Sub-commands​

Description​

Examples​

Parameters​

Errors​

zwe certificate keyring-jcl clean

Description​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe certificate keyring-jcl connect

Description​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe certificate keyring-jcl generate

Description​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe certificate keyring-jcl import-ds

Description​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe certificate keyring-jcl

Sub-commands​

Description​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe certificate pkcs12 create ca

Description​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe certificate pkcs12 create cert

Description​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe certificate pkcs12 create

Sub-commands​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe certificate pkcs12 export

Description​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe certificate pkcs12 import

Description​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe certificate pkcs12 lock

Description​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe certificate pkcs12 trust-service

Description​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe certificate pkcs12

Sub-commands​

Description​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe certificate verify-service

Description​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe certificate

Sub-commands​

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe components install extract

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe components install process-hook

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe components install

Sub-commands​

Description​

Examples​

Parameters only for this command​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe components disable

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe components enable

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe components search

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe components uninstall

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe components upgrade

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe components

Sub-commands​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe config get

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe config validate

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe config

Sub-commands​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe init apfauth

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe init certificate

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe init mvs

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe init security

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe init stc

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe init vsam

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe init

Sub-commands​

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe internal config get

Description​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe internal config output

Description​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe internal config set

Description​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe internal config

Sub-commands​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe internal container cleanup

Description​

Inherited from parent command​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe internal container init

Description​

Inherited from parent command​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe internal container prestop

Description​

Inherited from parent command​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe internal container

Sub-commands​

Description​

Inherited from parent command​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe internal start component

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe internal start prepare

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe internal start

Sub-commands​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe internal get-launch-components

Description​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe internal

Sub-commands​

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe migrate for kubernetes

Description​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe migrate for

Sub-commands​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe migrate

Sub-commands​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe sample sub deep

Description​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe sample sub second

Description​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe sample sub

Sub-commands​

Description​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe sample test

Description​

Inherited from parent command​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe sample

Sub-commands​

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe support verify-fingerprints

Description​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe support

Sub-commands​

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe diagnose

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe install

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe start

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe stop

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

zwe version

Description​

Examples​

Parameters​

Inherited from parent command​

Errors​

Inherited from parent command​

Bill of Materials

Version: v3.3.x LTS

Zowe announcements

Hello Zowe V3!

Zowe Version 3.x is live. Find out what is included in Zowe 3.x with the new Zowe V3 Office Hours.

For information about changes to Zowe components introduced in Zowe V3, see Important updates in Zowe V3. For more

details, review the Zowe V3 release notes.

Got questions? Check the Zowe V3 FAQs to see if it is already answered.

Future Zowe V2 releases

Zowe 2.0.x is now in maintenance state. Only patch releases are planned until the Zowe V2 End of Service scheduled for

early 2027.

Archiving Zowe Version 1.0

Zowe V1 was scheduled to end support on September 30, 2024. Consumers should plan to upgrade in the first or second

quarter of the 2024 calendar year.

https://docs.zowe.org/stable/whats-new/zowe-v3-office-hours
https://docs.zowe.org/stable/whats-new/breaking-changes-v3
https://docs.zowe.org/stable/whats-new/release-notes/v3_0_0
https://docs.zowe.org/stable/whats-new/zowe-v3-frequently-asked-questions
https://github.com/zowe/community/blob/master/Project%20Management/Schedule/Zowe%20PI%20%26%20Sprint%20Cadence.md#v2

Version: v3.3.x LTS

Release Notes

The release notes for all Zowe V2 minor releases are published in this section.

Release notes detail all the new features, enhancements, bug fixes, and security vulnerabilities fixed in a particular Zowe

minor release.

Select a Zowe release version on the Table of Contents located on the left of the page to view its release notes.

Accessing older release notes

To access notes for an older release, go to the Zowe Docs Version dropdown menu at the top right of the page and

select a release. The release notes for the selected version display under the Release Notes section in the Table of

Contents.

Version: v3.3.x LTS

Version 3.3.0 (September 2025)

Welcome to the Zowe Version 3.3.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues

addressed in this release.

Download v3.3.0 build: Want to try new features as soon as possible? You can download the v3.3.0 build from

Zowe.org.

New features and enhancements

Zowe Version 3.3.0 contains the enhancements that are described in the following topics:

Server Install

A new utility certificate-analyser.jar has been added to the folder zowe/bin/utils . This tool will eventually be

used to verify correct certificates for use by Zowe, as well as correct connectivity to servers Zowe communicates

with such as z/OSMF. In a future release, the tool is intended to be used by Zowe under specific circumstances to

verify whether the network setup is correct. (#4354)

Enhanced the ZWEGENER job to support Configuration Manager path elements of type PARMLIB that can contain one

or multiple members with different names within the same PARMLIB dataset. The new format is

PARMLIB(DATA.SET(member)) . This is an alternative format to the older format. (#4332)

Updated the zowe-yaml-schema.json and defaults.yaml to support a new configuration parameter

zowe.sysMessageTrim and set a default value. This parameter is used to trim syslog messages and print only from

the sys-message-id. (#4294)

zwe install and zwe init commands can alternatively use ZWEGENER to create and submit JCL during Zowe's

install and configuration, rather than using USS commands and utilities. --dry-run can be used to generate JCL

without submitting it, allowing users to review the JCL and optionally submit it themselves. This is a technical

preview feature. (#4282, #4107, #4429, #4427)

A new parameter zowe.setup.jcl.header can now be used to specify Job Card information in the JCL generated by

ZWEGENER . (#4423)

Support has been added for API Mediation Layer (API ML) in modulith mode, allowing it to run as a single JVM

process. This feature is provided as a technical preview. (#4254)

Zowe Application Framework

Zlux Server Framework

The App-server no longer prints codes ZWED0036I , 54I , 55I , 62I-68I . These codes are now only shown in bootstrap

or install debug logs, to clean up the job log. (#608)

Zlux App-Server

App-server now handles when the components.apiml.enabled option is set to true as an alternative to enabling

gateway , discovery , and caching-service components. (#345)

https://www.zowe.org/download.html
https://github.com/zowe/zowe-install-packaging/pull/4354
https://github.com/zowe/zowe-install-packaging/pull/4332
https://github.com/zowe/zowe-install-packaging/pull/4294
https://github.com/zowe/zowe-install-packaging/pull/4282
https://github.com/zowe/zowe-install-packaging/pull/4107
https://github.com/zowe/zowe-install-packaging/pull/4429
https://github.com/zowe/zowe-install-packaging/pull/4427
https://github.com/zowe/zowe-install-packaging/pull/4423
https://github.com/zowe/zowe-install-packaging/pull/4254
https://github.com/zowe/zlux-server-framework/pull/608
https://github.com/zowe/zlux-app-server/pull/345

Zowe Common C

Added a new function copyConfigurationAndDeleteKey to Configuration Manager for making revisions to

configurations. (#524)

Configuration Manager path elements of type PARMLIB can now contain one or multiple members with different

names within the same PARMLIB dataset. The new format is PARMLIB(DATA.SET(member)) . This is an alternative

format to the older format wherein the member name was specified in a separate argument. The old format was to

specify PARMLIB(DATA.SET) and then specify the member name. See https://docs.zowe.org/stable/user-

guide/configmgr-using for more information. (#522)

ZSS

Added a utility zis-test that determines whether ZIS is running and accessible by Zowe before starting ZSS. This

utility is located within the bin/utils folder of the Zowe runtime directory and can be used by extenders or during

troubleshooting to check the ZIS status as needed. (#764)

The bind-test utility is now available in Zowe. This utility is located within the bin/utils folder of the Zowe

runtime directory and can be used by extenders or during troubleshooting to validate the network and network

permissions as needed. (#764)

ZSS now handles when the components.apiml.enabled option is set to true as an alternative to enabling gateway ,

discovery , and caching-service components. (#787)

Basic TN3270 Display Emulator

The Logical Unit name is now displayed in the TN3270 window title, making it easier for users to identify the session

they are working with. (#101)

Zowe API Mediation Layer

You can now deploy API ML as a single service. (#3973)

Added the configuration property apiml.security.forwardHeader.trustedProxies to specify the regular expression

pattern used to identify trusted proxies from which X-Forwarded-* headers are accepted and forwarded. Mitigates

CVE-2025-41235. (#4171)

Zowe now supports an independent response time route setting. (#3981)

Added a check of the certificate signing algorithm in the Certificate Analyzer tool. (#4121)

Made certificate validation improvements. (#4017)

Added the Onboarding Python Enabler. (#4068)

Users are now allowed to configure the connect and read timeout for the Eureka HTTP client. (#4045)

Zowe CLI

Zowe CLI (Core)

Replaced logic in ApimlAuthHandler.processLogin with a call to a new common function,

AuthOrder.putNewAuthsFirstOnDisk . There are no changes to the external API and no changes to the functionality.

(#2568)

Added a search-exact-name option to the zowe zos-files search data-set command to search the contents of

one data set or PDS. (#2529)

https://github.com/zowe/zowe-common-c/pull/524
https://docs.zowe.org/stable/user-guide/configmgr-using
https://docs.zowe.org/stable/user-guide/configmgr-using
https://github.com/zowe/zowe-common-c/pull/522
https://github.com/zowe/zss/pull/764
https://github.com/zowe/zss/pull/764
https://github.com/zowe/zss/pull/787
https://github.com/zowe/tn3270-ng2/pull/101
https://github.com/zowe/api-layer/issues/3973
https://github.com/zowe/api-layer/pull/4171
https://github.com/zowe/api-layer/issues/3981
https://github.com/zowe/api-layer/issues/4121
https://github.com/zowe/api-layer/issues/4017
https://github.com/zowe/api-layer/issues/4068
https://github.com/zowe/api-layer/issues/4045
https://github.com/zowe/zowe-cli/pull/2568
https://github.com/zowe/zowe-cli/pull/2529

Added a new configuration property named authOrder with which a user can specify a desired choice of

authentication. (#1794)

Updated Node.js types for technical currency. (#2511)

Added the --establish-connection-timeout option to the z/OSMF Connection Options . This allows users to specify

a maximum limit for how long the REST client should attempt to establish a connection to the server, and returns an

error if the request takes too long. (#2490)

Added the --completion-timeout option to the z/OSMF Connection Options . This allows users to specify a

maximum limit for how long a REST request should take, and returns an error if the request takes too long. (#2490)

Updated help examples to replace short option aliases (for example, -h) with full option names (for example, --

help) for improved clarity and consistency in documentation. (#2484)

Added the ability to search data sets with regex patterns by passing --regex into the search command. (#2432)

Added the --overwrite flag to the zowe files copy ds command to allow for overwriting all members of a target

data set with source data set members. (#2450)

Added the ability to see secure properties when running zowe config list when the ZOWE_SHOW_SECURE_ARGS

environment variable is set to true . (#2259)

Added the --data-set-type flag to create sequential data set command to allow for creating extended and large

formatted sequential data sets. (#2141)

Added the --recordRange flag to the zowe jobs download output command to allow users to select a specific

range of records to output from a spool file. (#2411)

Zowe CLI Imperative Framework

Added the following AuthOrder functions: getPropNmFor , putNewAuthsFirstInSess , putNewAuthsFirstOnDisk ,

formNewAuthOrderArray , authArrayToCfgVal , authCfgValToArray . No external behavior is changed by this addition

to/refactoring of the Zowe SDK logic. (#2568)

When no credentials are available, added prompt for the credentials related to the first entry in the authOrder

property instead of arbitrarily prompting for user and password. (#2568)

Reordered authOrder information in error messages to be easier for a user to follow the effect of the authOrder .

(#2568)

Added --verbose option to the zowe plugins install command to make debugging easier. (#2562)

Added spawnWithInheritedStdio method to ExecUtils which inherits output instead of piping it. (#2562)

Updated the Zowe Client REST APIs to obey the choice of authentication specified by a user. (#2491)

Updated the Logger class to support the winston library, and introduced migration tools to switch from log4js to

winston . For more information on how to migrate your logger instance to use the winston library, refer to the

"Configuring logging" page on the Zowe CLI wiki. (#2488)

Added a request timeout to the Imperative REST client. (#2490)

Added the ZOWE_REQUEST_COMPLETION_TIMEOUT environment variable to the EnvironmentalVariableSettings class

to allow extenders to determine how long to wait for a request to complete before timing out. (#2490)

Added a connection timeout to the Imperative REST Client, with a default of 60 seconds. (#2486)

Added the ZOWE_SOCKET_CONNECT_TIMEOUT environment variable to the EnvironmentalVariableSettings class to

allow extenders to determine how long to wait for a socket connection before timing out. (#2486)

Updated help examples to replace short option aliases (for example, -h) with full option names (for example, --

help) for improved clarity and consistency in documentation. (#2484)

Exposed the private buildPrefix function as a replacement of moment.format(...) . (#2478)

https://github.com/zowe/zowe-cli/issues/1794
https://github.com/zowe/zowe-cli/pull/2511
https://github.com/zowe/zowe-cli/pull/2490
https://github.com/zowe/zowe-cli/pull/2490
https://github.com/zowe/zowe-cli/pull/2484
https://github.com/zowe/zowe-cli/issues/2432
https://github.com/zowe/zowe-cli/pull/2450
https://github.com/zowe/zowe-cli/issues/2259
https://github.com/zowe/zowe-cli/issues/2141
https://github.com/zowe/zowe-cli/pull/2411
https://github.com/zowe/zowe-cli/pull/2568
https://github.com/zowe/zowe-cli/pull/2568
https://github.com/zowe/zowe-cli/pull/2568
https://github.com/zowe/zowe-cli/pull/2562
https://github.com/zowe/zowe-cli/pull/2562
https://github.com/zowe/zowe-cli/pull/2491
https://github.com/zowe/zowe-cli/wiki/Configuring-Logging
https://github.com/zowe/zowe-cli/issues/2488
https://github.com/zowe/zowe-cli/pull/2490
https://github.com/zowe/zowe-cli/pull/2490
https://github.com/zowe/zowe-cli/pull/2486
https://github.com/zowe/zowe-cli/pull/2486
https://github.com/zowe/zowe-cli/pull/2484
https://github.com/zowe/zowe-cli/pull/2478

CICS Plug-in for Zowe CLI

Added the ability to define bundles. (#72)

Added notices file into package. (#267)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Bug fixes

Zowe Version 3.3.0 contains the bug fixes that are described in the following topics:

Server Install

YAML lookup for HA instances within haInstances is now case insensitive and works regardless of whether the

letters of the HA instance names are in uppercase or lowercase. (#4370)

ZWEGENER now aborts with an error message if zowe.setup.dataset.prefix or zowe.setup.dataset.jcllib are

undefined or identical, preventing potential runtime errors. (#4337)

Zowe Application Framework

Zlux Server Framework

Introduced a workaround for API Catalog issuing a double-TLS request when the API Catalog was under AT-TLS by

changing eureka registration content to match the state of API Catalog. (#610)

Zowe Common C

Fixed a memory leak in the safeFree64Internal function for 64 bit programs. (#540)

ZSS

Fixed an issue wherein if AT-TLS was enabled for ZSS and ZSS was unable to communicate with the APIML Gateway,

the JWK initialization logic entered a continuous loop and consumed a large amount of CPU resources. (#772)

ZSS now is compatible with z/OS 3.2. (#781)

https://github.com/zowe/cics-for-zowe-client/issues/72
https://github.com/zowe/cics-for-zowe-client/issues/267
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-install-packaging/pull/4370
https://github.com/zowe/zowe-install-packaging/pull/4337
https://github.com/zowe/zlux-server-framework/pull/610
https://github.com/zowe/zowe-common-c/pull/540
https://github.com/zowe/zss/pull/772
https://github.com/zowe/zss/pull/781

Zowe API Mediation Layer

The Gateway now returns empty auth keys from z/OSMF when apiml.security.auth.zosmf.jwtAutoconfiguration

is set to jwt . (#4092)

Updated start.sh settings for the Caching service. (#4226)

Fixed API ML startup message not appearing in modulith mode. (#4216)

Fixed SAF auth check in non-modulith. (#4212)

Fixed configuration values for the Eureka server and client that caused an overload and making Eureka

unresponsive. (#4223)

Fixed modulith OpenAPI documentation to show the correct logout endpoint. (#4191)

Disabled infinispan diagnostics by default. (#4157)

Fixed obtaining public keys if there is unsupported type of key. (#4154)

Generated git properties file before release build. (#4173)

Released build without cache. (#4179)

Removed duplicate log messages. (#4147)

Fixed detection of connection issue. (#4142)

Set memory limit for javap. (#4141)

Applied Config change for Gateway Endlessly Spamming Issue. (#4095)

Added HSTS header when AT-TLS enabled for V3. (#4052)

Fixed SSL configuration for non-strict hostname verification mode in Jetty HTTP Client. (#4073)

Fixed SSO issue in the API Catalog. (#4070)

Zowe CLI

Zowe CLI (Core)

Added a warning to users using a TSO command. It now warns them that a logon procedure is not being used when a

non default logon procedure and --ssm option is used. (#2528)

Fixed an issue where inconsistent formatting for an example in the zowe zos-files create data-set-sequential

command caused the example to be improperly displayed in the Zowe web help. Now, the full example command is

shown in the code block when displayed through the web help. (#2557)

Updated the brace-expansion dependency for technical currency. (#2523)

Added update to avoid prompting for a password when a token is available for authentication. (#2500)

Updated the zowe auth login apiml command to place its retrieved token into the specified (or default) base

profile instead of creating a new base profile. The update also places a directive to use token authentication for the

default zosmf profile if that profile is configured to connect to API-ML. (#2181, #1650)

Updated the Daemon binary version for technical currency. (#2479)

Fixed a bug that resulted in daemon commands running slower with every additional command. (#2470)

Fixed the --show-inputs-only option on commands with chained command handlers, such as zowe zos-files copy

data-set-cross-lpar . (#2446)

When using the copy command, if a target partitioned data set has a smaller record length than a source partitioned

data set, the operation for subsequent members no longer stops. The user can now view the affected members in a

local file. (#2349)

Fixed a bug where users were not warned when copying partitioned data sets with identical member names. Now,

the user is prompted to confirm before continuing the copy operation to avoid potential data loss. (#2349)

https://github.com/zowe/api-layer/issues/4092
https://github.com/zowe/api-layer/issues/4226
https://github.com/zowe/api-layer/issues/4216
https://github.com/zowe/api-layer/issues/4212
https://github.com/zowe/api-layer/issues/4223
https://github.com/zowe/api-layer/issues/4191
https://github.com/zowe/api-layer/issues/4157
https://github.com/zowe/api-layer/issues/4154
https://github.com/zowe/api-layer/issues/4173
https://github.com/zowe/api-layer/issues/4179
https://github.com/zowe/api-layer/issues/4147
https://github.com/zowe/api-layer/issues/4142
https://github.com/zowe/api-layer/issues/4141
https://github.com/zowe/api-layer/issues/4095
https://github.com/zowe/api-layer/issues/4052
https://github.com/zowe/api-layer/issues/4073
https://github.com/zowe/api-layer/issues/4070
https://github.com/zowe/zowe-explorer-vscode/issues/2528
https://github.com/zowe/zowe-cli/issues/2557
https://github.com/zowe/zowe-cli/pull/2523
https://github.com/zowe/zowe-cli/issues/2500
https://github.com/zowe/zowe-cli/issues/2181
https://github.com/zowe/zowe-cli/issues/1650
https://github.com/zowe/zowe-cli/pull/2479
https://github.com/zowe/zowe-cli/issues/2470
https://github.com/zowe/zowe-cli/issues/2446
https://github.com/zowe/zowe-cli/issues/2349
https://github.com/zowe/zowe-cli/issues/2349

Fixed a bug where the zowe zos-files copy data-set command would overwrite the contents of the target data

set without user confirmation. A --safe-replace option was added which prompts the user to confirm before

overwriting the contents of the target data set. (#2369)

Zowe CLI Imperative Framework

Added a validity check in the ProfileInfo class mergeArgsForProfile method to ensure the base profile exists

before merging its values. This prevents Zowe Explorer UI loading errors when a non-existent base profile is

referenced. (#2575)

Fixed invalid value for npm log level when --verbose option is true on the zowe plugins install command.

(#2571)

Updated the web help generator logic to fix links with special characters. (#2553, #2308)

Resolved an issue where streaming uploads of special characters could result in data corruption at chunk

boundaries. (#2556)

Fixed an issue with the zowe config commands to ensure correct user input handling. (#2519)

Updated the brace-expansion dependency for technical currency. (#2523)

Fixed an issue where Imperative integration tests can fail due to a missing glob dependency. (#2511)

Fixed an issue where downstream dependencies using log4js have their log output redirected after creating an

instance of the ProfileInfo class. (#2488)

Added checks to the AbstractRestClient abstract class to ensure the hostname parameter does not contain a

protocol. (#2486)

DB2 Plug-in for Zowe CLI

Updated the form-data dependency for technical currency. (#185)

Updated the ibm_db dependency to fix an issue with offline installation. (#183)

Updated the tar-fs dependency for technical currency. (#178)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not

disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and

https://github.com/zowe/zowe-cli/issues/2369
https://github.com/zowe/zowe-cli/pull/2575
https://github.com/zowe/zowe-cli/pull/2571
https://github.com/zowe/zowe-cli/issues/2553
https://github.com/zowe/zowe-cli/issues/2308
https://github.com/zowe/zowe-cli/issues/2555
https://github.com/zowe/zowe-cli/issues/2519
https://github.com/zowe/zowe-cli/pull/2523
https://github.com/zowe/zowe-cli/pull/2511
https://github.com/zowe/zowe-cli/issues/2488
https://github.com/zowe/zowe-cli/pull/2486
https://github.com/zowe/zowe-cli-db2-plugin/pull/185
https://github.com/zowe/zowe-cli-db2-plugin/issues/183
https://github.com/zowe/zowe-cli-db2-plugin/pull/178
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md

how you upgrade Zowe. When a new release is published, Zowe publishes the vulnerabilities fixed in the previous

release. For more information about the Zowe security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 3.2:

BDSA-2025-0723

CVE-2025-0736

https://www.zowe.org/security.html

Version: v3.3.x LTS

Version 3.2.0 (May 2025)

Welcome to the Zowe Version 3.2.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues

addressed in this release.

Download v3.2.0 build: Want to try new features as soon as possible? You can download the v3.2.0 build from

Zowe.org.

New features and enhancements

Zowe Version 3.2.0 contains the enhancements that are described in the following topics.

Server Install

Added an enhancement so that the zwe support command collects more environment details. (#4147)

Added an enhancement in the form of a new library function named formatZosVersion() in zosUtils to standardize

the formatting of z/OS versions during installation checks. (#4134)

Added an enhancement so that when you run the zwe support verify-fingerprints command, you no longer have

to specify a configuration file, such as zowe.yaml , as a command-line parameter. (#4147)

Zowe Application Framework

Added an enhancement to compress the size of assets within the Zowe v3 Desktop so that the Desktop loads faster

despite a slow internet connection. The enhancement increases the speed of loading the desktop. (#658)

Added an enhancement to validate certificate properties on startup, ensuring a secure and valid configuration.

(#338)

ZSS

Added a new feature with a MODIFY command to display module registry information. Users can use the information

to easily monitor, troubleshoot, and manage the current state of registered modules. (#519)

Added a feature to reset the module registry at cross-memory server startup, ensuring a clean and consistent

environment for the server’s operation by clearing outdated data and reducing the risk of errors caused by stale

module configurations. (#754)

Added an enhancement to include the stub version in the generated HLASM stub, enabling improved version

tracking and compatibility. (#743)

Added an enhancement to expose new cmutils functions, providing additional capabilities for managing and

interacting with system components. (#740)

Added support for passing multiple parameters to Zowe Integration Server (ZIS) via the START command. This is an

enhancement on its own, all it means is there is more flexibility available for configuration at start up. The START

command is mostly run from a terminal window or CLI on the system where Zowe is installed. (#753), (#755)

Added a parameter to reset the module registry at ZIS startup, preventing issues with outdated or conflicting module

data. (#519)

https://www.zowe.org/download.html
https://github.com/zowe/zowe-install-packaging/pull/4147
https://github.com/zowe/zowe-install-packaging/pull/4134
https://github.com/zowe/zowe-install-packaging/pull/4147
https://github.com/zowe/zlux-app-manager/pull/658
https://github.com/zowe/zlux-app-server/pull/338
https://github.com/zowe/zowe-common-c/pull/519
https://github.com/zowe/zss/pull/754
https://github.com/zowe/zss/pull/743
https://github.com/zowe/zss/pull/740
https://github.com/zowe/zss/issues/753
https://github.com/zowe/zss/pull/755
https://github.com/zowe/zowe-common-c/pull/519

Added an enhancement to make the modregReset function available through dynlink, enabling dynamic linking for

module registry resets. (#754)

Zowe API Mediation Layer

Users can now configure the connect and read timeout for the Eureka HTTP client. (#4045)

Zowe now supports API ML components that were built on Java 17 compatibility level to run using Java 21. (#4028)

Zowe CLI

Zowe CLI (Core)

Search data sets with regex patterns by passing the new --regex option into the search command. (#2432)

Overwrite all members of a target data set with source data set members by including the new overwrite flag with

the zowe files copy ds command. (#2450)

See secure properties when issuing the zowe config list command when the ZOWE_SHOW_SECURE_ARGS

environment variable is set to true . (#2259)

Create extended and large formatted sequential data sets by adding the new --data-set-type flag to the zowe

files create ps command. (#2141)

Select a specific range of records to output from a spool file with the new --recordRange flag for the zowe jobs

download output command. (#2411)

The zowe zos-files copy data-set command no longer requires the target data set to be preallocated. (#2349)

Zowe CLI Imperative Framework

Added a line to the output to display the authentication type when using the --show-inputs-only option. (#2462)

A Web Help favicon now displays in browser tabs. (#801)

Allowed instances of the ProfileCredentials class to check only for the active layer to determine if the user's

credentials are secure. (#2460)

Consolidated all sensitive data hiding logic into the Censor class. (#2424)

Added the showSecureArgs environment variable to the EnvironmentalVariableSettings class to allow extenders

to determine if they should mask secure values. (#2424)

See secure properties when issuing the zowe config list command when the ZOWE_SHOW_SECURE_ARGS

environment variable is set to true . (#2259)

Deprecated the LoggerUtils class. Use the Censor class instead. (#2424)

Deprecated the CliUtils.CENSOR_RESPONSE property. Use the Censor.CENSOR_RESPONSE property instead. (#2424)

Deprecated the CliUtils.CENSORED_OPTIONS property. Use the Censor.CENSORED_OPTIONS property instead. (#2424)

Deprecated the CliUtils.censorCLIArgs function. Use the Censor.censorCLIArgs function instead. (#2424)

Deprecated the CliUtils.censorYargsArguments function. Use the Censor.censorYargsArguments function instead.

(#2424)

Changed DeferredPromise and DeferredPromise.unit.test comment format to match standard. (#2413)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

https://github.com/zowe/zss/pull/754
https://github.com/zowe/api-layer/issues/4045
https://github.com/zowe/api-layer/issues/4028
https://github.com/zowe/zowe-cli/issues/2432
https://github.com/zowe/zowe-cli/pull/2450
https://github.com/zowe/zowe-cli/issues/2259
https://github.com/zowe/zowe-cli/issues/2141
https://github.com/zowe/zowe-cli/pull/2411
https://github.com/zowe/zowe-cli/issues/2349
https://github.com/zowe/zowe-cli/issues/2462
https://github.com/zowe/zowe-cli/issues/801
https://github.com/zowe/zowe-cli/issues/2460
https://github.com/zowe/zowe-cli/pull/2424
https://github.com/zowe/zowe-cli/pull/2424
https://github.com/zowe/zowe-cli/issues/2259
https://github.com/zowe/zowe-cli/pull/2424
https://github.com/zowe/zowe-cli/pull/2424
https://github.com/zowe/zowe-cli/pull/2424
https://github.com/zowe/zowe-cli/pull/2424
https://github.com/zowe/zowe-cli/pull/2424
https://github.com/zowe/zowe-cli/pull/2413
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Bug fixes

Zowe Version 3.2.0 contains the bug fixes that are described in the following topics:

Zowe Application Framework

Fixed an issue where it was not possible to configure the app-server as the configuration property components.app-

server.node.mediationLayer.eureka was not documented in the schema. (#336)

Fixed an issue that prevented the Desktop from selecting the most efficient and direct route to access ZSS. After the

fix, the Desktop has the necessary information to identify and use a direct route to access ZSS. (#588)

Fixed an issue that caused a large memory consumption and a high memory utilization after every startup. The issue

was due to a defect in the axios library. The functionality of the app-servers does not alter due to this change.

(#600)

Fixed an issue where troubleshooting information became unavailable when there was a network failure during the

eureka registration process. The components.app-server.node.mediationLayer.traceTls property was introduced

to troubleshoot TLS issues. The property can trace the connection the app-server forms with the discovery server,

revealing the cause of low-level networking issues. (#592)

ZSS

Storage has now been configured to allow execution with the EXECUTABLE=YES setting, which enables the specified

storage to be used as executable code. This is typically done to allow the storage to hold executable programs or

modules. (#507)

Fixed a memory leak in the rsusermap code, preventing unnecessary memory consumption and improving system

performance. (#467)

Enabled the use of single-line WTOs for efficient handling of single-line system console messages and improving the

readability of generated system logs. (#509)

Ensured that Zowe does not delete modreg based modules, thus preventing the loss of critical module data. (#749)

Fixed an issue where the schema entry for JWT tracing was being updated with an incorrect name _zss.jwt . After

the fix, the schema entry is updated with the correct name _zss.jwtTrace , which helps users to identify the log

level that can enable JWT tracing. (#757)

Corrected the modregRegister entry in the dynlink stub. (#754)

Fixed the incorrect checking of the look-up anchor reset parameter. (#754)

Fixed an issue where ZSS was not accessible from the Gateway when a user used AT-TLS. After the fix, ZSS is

accessible from the Gateway if a user uses AT-TLS. (#758)

https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://github.com/zowe/zlux-app-server/pull/336
https://github.com/zowe/zlux-server-framework/pull/588
https://github.com/zowe/zlux-server-framework/pull/600
https://github.com/zowe/zlux-server-framework/pull/592
https://github.com/zowe/zowe-common-c/pull/507
https://github.com/zowe/zowe-common-c/issues/467
https://github.com/zowe/zowe-common-c/issues/509
https://github.com/zowe/zss/issues/749
https://github.com/zowe/zss/pull/757
https://github.com/zowe/zss/pull/754
https://github.com/zowe/zss/pull/754
https://github.com/zowe/zss/pull/758

Zowe API Mediation Layer

Disabled hostname verifier with non-strict mode. (#4069)

The jacoco agent in jib containers previously unsupported with the Java 21 are now supported. (#4060)

The username is now always valid when authentication for zaas/scheme/* endpoints passes. Username and

applicationName validation is improved by moving validation to the PassTicketService. (#4054)

Changed error code SERVICE_UNAVAILABLE to INTERNAL_SERVER_ERROR when PassTicket generation fails in Zowe

v3. (#4047)

Fixed the incorrect pattern for loggers through Personal Access Token validation log messages. (#4036)

For keystores containing multiple keys, the correct client certificate is now chosen for outbound communication from

the Gateway. (#4033)

The use of a double slash in a url are now allowed. (#4030)

Updated ciphers list v3. (#4025)

Fixed the file log appender for debug profile. (#4020)

Improved WebSocket generic 500 response in message. (#4019)

Special characters are now allowed in url. (#4008)

Introduced a workaround for API Catalog redirect behavior in the Desktop. (#4007)

Added Authorization header for routed requests to ensure backwards compatibility with v2. (#4000)

Added newPassword to the Swagger. (#3999)

Authorization header is now supported in deterministic routing. (#3998)

The TLS minimum setting has been fixed supporting TLSv1.2 as the minimum with TLSv1.3 supported by default.

(#3993)

Updated the React router to v7. (#3977)

Replaced default Spring x509 Authentication in ZAAS. (#3971)

HA instance ID is now used in the path to infinispan storage location (v3). (#3960)

Zowe CLI

Zowe CLI (Core)

Updated the Daemon binary version for technical currency. (#2479)

Fixed a bug that resulted in daemon commands running slower with every additional command. (#2470)

Fixed the --show-inputs-only option on commands with chained command handlers, such as zowe zos-files copy

data-set-cross-lpar . (#2446)

When using the copy command, if a target partitioned data set has a smaller record length than a source partitioned

data set, the operation for subsequent members no longer stops. The user can now view the affected members in a

local file. (#2349)

Users were not warned when copying partitioned data sets with identical member names. Now, the user is prompted

to confirm before continuing the copy operation to avoid potential data loss. (#2349)

The zowe zos-files copy data-set command overwrites the contents of the target data set without user

confirmation. A --safe-replace option was added to prompt the user to confirm before overwriting the contents of

the target data set. (#2369)

Zowe CLI Imperative Framework

https://github.com/zowe/api-layer/pull/4069
https://github.com/zowe/api-layer/issues/4060
https://github.com/zowe/api-layer/pull/4054
https://github.com/zowe/api-layer/issues/4047
https://github.com/zowe/api-layer/issues/4036
https://github.com/zowe/api-layer/issues/4033
https://github.com/zowe/api-layer/issues/4030
https://github.com/zowe/api-layer/issues/4025
https://github.com/zowe/api-layer/issues/4020
https://github.com/zowe/api-layer/issues/4019
https://github.com/zowe/api-layer/issues/4008
https://github.com/zowe/api-layer/issues/4007
https://github.com/zowe/api-layer/issues/4000
https://github.com/zowe/api-layer/issues/3999
https://github.com/zowe/api-layer/issues/3998
https://github.com/zowe/api-layer/issues/3993
https://github.com/zowe/api-layer/issues/3977
https://github.com/zowe/api-layer/issues/3971
https://github.com/zowe/api-layer/issues/3960
https://github.com/zowe/zowe-cli/pull/2479
https://github.com/zowe/zowe-cli/issues/2470
https://github.com/zowe/zowe-cli/issues/2446
https://github.com/zowe/zowe-cli/issues/2349
https://github.com/zowe/zowe-cli/issues/2349
https://github.com/zowe/zowe-cli/issues/2369

Ensured that the ProfileCredentials class evaluates all layers to determine if the user's credentials are secure.

(#2460)

Fixed a bug that resulted in daemon commands running slower with every additional command. (#2470)

When in daemon mode, the user would not see Imperative initialization errors, but now the errors are passed back to

the user's terminal window. (#1875).

Fixed the --show-inputs-only option on commands with chained command handlers. (#2446)

Fixed the help text example section's wrapping issue where the first line of the description is wrapped differently

than the rest of the lines. (#1945).

Fixed inconsistent behavior with the ZOWE_SHOW_SECURE_ARGS environment variable continuing to mask secure

properties when it should not. (#2430)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not

disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and

how you upgrade Zowe. When a new release is published, Zowe publishes the vulnerabilities fixed in the previous

release. For more information about the Zowe security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 3.1:

BDSA-2024-4090

CVE-2024-39338 (BDSA-2024-5295)

BDSA-2024-3717

CVE-2023-28155

CVE-2016-1000027

BDSA-2024-6258

CVE-2023-26136 (BDSA-2023-1661)

CVE-2021-21366 (BDSA-2021-2314)

CVE-2021-32796 (BDSA-2021-2903)

CVE-2022-37616 (BDSA-2022-3398)

CVE-2022-39353 (BDSA-2022-3404)

https://github.com/zowe/zowe-cli/issues/2460
https://github.com/zowe/zowe-cli/issues/2470
https://github.com/zowe/zowe-cli/issues/1875
https://github.com/zowe/zowe-cli/issues/2446
https://github.com/zowe/zowe-cli/issues/1945
https://github.com/zowe/zowe-cli/issues/2430
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://www.zowe.org/security.html

Version: v3.3.x LTS

Version 3.1.1 (April 2025)

Welcome to the Zowe Version 3.1.1 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues

addressed in this release.

Download v3.1.1 build: Want to try new features as soon as possible? You can download the v3.1.1 build from

Zowe.org.

New features and enhancements

Zowe Version 3.1.1 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe minor release, look for the release

demo recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe

Project Calendar for the latest schedule.

Bug fixes

Zowe Version 3.1.1 contains the bug fixes that are described in the following topics.

Zowe CLI

DB2 Plug-in for Zowe CLI

Updated tar-fs transitive dependency to resolve technical debt. (#176)

Updated axios transitive dependency to resolve technical debt. (#174)

Updated axios transitive dependency to resolve technical debt. (#172)

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://github.com/zowe/zowe-cli-db2-plugin/pull/176
https://github.com/zowe/zowe-cli-db2-plugin/pull/174
https://github.com/zowe/zowe-cli-db2-plugin/pull/172

Version: v3.3.x LTS

Version 3.1.0 (February 2025)

Welcome to the Zowe Version 3.1.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues

addressed in this release.

Download v3.1.0 build: Want to try new features as soon as possible? You can download the v3.1.0 build from

Zowe.org.

New features and enhancements

Zowe Version 3.1.0 contains the enhancements that are described in the following topics:

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe minor release, look for the release

demo recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe

Project Calendar for the latest schedule.

Server Install

The zwe init command does not require NodeJS, when --update-config is not used. (#4088)

The zwe install command does not require NodeJS. (#4069)

Use a new javascript funtion getStatvfs() to obtain information about the file system. (#3994)

Use the command zwe diagnose in javascript only. (#4061)

The schema is validated for zowe.job.name and zowe.job.prefix . (#4060)

Zowe Application Framework

Zlux App Server package

If zowe.logDirectory is not defined in the configuration, logging is disabled. (#317)

App-server tries to detect ssh and telnet ports (used by terminals) automatically. (#326)

Zowe API Mediation Layer

The external URL is now overridden for additional registration. (#3935)

OIDC token (Okta token) is now supported for authentication in API Catalog. (#3925)

Topology of API ML services on multiple sysplexes is now supported wherein certificates can be obtained from

multiple sources. This feature allows communication to start on any sysplex and going through any sysplex to any

other sysplex. #3914

Users can now set the number of concurrent requests to be routed at the same time to a specific service. The

feature: "Limit API usage" is part of this solution. (#3903)

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://github.com/zowe/zowe-install-packaging/pull/4088
https://github.com/zowe/zowe-install-packaging/pull/4069
https://github.com/zowe/zowe-install-packaging/pull/3994
https://github.com/zowe/zowe-install-packaging/pull/4061
https://github.com/zowe/zowe-install-packaging/pull/4060
https://github.com/zowe/zlux-app-server/pull/317
https://github.com/zowe/zlux-app-server/pull/326
https://github.com/zowe/api-layer/issues/3935
https://github.com/zowe/api-layer/issues/3925
https://github.com/zowe/api-layer/issues/3914
https://github.com/zowe/api-layer/issues/3903

Limit API usage. A custom inmemory rate limiter has been added to limit usage of predefined services. (#3868)

A validate OIDC token call to ZAAS client has been added to validate OIDC via ZAAS client. (#3897)

A Java sample has been added to show how to build a Java application that uses a client certificate to authenticate

against API ML. (#3862)

A client AT-TLS setting is now supported. (#3828)

Zowe CLI

Zowe CLI (Core)

The zowe zos-files copy data-set command now copies members from a source partitioned data set to an

existing target partitioned data set. (#2386)

Download members matching a specified pattern with the new command zowe zos-files download all-members-

matching (zowe files dl amm). (#2359)

Pass a .zosattributes file path for the download encoding format by adding the new --attributes flag to the

zowe zos-files upload command. (#2322)

Add the new --ignore-not-found flag to avoid file-not-found error messages when deleting files so scripts are not

interrupted during automated batch processing. The flag bypasses warning prompts to confirm delete actions.

(#2254)

Added --wait-for-active and --wait-for-output options to the zowe zos-jobs download output command.

(#2328)

Added support for running applications on TSO/E address spaces. Start applications and receive/transmit messages

using the new tso start , tso receive , and tso send commands. (#2280)

Added optional --attributes flag to the zowe zos-files upload file-to-uss command to allow passing a

.zosattributes file path for upload encoding format. (#2319)

Issue the zowe files search data-sets command with the new --encoding option to use a different code page

when searching data set contents. (#2161)

Add the new --stateful flag to zos-tso issue cmd to allow declaring the statefulness of the address space being

created. (#2240)

To minimize the amount of unnecessary text returned from TSO commands, the --suppress-startup-messages flag

default value changed to true . (#2240)

Zowe CLI Imperative Framework

Added the DeferredPromise class to Imperative to provide utilities for data synchronization. (#2405)

DB2 Plug-in for Zowe CLI

Updated the ibm_db dependency to support Node.js 22 and native installation on M1 Macs. (#169)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

https://github.com/zowe/api-layer/issues/3868
https://github.com/zowe/api-layer/issues/3897
https://github.com/zowe/api-layer/issues/3862
https://github.com/zowe/api-layer/issues/3828
https://github.com/zowe/zowe-cli/pull/2386
https://github.com/zowe/zowe-cli/pull/2359
https://github.com/zowe/zowe-cli/issues/2322
https://github.com/zowe/zowe-cli/pull/2254
https://github.com/zowe/zowe-cli/pull/2328
https://github.com/zowe/zowe-cli/pull/2280
https://github.com/zowe/zowe-cli/pull/2319
https://github.com/zowe/zowe-cli/issues/2161
https://github.com/zowe/zowe-cli/pull/2240
https://github.com/zowe/zowe-cli/pull/2240
https://github.com/zowe/zowe-cli/pull/2405
https://github.com/zowe/zowe-cli-db2-plugin/pull/169
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Bug fixes

Zowe Version 3.1.0 contains the bug fixes that are described in the following topics:

Server Install

When logging zwe command, sometimes the log has a wrong file tag and the log is unreadable. (#4071)

When the --log-dir parameter for the zwe command is a file, there might be an error "InternalError: stack

overflow". (#4064)

Zowe Application Framework

Zlux App Server package

The app-server no longer causes Zowe to display "FSUM7422 node is not found" and "Node found in NODE_HOME"

after starting Zowe. This avoids confusion about if node requirements are met. (#325)

Zlux Server Framework

App-server could not register with discovery server when AT-TLS was enabled for app-server. (#580)

Zowe Common C

Removed ByteOutputStream debug message, which was a part of the zwe command output. (#491)

HEAPPOOLS and HEAPPOOLS64 no longer need to be set to OFF for configmgr . (#497)

Zowe API Mediation Layer

Made "native" the default SAF authorization provider. (#3937)

Provided /zOSMF static definition conversion. (#3938)

Prevented leaking of 'exampleSetFlag' in api doc (v3.x.x). (#3933)

Improved error handling in case of failure when retrieving API doc. (#3932)

Remove dthe word 'central' from the log messages. (#3929)

Fixed services endpoint to show correct list of onboarded services. (#3919)

Provided for Auto conversion during z/OSMF static definition creation. (#3930)

Improved untrusted certificate message when certificate is not forwarded. (#3321)

Corrected apiBasePath & server URL for primary and additional Gateways. (#3922)

Enabled infinispan debug logs messages with caching service in debug mode. (#3905)

Specified content type when validating OIDC. (#3902)

Fixed handling unavailable services (#3879)

Semantic of onboarded Gateways in the multitenancy deployment. (#3884)

https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-install-packaging/pull/4071
https://github.com/zowe/zowe-install-packaging/pull/4064
https://github.com/zowe/zlux-app-server/pull/325
https://github.com/zowe/zlux-server-framework/pull/580
https://github.com/zowe/zowe-common-c/pull/491
https://github.com/zowe/zowe-common-c/pull/497
https://github.com/zowe/api-layer/issues/3937
https://github.com/zowe/api-layer/issues/3938
https://github.com/zowe/api-layer/issues/3933
https://github.com/zowe/api-layer/issues/3932
https://github.com/zowe/api-layer/issues/3929
https://github.com/zowe/api-layer/issues/3919
https://github.com/zowe/api-layer/issues/3930
https://github.com/zowe/api-layer/issues/3321
https://github.com/zowe/api-layer/issues/3922
https://github.com/zowe/api-layer/issues/3905
https://github.com/zowe/api-layer/issues/3902
https://github.com/zowe/api-layer/issues/3879
https://github.com/zowe/api-layer/issues/3884

Upgraded spring boot with HTTP headers workaround (#3882)

Exceptions now handled that could arise in the passticket authentication schema. (#3871)

Default JDK DNS resolver now used. (#3877)

Now permitting trailing quotes in z/OSMF static definition not having matching initial ones. (#3875)

Restored handling mode of x-forwarded-prefix as it is used in v2. (#3874)

Preventing fail when headers cannot be modified. (#3845)

Fixed error message in case of TLS error. (#3864)

Updated Gateway schema with OIDC config parameters. (#3867)

SSL strictness in enabler now respected.(#3813)

SSL context now configured for webclient. (#3811)

Applied minor fixes in logs. (#3806)

Changed refill strategy to allow for API rate limiting. (#3949)

Fixed LogBack turbofilters configuration. (#3954)

Fixed LogBack configuration. (#3962)

Fixed the order of the Gateway filter to avoid random malfunction of routing. (#3966)

Zowe CLI

Zowe CLI (Core)

Fixed an issue where the zowe files upload dir-to-uss command was missing a progress bar to track progress of

file uploads. (#2344)

The zowe files copy data-set command no longer copies all partitioned data set members if a member is

specified. (#2402)

Added support for the --encoding flag to the zowe upload dir-to-uss to allow for encoding uploaded directories

for command group consistency. (#2337)

Improved output formatting for the zowe zos-tso start app and zowe zos-tso send app commands by parsing

and displaying relevant data rather than the entire JSON response. (#2347)

Resolved an issue where zowe zos-files upload file-to-uss was not properly handling command flags. (#2234)

Fixed an issue where the zowe zos-logs list logs command could fail or not return all logs if a start time was not

supplied. (#2336)

Fixed issues flagged by Coverity. (#2291)

Zowe CLI Imperative Framework

Fixed a typo in the syntax validation code for positional arguments which caused validation to never fail. (#2375)

Resolved an issue where extraneous base profiles were created in project configurations when a nested profile

property was updated. (#2400)

Resolved an issue where base profiles in a team configuration file were overwritten when a user configuration file did

not include a base profile. (#2383)

Modified location of Proxy-Authorization header to be located in the agent instead of the request. (#2389)

Modified 8.8.2 bugfix to correct web help alias. (#2361)

Resolved issue where special characters could be corrupted when downloading a large file. (#2366)

Fixed an issue where the Imperative Event Emitter could skip triggering event callbacks. (#2360)

Updated --help-web commands to work even in the presence of a faulty configuration. (#2361)

https://github.com/zowe/api-layer/issues/3882
https://github.com/zowe/api-layer/issues/3871
https://github.com/zowe/api-layer/issues/3877
https://github.com/zowe/api-layer/issues/3875
https://github.com/zowe/api-layer/issues/3874
https://github.com/zowe/api-layer/issues/3845
https://github.com/zowe/api-layer/issues/3864
https://github.com/zowe/api-layer/issues/3867
https://github.com/zowe/api-layer/issues/3813
https://github.com/zowe/api-layer/issues/3811
https://github.com/zowe/api-layer/issues/3806
https://github.com/zowe/api-layer/issues/3949
https://github.com/zowe/api-layer/issues/3954
https://github.com/zowe/api-layer/issues/3962
https://github.com/zowe/api-layer/issues/3966
https://github.com/zowe/zowe-cli/issues/2344
https://github.com/zowe/zowe-cli/pull/2402
https://github.com/zowe/zowe-cli/issues/2337
https://github.com/zowe/zowe-cli/pull/2347
https://github.com/zowe/zowe-cli/pull/2334
https://github.com/zowe/zowe-cli/pull/2336
https://github.com/zowe/zowe-cli/pull/2291
https://github.com/zowe/zowe-cli/issues/2375
https://github.com/zowe/zowe-cli/pull/2400
https://github.com/zowe/zowe-cli/pull/2383
https://github.com/zowe/zowe-cli/issues/2389
https://github.com/zowe/zowe-cli/pull/2361
https://github.com/zowe/zowe-cli/pull/2366
https://github.com/zowe/zowe-cli/pull/2360
https://github.com/zowe/zowe-cli/pull/2361

Fixed an issue where the ProfileInfo.profileManagerWillLoad method failed if profiles were not yet read from

disk. (#2284)

Fixed an issue where the ProfileInfo.onlyV1ProfilesExist method could wrongly return true when V2 profiles

exist. (#2311)

Deprecated the static method ProfileInfo.onlyV1ProfilesExist and replaced it with an onlyV1ProfilesExist

instance method on the ProfileInfo class. (#2313)

Fixed an issue where the ConvertV1Profiles.convert method may create team configuration files in the wrong

directory if the environment variable ZOWE_CLI_HOME is set. (#2312)

Fixed an issue where the Imperative Event Emitter would fire event callbacks for the same app that triggered the

event. (#2279)

Fixed an issue where the ProfileInfo.updateKnownProperty method could rewrite team config file to disk without

any changes when storing secure value. (#2324)

CICS Plug-in for Zowe CLI

Removed bundled dependencies from the npm package. (#192)

Restored the npm-shrinkwrap file in the npm package. (#187)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not

disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and

how you upgrade Zowe. When a new release is published, Zowe publishes the vulnerabilities fixed in the previous

release. For more information about the Zowe security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 3.0.

BDSA-2023-3495

BDSA-2024-5686

https://github.com/zowe/zowe-cli/issues/2284
https://github.com/zowe/zowe-cli/issues/2311
https://github.com/zowe/zowe-cli/pull/2313
https://github.com/zowe/zowe-cli/issues/2312
https://github.com/zowe/zowe-cli/issues/2279
https://github.com/zowe/zowe-cli/issues/2324
https://github.com/zowe/cics-for-zowe-client/pull/192
https://github.com/zowe/cics-for-zowe-client/pull/187
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://www.zowe.org/security.html

Version: v3.3.x LTS

Version 3.0.0 (October 2024)

Welcome to the Version 3.0.0 release of Zowe!

Version 3.0 introduced breaking changes and a number of new features.

See Important updates for a full list of changes to the functionality.

See Conformance and release compatibility for V3 Conformance Criteria updates and compatibility with V2.

Download v3.0.0 build: Want to try new features as soon as possible? You can download the v3.0.0 build from

Zowe.org.

V3 office hours videos A series of Zowe V3 LTS office hours are available which detail all changes introduced in Zowe

V3. For more information about these office hours and the new features in Zowe V3, see Zowe V3 Office Hours.

Important updates

Zowe installation and packaging

Breaking changes in Zowe installation and packaging

The original V2 configuration management, zowe.useConfigmgr=false has been dropped in Zowe V3. The

Configuration Manager remains as the only supported method for configuring Zowe.

New features and enhancements in Zowe installation and packaging

Introducing Zowe Server Install Wizard, a wizard to simplify installation and configuration of Zowe server side

components via a UI.

Added explanation to possible error message when checking z/OSMF setting. (#3956)

Zowe Application Framework

Breaking changes in Zowe Application Framework

Updated Angular to Version 18 from Version 12. Apps built upon Angular, excluding iframe apps, will need to be

updated to be compatible with the V3 Desktop.

New features and enhancements in Zowe Application Framework

Zlux App Manager

Updated the Desktop Angular version from 12 to 18. Angular apps written for V2 will need to be upgraded to work in

V3. Iframe and React is unaffected. (#639)

The V2 Desktop is included alongside the V3 Desktop as a temporary compatibility option for the duration of the V2

maintenance schedule. Any user can switch to the V2 Desktop via the ?use-v2-desktop=true parameter. (#639)

Zlux App Server

https://docs.zowe.org/stable/whats-new/zowe-compatibility-statement-v3
https://www.zowe.org/download.html
https://docs.zowe.org/stable/whats-new/zowe-v3-office-hours
https://github.com/zowe/zowe-install-packaging/pull/3956
https://github.com/zowe/zlux-app-manager/pull/639
https://github.com/zowe/zlux-app-manager/pull/639

Added new pluginDefinition property to allow plugins to simultaneously contain v2 and v3 web assets. This

property, webContent.entryPoint , can contain a “3.0” element which states the location of the entry JS file that the

Desktop would load. See the tn3270-ng2 app for an example of its usage. (#323) (#567)

Zowe Common C

Added javascript zos.getStatvfs (path) function to obtain file system information. (#482)

Added support for LE 64-bit in isgenq.c. (#422)

Added more arguments to httpClientSessionInit to allow passing back rc. (#467)

ZSS

If no zowe.logDirectory is defined in config, logging is disabled. (#726)

Exposed new cross-memory server's functions in dynlink. (#684)

Bug fixes in Zowe Application Framework

Zowe Common C

IARV64 results must be checked for 0x7FFFF000 (#474)

SLH should not ABEND when MEMLIMIT is reached (additional NULL check)

ZSS

Added Support for cross-memory server parameters longer than 128 characters. (#684)

Known Issues

Some apps and features of V2 Desktop have not yet been added to the V3 Desktop

The Editor app is not present on the V3 Desktop, but you can access it in the V2 desktop by including ?use-v2-

desktop=true at the end of your Desktop URL.

Support for languages other than English is limited. You can set your language preference in the V2 desktop, but this

menu is not yet present in the V3 desktop and some parts of the V3 desktop will not yet honor the language choice.

API Mediation Layer (API ML)

Breaking changes in API ML

Change in Zowe V3 Required action

Authentication

endpoints no longer

support the route

/api/v1/gateway .

Only /gateway/api/v1

is now supported.

If you use the endpoints directly, change the URLs to start with /gateway/api/v1 . If you

use ZAAS client to integrate with API Mediation Layer, no action is required as the change

is handled in the ZAAS client code.

Spring Enabler has

been updated to

Upgrade extending services based on the Spring Enabler to Spring Boot 3 and Spring 6.

https://github.com/zowe/zlux-app-server/pull/323
https://github.com/zowe/zlux-server-framework/pull/567
https://github.com/zowe/zowe-common-c/pull/482
https://github.com/zowe/zowe-common-c/issues/422
https://github.com/zowe/zowe-common-c/issues/467
https://github.com/zowe/ZSS/pull/726
https://github.com/zowe/zss/issues/684
https://github.com/zowe/zowe-common-c/pull/474
https://github.com/zowe/zss/issues/684

Change in Zowe V3 Required action

Spring Boot 3 and

Spring 6. Spring Boot

2 and Spring 5

versions are no longer

be supported

Datasets API has been

archived

This service was disabled by default in Version 2. If you enable the service via

components.data-sets.enabled: true and use the APIs documented in Data sets

Swagger, it is necessary to move to the usage of the similar z/OSMF endpoints.

Jobs API will be

archived

The service was disabled by default in Version 2. If you enable the service via

components.jobs.enabled: true and use the APIs documented in Jobs Swagger, it is

necessary to move to the usage of the similar z/OSMF endpoints.

Metrics service has

been archived

The service was in Technical Preview. Currently there is no replacement. In V3, the Open

Telemetry standard will be implemented, which will serve as a replacement.

IMS API has been

archived

The service was not fully supported. If you were using the API, please reach out to the IBM

team for follow-up steps.

Java 17 is required to

run the API Mediation

Layer

For V3, it is necessary to update z/OS to version 2.5 or later as this brings support of Java

17. It is necessary to install Java 17 and provide the path to Java 17 to Zowe Java

configuration.

z/OSMF in version

V2R5 with APAR

PH12143 applied

If you are running a version of z/OS before 3.1, validate that the PH12143 APAR was

applied to the z/OSMF installation used by Zowe. The Zowe YAML parameter

components.gateway.apiml.security.auth.zosmf.jwtAutoconfiguration for the gateway

component has changed. The value auto is no longer allowed. Choose either the default

jwt or ltpa depending on if your z/OSMF is set up for JWT use as recommended. See

example-zowe.yaml for new component values.

Configuration of

keyrings now requires

transformation from

safkeyring://// to

safkeyring://

If your Zowe configuration contains safkeyring://// , change this part to safkeyring:// .

Support access to

z/OSMF only through

/ibmzosmf route. V3

will not support access

through the /zosmf

route

If you use z/OSMF via {apimlUrl}/zosmf/{zosmfEndpoint} you need to move to

{apimlUrl}/ibmzosmf/{zosmfEndpoint}.

Error code change for

nonexistent services
Nonexistent service returns 404 with error code ZWEAO404E.

https://petstore.swagger.io/?url=https://raw.githubusercontent.com/zowe/docs-site/docs-staging/api_definitions/datasets.json
https://petstore.swagger.io/?url=https://raw.githubusercontent.com/zowe/docs-site/docs-staging/api_definitions/datasets.json
https://petstore.swagger.io/?url=https://raw.githubusercontent.com/zowe/docs-site/docs-staging/api_definitions/jobs.json
https://github.com/zowe/zowe-install-packaging/blob/v3.x/staging/example-zowe.yaml

Change in Zowe V3 Required action

Service ids that

contain an underscore

will not be routed

Replace the underscore with another character such as a hyphen (-) or remove the

character altogether from the service id.

New features and enhancements in API ML

The current API Gateway contains the Authentication and Authorization Service. This service will be separated as a

standalone service. The Authentication and Authorization Service is the only API ML service that directly requires z/OS.

The networking standard configuration has been improved allowing for proper use and handling of TLS configuration

in a unified way across the Zowe. (#3765)

Now providing a GraphiQL Playground to allow for visualizing GraphQL APIs in the API Catalog. (#3660)

Users can now extend WebSocket connection timeouts and increase header and payload capacity (#3700)

Spring Cloud Gateway has now replaced Netflix Zuul API Gateway. (#3294) (#3658) (#3567) (#3571) (#3572)

(#3545)

Catalog version is now added in the footer for Login, Dasboard and Detail pages. (#3554)

Added OIDC login flow schema and allowedUsers customization in zowe.yaml now enabled. (#3533)

API ML has implemented OIDC authentication flow in the Cloud Gateway component. The user obtains an access

token in the cookies after a successful authentication against the Identity provider. (#3510)

Bug Fixes in API ML

Fixed Discovery Eureka response if the service is not registred to allow to reconnect by Enabler. (#3795)

Moved security configuration back to gateway section. (#3775)

Gateway now ends with internal server error if cookies are invalid. (#3767)

hostname is now not resolved when not required. (#3751)

Addressed ClosableHttpClient.execute() resource leak on API Catalog. (#3722)

Fixed API ML prefix for registry configuration. (#3746)

ZAAS now reads configuration from Gateway as default with possibility to override with local configuration. (#3744)

Removed "AUTO" from JWT configuration and clean up outdated APARs from mock service. (#3717)

Updated default javax.net.ssl log levels. (#3716)

Enable the use of Zowe provided java location if available. (#3714)

Allow for Stacktrace on unreachable swagger and removed handling for deprecated method. (#3699)

Protected health endpoint with authentication as default. (#3676)

Enabled Pretty path URL in Gateway Swagger documentation in the API Catalog. (#3679)

Fixed Swagger API documentation for Gateway. (#3678)

Now supporting customized code snippets in case of endpoint with query params. (#3666)

Tweaked gateway status page to have consistent casing. (#3560)

Allow for Independent scanning and loading of extension's classes. (#3548)

Fixed SSL Context switching. (#3531)

Fixed z/OSMF URL. (#3478)

Updated of SSL configuration in the Tomcat. (#3403)

Apply fixes to Keyring init z/OS. (#3314)

https://github.com/zowe/api-layer/issues/3765
https://github.com/zowe/api-layer/issues/3660
https://github.com/zowe/api-layer/issues/3700
https://github.com/zowe/api-layer/issues/3294
https://github.com/zowe/api-layer/issues/3658
https://github.com/zowe/api-layer/issues/3567
https://github.com/zowe/api-layer/issues/3571
https://github.com/zowe/api-layer/issues/3572
https://github.com/zowe/api-layer/issues/3545
https://github.com/zowe/api-layer/issues/3554
https://github.com/zowe/api-layer/issues/3533
https://github.com/zowe/api-layer/issues/3510
https://github.com/zowe/api-layer/issues/3795
https://github.com/zowe/api-layer/issues/3775
https://github.com/zowe/api-layer/issues/3767
https://github.com/zowe/api-layer/issues/3751
https://github.com/zowe/api-layer/issues/3722
https://github.com/zowe/api-layer/issues/3746
https://github.com/zowe/api-layer/issues/3744
https://github.com/zowe/api-layer/issues/3717
https://github.com/zowe/api-layer/issues/3716
https://github.com/zowe/api-layer/issues/3714
https://github.com/zowe/api-layer/issues/3699
https://github.com/zowe/api-layer/issues/3676
https://github.com/zowe/api-layer/issues/3679
https://github.com/zowe/api-layer/issues/3678
https://github.com/zowe/api-layer/issues/3666
https://github.com/zowe/api-layer/issues/3560
https://github.com/zowe/api-layer/issues/3548
https://github.com/zowe/api-layer/issues/3531
https://github.com/zowe/api-layer/issues/3478
https://github.com/zowe/api-layer/issues/3403
https://github.com/zowe/api-layer/issues/3314

Use ibmzosmf as service ID. (#3302)

Updated z/OSMF service ID. (#3296)

Updated serviceId in the Gateway starting script. (#2889)

Fixed truststore for websockets in Spring Cloud Gateway. (#3248)

Fixed static definition of z/OSMF in discovery package. (#2889)

ZSS

Breaking changes in ZSS

ZSS now defaults to running in 64-bit mode, which requires extensions that include ZSS plugins to also have 64-bit

editions. Although 64-bit is recommended to avoid 31-bit memory consumption, The YAML property

components.zss.agent.64bit=false can be used to switch back to 31-bit if needed for extension that have not yet

been updated for 64-bit. Note that only one version of ZSS can run at a time.

Explorer for Intellij IDEA

New features and enhancements in Explorer for Intellij IDEA

Explorer for IntelliJ IDEA will be part of the Zowe Core

Working with USS Files

Working with Data Sets

Working with JES Working Sets

Interactive TSO Console

Explorer for Visual Studio Code

Breaking changes in Explorer for Visual Studio Code

Change in Zowe V3 Required action

V1 profile support removed.
Implement a team configuration or use Zowe Explorer's built-in V1

profile conversion functionality

Deprecated items removed.

Zowe Explorer extenders or users of the Zowe Explorer APIs need

to review the breaking changes and adjust their code to account for

removed/changed classes, functions, and constants. See changes

listed in Issue 2238.

Extension settings stored in local storage.

Settings and history previously stored in the .vscode settings

folder are no longer available. Users will have to adjust their Zowe

Explorer settings after updating to V3.

No longer using a temporary directory for

storing data sets and USS files. All settings

related to the temporary downloads folder

have been removed.

Refer to the FileSystemProvider documentation for information on

how to build and access resource URIs. Extenders can detect

changes to resources using the onResourceChanged function in the

ZoweExplorerApiRegister class.

https://github.com/zowe/api-layer/issues/3302
https://github.com/zowe/api-layer/issues/3296
https://github.com/zowe/api-layer/issues/2889
https://github.com/zowe/api-layer/issues/3248
https://github.com/zowe/api-layer/issues/2889
https://github.com/zowe/zowe-explorer-vscode/issues/2238
https://github.com/zowe/zowe-explorer-vscode/wiki/FileSystemProvider

Change in Zowe V3 Required action

Data set templates moved out of data set

history settings into new setting

zowe.ds.templates .

Use the new zowe.ds.templates setting.

New features and enhancements in Explorer for Visual Studio Code

Storing persistent settings in local storage.

Use a right-click option to compare files in MVS view, USS view, and across the two views.

Minimized activation function for Zowe Explorer to load only necessary items on activation. (#1985)

Added UI migration steps on startup for users with V1 profiles to either convert existing V1 profiles to a team

configuration file or create a new team configuration file. (#2284)

Added support for logging in to multiple API ML instances per team configuration file. (#2264)

Added remote lookup functionality for data sets and USS files, allowing Zowe Explorer to locate and resolve

mainframe resources on demand. (#3040)

Implemented change detection in the data sets and USS filesystems so that changes on the mainframe are reflected

in opened editors for data sets and USS files. (#3040)

Implemented a "Show as Table" option for profile nodes in the Jobs tree, displaying lists of jobs in a tabular view. Jobs

can be filtered and sorted within this view, and users can select jobs to cancel, delete, or download. (#2258)

Implemented the VS Code FileSystemProvider for the Data Sets, Jobs, and USS trees to handle all read/write actions

as well as conflict resolution. See the FileSystemProvider wiki page for more information on the FileSystemProvider.

(#2207)

Added a new command called Issue UNIX Command that is available in the VS Code command palette or via right-

click action in the USS tree view. (#1326)

Added a prompt to create a new Zowe client configuration for an environment that does not have any Zowe client

configurations. (#3148)

Implemented support for saving as a Favorite a data set search query that contains member wildcards. (#1164)

Changed default base profile naming scheme in newly generated configuration files to prevent name and property

conflicts between Global and Project profiles. (#2682)

Set up POEditor project for contributing translations. Cleaned up redundant localization strings. (#546)

Added integration and end-to-end test framework to verify extension behavior and catch issues during Zowe

Explorer development. (#2322)

Bug fixes in Explorer for Visual Studio Code

The "Zowe Resources" panel is now hidden by default until Zowe Explorer reveals it to display a table or other data.

(#3113)

Fixed behavior of logout action when token is defined in both a base profile and parent profile. (#3076)

Fixed bug that displayed obsolete profiles in the Zowe Explorer tree views after the associated team configuration

file was deleted. (#3124)

Fixed issue with extender profiles not being included in configuration files created by Zowe Explorer. (#3122)

Fixed issue where file extensions were removed from data sets, causing language detection to sometimes fail for

Zowe Explorer extenders. (#3121)

https://github.com/zowe/zowe-explorer-vscode/issues/1985
https://github.com/zowe/zowe-explorer-vscode/issues/2284
https://github.com/zowe/zowe-explorer-vscode/issues/2264
https://github.com/zowe/zowe-explorer-vscode/pull/3040
https://github.com/zowe/zowe-explorer-vscode/pull/3040
https://github.com/zowe/zowe-explorer-vscode/issues/2258
https://github.com/zowe/zowe-explorer-vscode/wiki/FileSystemProvider
https://github.com/zowe/zowe-explorer-vscode/issues/2207
https://github.com/zowe/zowe-explorer-vscode/issues/1326
https://github.com/zowe/zowe-explorer-vscode/pull/3148
https://github.com/zowe/zowe-explorer-vscode/issues/1164
https://github.com/zowe/zowe-explorer-vscode/issues/2682
https://poeditor.com/join/project/Siy3KCNFKk
https://github.com/zowe/zowe-explorer-vscode/issues/546
https://github.com/zowe/zowe-explorer-vscode/issues/2322
https://github.com/zowe/zowe-explorer-vscode/issues/3113
https://github.com/zowe/zowe-explorer-vscode/issues/3076
https://github.com/zowe/zowe-explorer-vscode/issues/3124
https://github.com/zowe/zowe-explorer-vscode/issues/3122
https://github.com/zowe/zowe-explorer-vscode/issues/3121

Fixed an issue where copying and pasting a file/folder in the USS tree would fail abruptly, displaying an error.

(#3128)

Removal of broken VSC command to Zowe Explorer: Refresh Zowe Explorer , use VS Code's Extensions: Refresh

command instead. (#3100)

Fixed issue where Zowe Explorer would reload the VS Code window during initialization when no configuration files

are present. (#3147)

Fixed issue where obsolete credentials persisted for PDS member nodes in Data Sets tree. (#3112)

Fixed issue where Search operation did not prompt for credentials if profile contains expired token. (#2259)

Fixed issue where inactive status was not displayed for profiles loaded from global configuration. (#3134)

Fixed issue where switching from token-based authentication to user/password would cause an error for nested

profiles. (#3142)

Fix issue with outdated SSH credentials stored securely in the SSH profile causing errors. (#2901)

Fixed vNext-only issue where users are not able to create data sets. (#2783)

Omitted the following Zowe Explorer commands from the Command Palette that do not execute properly when run

as a standalone command:

Zowe Explorer: Cancel job

Zowe Explorer: Filter jobs

Zowe Explorer: Filter PDS members

Zowe Explorer: Sort jobs

Zowe Explorer: Sort PDS members

Zowe Explorer: Start Polling

Zowe Explorer: Stop Polling

Ported the following fixes from V2:

Moved schema warnings into the log file (rather than a UI message) to minimize end-user disruption. (#2860)

Fix issue with base profile not being included in configuration files created by Zowe Explorer. (#2887)

Fixed an issue where the onProfilesUpdate event did not fire after secure credentials were updated. (#2822)

Fixed issue where saving changes to favorite PDS member fails when custom temp folder is set on Windows.

(#2880)

Fixed issue where multiple extensions that contribute profiles to a tree view using the Zowe Explorer API may fail to

load. (#2888)

Fixed regression where getProviderForNode returned the wrong tree provider after performing an action on a Zowe

tree node, causing some commands to fail silently. (#2967)

Fixed issue where creating a new team configuration file could cause Zowe Explorer to crash, resulting in all sessions

disappearing from trees. (#2906)

Addressed breaking changes from the Zowe Explorer API package. (#2952)

Fixed data set not opening when the token has expired. (#3001)

Fixed an issue where upgrading from Zowe Explorer V1 and selecting "Reload Extensions" causes Zowe Explorer V3

to fail during initialization. (#3051)

Fixed an issue where remote lookup functionality caused the local side of a conflict to be overwritten with the remote

contents. (#3085)

Fixed an issue where the remote conflict icons showed when using the "Compare with Selected" feature. (#3085)

Resolved an issue where extender event callbacks were not always fired when the team configuration file was

created, updated, or deleted. (#3078)

Fixed issue with UnixCommand prompting for credentials. (#2762)

https://github.com/zowe/zowe-explorer-vscode/issues/3128
https://github.com/zowe/zowe-explorer-vscode/issues/3100
https://github.com/zowe/zowe-explorer-vscode/issues/3147
https://github.com/zowe/zowe-explorer-vscode/issues/3112
https://github.com/zowe/zowe-explorer-vscode/issues/2259
https://github.com/zowe/zowe-explorer-vscode/issues/3134
https://github.com/zowe/zowe-explorer-vscode/issues/3142
https://github.com/zowe/zowe-explorer-vscode/issues/2901
https://github.com/zowe/zowe-explorer-vscode/pull/2783
https://github.com/zowe/zowe-explorer-vscode/pull/2860
https://github.com/zowe/zowe-explorer-vscode/issues/2887
https://github.com/zowe/zowe-explorer-vscode/issues/2822
https://github.com/zowe/zowe-explorer-vscode/issues/2880
https://github.com/zowe/zowe-explorer-vscode/issues/2888
https://github.com/zowe/zowe-explorer-vscode/issues/2967
https://github.com/zowe/zowe-explorer-vscode/issues/2906
https://github.com/zowe/zowe-explorer-vscode/issues/2952
https://github.com/zowe/zowe-explorer-vscode/issues/3001
https://github.com/zowe/zowe-explorer-vscode/pull/3051
https://github.com/zowe/zowe-explorer-vscode/pull/3085
https://github.com/zowe/zowe-explorer-vscode/pull/3085
https://github.com/zowe/zowe-explorer-vscode/issues/3078
https://github.com/zowe/zowe-explorer-vscode/issues/2762

Fixed issue where listing data sets or USS files would cause a drastic increase in API calls, causing delays or a

complete halt in Zowe Explorer. (#3093)

Fixed issue where "Allocate Like" input box placeholder was showing a localization ID instead of the intended

message ("Enter a name for the new data set"). (#2759)

Fixed concerns regarding Unix command handling work. (#2866)

Fixed default behavior of "Create a new Team Configuration File" to create a Project Config instead of Project User

Config. (#2684)

Adjusted order of "Manage Profile" and "Edit History" options in the Jobs tree's context menu to match the other

trees. (#2670)

Fixed issue where spools with duplicate DD names would overwrite each other causing less spools in job output view

(#2315)

Changed ZoweExplorerExtender.initForZowe profileTypeConfigurations:

imperative.ICommandProfileTypeConfiguration[] to a required argument to address issues seen after registration

of profile type when not passed. (#2575)

Updated various dependencies for technical currency. (#3146, #3057, #2754)

Complete changelogs for Zowe Explorer for Visual Studio Code and Zowe Explorer plug-ins

For a complete list of enhancements and bug fixes, see the following changelogs:

Zowe Explorer

Zowe Explorer CICS Extension

Zowe Explorer FTP Extension

Zowe CLI (Core)

Breaking changes in Zowe CLI

Change in Zowe V3 Required action

New format for error messages to

improve clarity.

Adjust Zowe CLI scripts that parse error messages to handle the new

error format

V1 profile support removed.
Implement a team configuration or use Zowe CLI's built-in V1 profile

conversion command: zowe config convert

Deprecated items removed.

Zowe CLI extenders or users of the Zowe Client Node.js SDK will need to

review the breaking changes and adjust their code to account for

removed/changed classes, functions, and constants. See changes listed

in Zowe CLI Issue 1694 and Imperative Issue 1873.

Added informative messages identifying

why a user is being prompted for

connection property values during a CLI

command.

N/A

Removed record format (recfm) validation

when issuing zowe files create

N/A

https://github.com/zowe/zowe-explorer-vscode/pull/3093
https://github.com/zowe/zowe-explorer-vscode/issues/2759
https://github.com/zowe/zowe-explorer-vscode/pull/2866
https://github.com/zowe/zowe-explorer-vscode/issues/2684
https://github.com/zowe/zowe-explorer-vscode/issues/2670
https://github.com/zowe/zowe-explorer-vscode/issues/2315
https://github.com/zowe/zowe-explorer-vscode/issues/2575
https://github.com/zowe/zowe-explorer-vscode/issues/3146
https://github.com/zowe/zowe-explorer-vscode/pull/3057
https://github.com/zowe/zowe-explorer-vscode/pull/2754
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/cics-for-zowe-client/blob/main/packages/vsce/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-cli/issues/1694
https://github.com/zowe/zowe-cli/issues/1873

Change in Zowe V3 Required action

commands.

Added Zowe release version output for -

-version .

Update scripts that run the zowe --version command to handle the

new format

Removed all profiles commands, since

they only worked with now-obsolete V1

profiles.

N/A

Replaced the ZOWE_EDITOR environment

variable with ZOWE_OPT_EDITOR and --

editor option on commands.

Use ZOWE_OPT_EDITOR to set your default text editor

Removed the bright command from the

product.
Replace bright with zowe in scripts

New features and enhancements in Zowe CLI

The 'zowe config auto-init' command now generates two base profile types, 'global_base' or 'project_base',

depending on whether a global or project configuration file is generated. (Zowe Explorer #2682).

Use the zowe zos-files search data-sets command to search for a string in a data set or PDS member matching

a pattern. (#2095)

Zowe client log files are consolidated into the same directory. (#2116)

Changed references in command output from 'Team Configuration' to 'Zowe client configuration' to align with Zowe

terminology. (#2019)

Prompt for user/password on SSH commands when a token is stored in the configuration file. (#2081)

Replaced the term "Team configuration" with "Zowe client configuration" in the zowe config report-env command

to align with Zowe terminology.

Search spool files for a specified string or regular expression with the new zowe zos-jobs search job command.

Use the new name-only alias to root on config list command. (#1797)

Use the new --binary and --encoding options with the zosfiles edit command.

Revised the help text for consistency and improved user experience. (#1756)

Bug fixes in Zowe CLI

Updated documentation for the zos-files search ds command's --mainframe-search option to include a

disclaimer about z/OSMF API limitations. (#2160)

Fixed a bug where a data set search would not return a search term if it was at the beginning of a line. (#2147)

Fixed an error in the zos-files list all-members command that could occur when members contain control

characters in the name. (#2104)

Removed stack trace for zosjobs errors. (#2078)

Fixed default base profile missing in configuration generated by zowe config auto-init . (#2088)

Eliminated a Node Version Manager (NVM) GUI popup dialog which NVM now displays during the zowe config

report-env command by removing the NVM version number from our report.

https://github.com/zowe/zowe-explorer-vscode/issues/2682
https://github.com/zowe/zowe-cli/issues/2095
https://github.com/zowe/zowe-cli/issues/2116
https://github.com/zowe/zowe-cli/issues/2019
https://github.com/zowe/zowe-cli/pull/2081
https://github.com/zowe/zowe-cli/issues/1797
https://github.com/zowe/zowe-cli/issues/1756
https://github.com/zowe/zowe-cli/issues/2160
https://github.com/zowe/zowe-cli/pull/2147
https://github.com/zowe/zowe-cli/pull/2104
https://github.com/zowe/zowe-cli/pull/2078
https://github.com/zowe/zowe-cli/pull/2088

Properly construct workflow error messages to display properly with V3 error formatting.

Fixed typo in command help for zowe zos-workflows create commands.

Updated various dependencies for technical currency. (#2242, #2188, #2158, #2102, #2107, #2077, #2061,

#2057)

Complete changelogs for Zowe CLI and Zowe CLI plug-ins

Zowe CLI

Zowe CLI Imperative

IBM CICS Plug-in for Zowe CLI

IBM Db2 Databse Plug-in Zowe CLI

IBM z/OS FTP Plug-in Zowe CLI

IBM MQ Plug-in Zowe CLI

https://github.com/zowe/zowe-cli/pull/2242
https://github.com/zowe/zowe-cli/pull/2188
https://github.com/zowe/zowe-cli/pull/2158
https://github.com/zowe/zowe-cli/issues/2102
https://github.com/zowe/zowe-cli/pull/2107
https://github.com/zowe/zowe-cli/pull/2077
https://github.com/zowe/zowe-cli/pull/2061
https://github.com/zowe/zowe-cli/pull/2057
https://github.com/zowe/zowe-cli/blob/master/packages/cli/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/imperative/CHANGELOG.md
https://github.com/zowe/cics-for-zowe-client/blob/main/packages/cli/CHANGELOG.md
https://github.com/zowe/zowe-cli-db2-plugin/blob/master/CHANGELOG.md
https://github.com/zowe/zowe-cli-ftp-plugin/blob/master/CHANGELOG.md
https://github.com/zowe/zowe-cli-mq-plugin/blob/master/CHANGELOG.md

Version: v3.3.x LTS

Version 2.18.2 (July 2025)

Welcome to the Zowe Version 2.18.2 release!

This release includes compatibility changes for the upcoming z/OS 3.2.

See Bug fixes for a list of issues addressed in this release.

Download v2.18.2 build: Want to try new features as soon as possible? You can download the v2.18.2 build from

Zowe.org.

New features and enhancements

Zowe Version 2.18.2 contains the enhancements that are described in the following topics:

Zowe Application Framework

ZSS

z/OS 3.2 is now supported. (#538)

Zowe API Mediation Layer

The configuration property apiml.security.forwardHeader.trustedProxies has been added to specify the regular

expression pattern used to identify trusted proxies from which X-Forwarded-* headers are accepted and forwarded.

This mitigates CVE-2025-41235. The API ML gateways (including cloud gateways) in Multitenancy Configuration are

trusted by default. (#4148 and #4188)

A Java sample app has been added to assist users to authenticate client certificates. (#4009)

Users can now configure the connectTimeout and readTimeout for Eureka HTTP client. (#4046)

Java 21 is now supported. (#4027)

Bug fixes

Zowe Version 2.18.2 contains the bug fixes that are described in the following topics:

Zowe Application Framework

Fixed an issue of the API Catalog by introducing a workaround. Before the fix, the API Catalog attempted to establish

two secure Transport Layer Security (TLS) connections while the API Catalog operated under AT-TLS. Since AT-TLS

already handled the secure communication, the attempt by the API Catalog was unnecessary and led to performance

overheads or failures in communication. After the fix, the registration information of the API Catalog updates the

Eureka client system to indicate to other systems that AT-TLS is in use and provides secure communication. This

ensures that the API Catalog and the other services interacting with it recognize the existing secure environment

that AT-TLS provides and the API Catalog avoids unnecessary security processing. (#609)

ZSS

https://www.zowe.org/download.html
https://github.com/zowe/zowe-common-c/pull/538
https://docs.zowe.org/user-guide/api-mediation/api-mediation-multi-tenancy
https://github.com/zowe/api-layer/pull/4148
https://github.com/zowe/api-layer/pull/4188
https://github.com/zowe/api-layer/issues/4009
https://github.com/zowe/api-layer/issues/4046
https://github.com/zowe/api-layer/issues/4027
https://github.com/zowe/zlux-server-framework/pull/609

Fixed an issue where the HTTP client software was unable to handle EWOULDBLOCK errors while processing data from

AT-TLS in Zowe. The fix introduced HTTP_CLIENT_UNBLOCKED_TRY_AGAIN (19) and HTTP_CLIENT_SOCKET_TIMEOUT (20)

error codes into the HTTP client software to enable the HTTP client software to handle the EWOULDBLOCK errors with

greater efficiency. (#534)

Fixed an issue where there was a delay in the response from the Gateway after HTTP or AT-TLS contacted the

Gateway for Single Sign On(SSO). After the fix, if HTTP or AT-TLS contacts the Gateway for SSO, the Gateway

provides an immediate response. (#775), (#772)

Fixed an issue where Zowe, when installed on the z/OS operating system, stopped working because that version of

z/OS changed or upgraded. After the fix, Zowe continues to work uninterrupted even if the version of the underlying

z/OS changes or upgrades. (#780)

Zowe API Mediation Layer

Fixed gateway returning empty auth keys from z/OSMF when apiml.security.auth.zosmf.jwtAutoconfiguration is

set to jwt . (#4092)

Fixed an error where NPE in ApimlPeerEurekaNode stops heartbeats. (#4195)

Fixed logout implementation in API Catalog in which cookies from the browser were deleted but JWT against the

Gateway instance of the Zowe installation are not invalidated. (#4185)

Applied fix for disabling infinispan diagnostics by default. (#4170)

Fixed a resource leak in the http client, whereby all objects are now closed after use. (#4153)

Added HSTS header when AT-TLS enabled for V2. (#4071)

Changed error code SERVICE_UNAVAILABLE to INTERNAL_SERVER_ERROR when ticket generation fails. (#4043)

Zowe CLI

DB2 Plug-in for Zowe CLI

Updated tar-fs transitive dependency to resolve technical debt. (#177)

Updated axios transitive dependency to resolve technical debt. (#175)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

https://github.com/zowe/zowe-common-c/pull/534
https://github.com/zowe/zss/pull/775
https://github.com/zowe/zss/pull/772
https://github.com/zowe/zss/pull/780
https://github.com/zowe/api-layer/issues/4092
https://github.com/zowe/api-layer/pull/4195
https://github.com/zowe/api-layer/pull/4185
https://github.com/zowe/api-layer/pull/4170
https://github.com/zowe/api-layer/pull/4153
https://github.com/zowe/api-layer/issues/4071
https://github.com/zowe/api-layer/issues/4043
https://github.com/zowe/zowe-cli-db2-plugin/pull/177
https://github.com/zowe/zowe-cli-db2-plugin/pull/175
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not

disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and

how you upgrade Zowe. When a new release is published, Zowe publishes the vulnerabilities fixed in the previous

release. For more information about the Zowe security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.18.1:

BDSA-2024-4090

BDSA-2023-3495

BDSA-2024-5371

BDSA-2024-5369

https://www.zowe.org/security.html

Version: v3.3.x LTS

Version 2.18.1 (March 2025)

Welcome to the Zowe Version 2.18.1 release!

See Bug fixes for a list of issues addressed in this release.

Download v2.18.1 build: Want to try new features as soon as possible? You can download the v2.18.1 build from

Zowe.org.

New features and enhancements

Zowe Version 2.18.1 contains the enhancements that are described in the following topics.

Zowe API Mediation Layer

The Zowe client AT-TLS setting network.tls.client.attls is now supported. (#3825)

Bug fixes

Zowe Version 2.18.1 contains the bug fixes that are described in the following topics.

Zowe API Mediation Layer

Fixed login filter check causing 400 Invalid credentials. (#4014)

Added missing OIDC documentation to OpenAPI. (#4013)

Added newPassword to Open API Documentation of the login endpoint. (#4002)

Fixed four slashes support in SSE class. (#4001)

Fixed failing LoginFilter in AccessToken generate filter chain. (#3984)

Fixed the ssl.protocol default value. (#3994)

Improved PassTicket logging. (#3996)

Fixed 'exampleSetFlag' leaking in api doc. (#3934)

Fixed Cloud Gateway configuration. (#3956)

Fixed initialization of the API Catalog. (#3959)

Improved error handling in case of failure when retrieving API doc. (#3936)

Improved untrusted certificate message when certificate is not forwarded. (#3926)

User can now configure the TLS version and cipher suite list. (#3943)

Fixed order of Cloud Gateway filters and solve the conflict with RequestAttributesProvider. (#3965)

Fixed z/OSMF static definition file processing. (#3975)

Removed global setup of keystores. (#3702)

Fixed Sonar analysis issues. (#3800)

Changed port to handle AT-TLS client aware mode. (#3863)

Updated default javax.net.ssl log level. (#3872)

The insecureHttpWarning message is now thrown only when AT-TLS is not enabled. (#3810)

https://www.zowe.org/download.html
https://github.com/zowe/api-layer/pull/3825
https://github.com/zowe/api-layer/pull/4014
https://github.com/zowe/api-layer/pull/4013
https://github.com/zowe/api-layer/pull/4002
https://github.com/zowe/api-layer/pull/4001
https://github.com/zowe/api-layer/pull/3984
https://github.com/zowe/api-layer/pull/3994
https://github.com/zowe/api-layer/pull/3996
https://github.com/zowe/api-layer/pull/3934
https://github.com/zowe/api-layer/pull/3956
https://github.com/zowe/api-layer/pull/3959
https://github.com/zowe/api-layer/pull/3936
https://github.com/zowe/api-layer/pull/3926
https://github.com/zowe/api-layer/pull/3943
https://github.com/zowe/api-layer/pull/3965
https://github.com/zowe/api-layer/pull/3975
https://github.com/zowe/api-layer/pull/3702
https://github.com/zowe/api-layer/pull/3800
https://github.com/zowe/api-layer/pull/3863
https://github.com/zowe/api-layer/pull/3872
https://github.com/zowe/api-layer/pull/3810

Fixed WebSocket session opening to be non-blocking and callback-based. (#3695)

Fixed Zowe CLI plugin and enable manual trigger only. (#3804)

Zowe CLI

Zowe CLI (Core)

Added support for the --encoding flag to the zowe upload dir-to-uss command to allow for encoding uploaded

directories for command group consistency. (#2356)

Zowe CLI Imperative Framework

Updated transitive dependencies for technical currency. (#2425)

Resolved an issue where extraneous base profiles were created in project configurations when a nested profile

property was updated. (#2404)

Fixed an issue where the ProfileInfo.profileManagerWillLoad method failed if profiles were not yet read from

disk. (#2284)

Fixed an issue where the ProfileInfo.updateKnownProperty method could rewrite the team configuration file to

disk without any changes when storing a secure value. (#2324)

Updated the cross-spawn dependency for technical currency. (#2374)

Fixed issues flagged by Coverity. (#2292)

Updated dataobject-parser dependency for technical currency. (#2262)

Updated fs-extra and jsonfile dependencies for technical currency. (#2264)

CICS Plug-in for Zowe CLI

Removed bundled dependencies from npm package and restored the npm-shrinkwrap file. (#188)

DB2 Plug-in for Zowe CLI

Updated ibm_db dependency to support Node.js 22 on Windows.

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Vulnerabilities fixed

https://github.com/zowe/api-layer/pull/3695
https://github.com/zowe/api-layer/pull/3804
https://github.com/zowe/zowe-cli/pull/2356
https://github.com/zowe/zowe-cli/pull/2425
https://github.com/zowe/zowe-cli/pull/2404
https://github.com/zowe/zowe-cli/issues/2284
https://github.com/zowe/zowe-cli/issues/2324
https://github.com/zowe/zowe-cli/pull/2374
https://github.com/zowe/zowe-cli/pull/2292
https://github.com/zowe/zowe-cli/pull/2262
https://github.com/zowe/zowe-cli/pull/2264
https://github.com/zowe/cics-for-zowe-client/pull/188
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not

disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and

how you upgrade Zowe. When a new release is published, Zowe publishes the vulnerabilities fixed in the previous

release. For more information about the Zowe security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.18.0.

BDSA-2024-4117

BDSA-2024-3717

BDSA-2024-0402

BDSA-2024-0625

BDSA-2024-1160

https://www.zowe.org/security.html

Version: v3.3.x LTS

Version 2.18.0 (August 2024)

Welcome to the Zowe Version 2.18.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues

addressed in this release.

Download v2.18.0 build: Want to try new features as soon as possible? You can download the v2.18.0 build from

Zowe.org.

New features and enhancements

Zowe Version 2.18.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe minor release, look for the release

demo recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe

Project Calendar for the latest schedule.

Zowe Application Framework

ZSS

Changed log level for setting default value of httpRequestHeapMaxBlocks to DEBUG instead of INFO . (#719)

Zowe API Mediation Layer

OIDC token can now be validated via the user info endpoint. (#3670)

It is now possibile to use custom logback.xml in all API ML services. Configuration for separate services can be

performed by adding logging.config parameter under each API ML component in Zowe YAML file. (#3669)

Zowe CLI

Zowe CLI Imperative Framework

Updated ProfileInfo.updateProperty function to support updating properties in typeless profiles. (#2196)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://github.com/zowe/zss/pull/719
https://github.com/zowe/api-layer/issues/3670
https://github.com/zowe/api-layer/issues/3669
https://github.com/zowe/zowe-cli/issues/2196
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Bug fixes

Zowe Version 2.18.0 contains the bug fixes that are described in the following topics.

Zowe API Mediation Layer

Added the optional authentication requirement for application/health endpoints. (#3636)

Customized code snippets for endpoints with query parameters is now supported. (#3665)

Zowe CLI

Zowe CLI (Core)

Refactored code to reduce the use of deprecated functions to prepare for upcoming Node.js 22 support. #2191

Zowe CLI Imperative Framework

Modified the showMsgWhenDeprecated function to allow an empty string as a parameter when no replacement is

available for the deprecated command. When no replacement is available, an alternative message is printed.

(#2041)

Resolved a bug that resulted in the user not being prompted for a key passphrase if it is located in the secure

credential array of the ssh profile. (#1770)

Fixed an issue in the local web help that highlighted the wrong sidebar item. (#2215)

Updated web help dependencies for technical currency. (#2215)

Refactored code to reduce the use of deprecated functions to prepare for upcoming Node.js 22 support. (#2191)

Fixed error in REST client when making requests with session type of SessConstants.AUTH_TYPE_NONE . (#2219)

Fixed missing export for Proxy class in Imperative package. (#2205)

DB2 Plug-in for Zowe CLI

Updated axios transitive dependency to resolve technical debt. (#154)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://github.com/zowe/api-layer/issues/3636
https://github.com/zowe/api-layer/issues/3665
https://github.com/zowe/zowe-cli/issues/2191
https://github.com/zowe/zowe-cli/issues/2041
https://github.com/zowe/zowe-cli/issues/1770
https://github.com/zowe/zowe-cli/pull/2215
https://github.com/zowe/zowe-cli/pull/2215
https://github.com/zowe/zowe-cli/issues/2191
https://github.com/zowe/zowe-cli/issues/2219
https://github.com/zowe/zowe-cli/pull/2205
https://github.com/zowe/zowe-cli-db2-plugin/pull/154
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not

disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and

how you upgrade Zowe. When a new release is published, Zowe publishes the vulnerabilities fixed in the previous

release. For more information about the Zowe security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.17.

https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://www.zowe.org/security.html

Version: v3.3.x LTS

Version 2.17.0 (July 2024)

Welcome to the Zowe Version 2.17.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues

addressed in this release.

Download v2.17.0 build: Want to try new features as soon as possible? You can download the v2.17.0 build from

Zowe.org.

New features and enhancements

Zowe Version 2.17.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe minor release, look for the release

demo recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe

Project Calendar for the latest schedule.

Zowe installation and packaging

Added JCL sample templates within SZWESAMP dataset, also seen within “files/SZWESAMP” . Datasets beginning with

ZWEI are intended to be an alternative but not replacement of zwe init operations. ZWEIRAC , ZWEITSS , and

ZWEIACF are derived from and intended to replace ZWESECUR in the future. ZWEIKR* are derived from and intended

to replace ZWEKRING in the future. (#3890)

Added a job, ZWEGENER within the SZWESAMP dataset. When provided the location of Zowe’s runtime directory and

YAML files, this job will take the SZWESAMP sample JCL templates and resolve parameter values with those found in

the YAML configuration after validation, placing the results into the CUST.JCLLIB dataset. This can be used to

simplify setup of jobs for Zowe installation. (#3890)

Startup performance has been improved by moving extension schema validation of application framework plugins

from runtime to install time. This additionally helps identify schema errors at install time that would previously have

been shown only at runtime. (#3866)

Added zowe.network.server.tls.attls and zowe.network.client.tls.attls as Booleans for controlling global or

per-component way to tell Zowe servers that they should operate in a mode compatible with an AT-TLS setup.

(#3463)

Startup performance has been improved by reducing the quantity of processes involved during startup. (#115)

Reduction in resource consumption. Each Zowe component uses one less shell process at runtime. (#115)

Added a “files/defaults.yaml” file which contains default YAML properties to reduce the chance of errors found during

an upgrade of Zowe when re-using an older YAML configuration file. This file should not be edited but can be

reviewed to learn default behaviors, and overridden within user YAML files. (#3883)

Zowe Application Framework

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://github.com/zowe/zowe-install-packaging/pull/3890
https://github.com/zowe/zowe-install-packaging/pull/3890
https://github.com/zowe/zowe-install-packaging/pull/3866
https://github.com/zowe/zowe-install-packaging/pull/3463
https://github.com/zowe/zowe-install-packaging/pull/115
https://github.com/zowe/zowe-install-packaging/pull/115
https://github.com/zowe/zowe-install-packaging/pull/3883

Zlux App Server

The app-server can now use Zowe's standardized and simplified AT-TLS configuration simply by toggling

zowe.network.server.tls.attls: true or components.app-server.zowe.network.server.tls.attls: true . If you

wish to control client tls separately from server tls , you can also use zowe.network.client.tls.attls or

components.app-server.zowe.network.client.tls.attls . (#300) (#303)

Reduced startup time by removing a check for DNS behavior on node versions 14 and less. Node 14 has not been

supported since September 2023. (#304)

Reduced startup time by consolidating startup configuration script actions into one process. (#305)

Zlux Server Framework

Added function isClientAttls(zoweConfig) within libs/util.js. whenever a plugin makes a network request, it

should always use this to determine, if a normally HTTPS request should instead be made as HTTP due to AT-TLS

handling the TLS when enabled. (#544)

Zowe Common C

Fixed xplatform.loadFileUTF8 when trying to open nonexistent file. (#454)

Allocated SLH for http server with configurable value httpRequestHeapMaxBlocks in YAML . (#447)

ZSS

Added code to configure the SLH block size of the http server through httpRequestHeapMaxBlocks in the YAML.

(#701)

Zowe API Mediation Layer

Cloud gateway can now run with AT-TLS enabled in the environment. (#3564)

The request buffer size for WebSocket connections is now customizable. (#3609)

Zowe CLI

Zowe CLI (Core)

Added the ability to set JCL reader properties for --jobRecordLength , --jobRecordFormat , and --jobEncoding on

the zowe jobs submit local-file and zowe jobs submit stdin commands. (#2139)

Added the ability to download job spool files using other codepages with --encoding on the zowe jobs download

output , zowe jobs view spool-file-by-id , and zowe jobs view all-spool-content commands. This allows users

to download job spool files in other languages (i.e. IBM-1147 for French). (#1822)

Zowe CLI Imperative Framework

Added the ProfileInfo.profileManagerWillLoad function to verify that the credential manager can load. (#2111)

Added support for proxy servers using a proxy http agent. Supports the usage of the environment variables

HTTP_PROXY and HTTPS_PROXY (not case sensitive).

If any of these environment variables is set, and depending on how the Zowe session is configured for http or

https, the REST client instantiates an appropriate http agent.

If the z/OS system uses self-signed certificates then the proxy server must be configured to accept them.

https://github.com/zowe/zlux-app-server/pull/300
https://github.com/zowe/zlux-app-server/pull/303
https://github.com/zowe/zlux-app-server/pull/304
https://github.com/zowe/zlux-app-server/pull/305
https://github.com/zowe/zlux-server-framework/pull/544
https://github.com/zowe/zowe-common-c/pull/454
https://github.com/zowe/zowe-common-c/pull/447
https://github.com/zowe/zss/pull/701
https://github.com/zowe/api-layer/issues/3564
https://github.com/zowe/api-layer/issues/3609
https://github.com/zowe/zowe-cli/pull/2139
https://github.com/zowe/zowe-cli/pull/1822
https://github.com/zowe/zowe-cli/issues/2111

If the proxy server itself is configured with self-signed certificates then the user needs to either import these

certificates on their workstation, use rejectUnauthorized in their Zowe profile, or use the (not recommended)

nodejs variable NODE_TLS_REJECT_UNAUTHORIZED=0 .

Zowe also looks for the environment variable NO_PROXY . These work with a simple comma-separated list of

hostnames that need to match with the hostname of the Zowe profile.

Added the BufferBuilder utility class to provide a convenient way of downloading to a stream that can be read as a

buffer. (#2167)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Bug fixes

Zowe Version 2.17.0 contains the bug fixes that are described in the following topics.

Zowe installation and packaging

Removed references to nonexistant STC ZWESVSTC from z/OSMF workflows. This was replaced with ZWESLSTC within

Zowe v2.x and already existed within the workflows. (#3881)

Updated messages ZWEL0121E and ZWEL0122E to clarify how to resolve these errors if encountered. (#3884)

Fixed schema validation issue preventing startup when having null entries within the zowe.certificates section of

the YAML configuration. (#3905), (#3901)

Zowe Application Framework

Zlux Server Framework

Fixed function isServerAttls(zoweConfig) within libs/util.js , which was preventing using AT-TLS with app-

server . (#544)

Zowe Common C

Fixed an incorrect check in the recovery router code, which might lead to the state cell-pool being released

prematurely. (#446)

https://github.com/zowe/zowe-cli/pull/2167
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-install-packaging/pull/3881
https://github.com/zowe/zowe-install-packaging/pull/3884
https://github.com/zowe/zowe-install-packaging/pull/3905
https://github.com/zowe/zowe-install-packaging/pull/3901
https://github.com/zowe/zlux-server-framework/pull/544
https://github.com/zowe/zowe-common-c/issues/446

Zowe API Mediation Layer

Updated attls icsf condition. (#3635)

Added missing PAT documetantion. (#3618)

Added requestConnectionTimeout as a zowe.yaml property. (#3629)

Disabled auto conversion for tagged files on z/OS. (#3619)

The keystore is now not loaded when AT-TLS is set, thereby allowing ICSF keys. (#3612)

Health endpoints can now be optionally protected. (#3625)

The external URL in the ZUUL Gateway if AT-TLS is enabled has been corrected. (#3565)

The protocol in the start.sh is now specified. (#3593)

Fixed consistency between UI titles and messages. (#3502)

WebSocket client default timeout is now customizable. (#3613)

Zowe CLI

Zowe CLI (Core)

Updated braces dependency for technical currency. (#2157)

Fixed zowe daemon enable installing an invalid daemon binary on macOS. (#2126)

Zowe CLI Imperative Framework

Fixed error in REST client that when using stream could cause small data sets to download with incomplete contents.

(#744)

Updated micromatch dependency for technical currency. (#2167)

Updated braces dependency for technical currency. (#2157)

Modified error text in SyntaxValidator.invalidOptionError . (#2138)

Updated error text for invalid command options so that allowable values are displayed as strings instead of regular

expressions when possible. (#1863)

Fixed issue where the ConfigSecure.securePropsForProfile function did not list secure properties outside the

active config layer. (Zowe Explorer #2633)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

https://github.com/zowe/api-layer/issues/3635
https://github.com/zowe/api-layer/issues/3618
https://github.com/zowe/api-layer/issues/3629
https://github.com/zowe/api-layer/issues/3619
https://github.com/zowe/api-layer/issues/3612
https://github.com/zowe/api-layer/issues/3625
https://github.com/zowe/api-layer/issues/3565
https://github.com/zowe/api-layer/issues/3593
https://github.com/zowe/api-layer/issues/3502
https://github.com/zowe/api-layer/issues/3613
https://github.com/zowe/zowe-cli/pull/2157
https://github.com/zowe/zowe-cli/pull/2126
https://github.com/zowe/zowe-cli/issues/744
https://github.com/zowe/zowe-cli/pull/2167
https://github.com/zowe/zowe-cli/pull/2157
https://github.com/zowe/zowe-cli/issues/2138
https://github.com/zowe/zowe-cli/issues/1863
https://github.com/zowe/zowe-explorer-vscode/issues/2633
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not

disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and

how you upgrade Zowe. When a new release is published, Zowe publishes the vulnerabilities fixed in the previous

release. For more information about the Zowe security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.16.

CVE-2024-24549 (BDSA-2024-0623)

BDSA-2024-0622

BDSA-2021-2621

BDSA-2023-2855

CVE-2023-26159 (BDSA-2023-3572)

CVE-2024-28849 (BDSA-2024-0638)

CVE-2022-25883 (BDSA-2023-2207)

CVE-2024-22243 (BDSA-2024-0402)

CVE-2024-22257 (BDSA-2024-0647)

https://www.zowe.org/security.html

Version: v3.3.x LTS

Version 2.16.0 (May 2024)

Welcome to the Zowe Version 2.16.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues

addressed in this release.

Download v2.16.0 build: Want to try new features as soon as possible? You can download the v2.16.0 build from

Zowe.org.

New features and enhancements

Zowe Version 2.16.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe minor release, look for the release

demo recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe

Project Calendar for the latest schedule.

Zowe Install Packaging

Reduced resource consumption by removal of one shell process per server that was used when starting each server.

(#3812)

The command zwe support now includes CEE Runtime option output to better diagnose issues related to

environment customization. (#3799)

Zowe Application Framework

Zowe Common C

No YAML value converted to null. (#442)

Added zos.getZosVersion() and zos.getEsm() calls for configmgr QJS . (#429)

For correct base64 encoding scheme the buffer size is made to be divisible by 3. (#431)

Now the leap seconds are taken into account in xmem log messages' timestamps . (#432), (#433)

Using a temporary buffer pointer to avoid pointer corruption during file write. (#437).

Zowe API Mediation Layer

The log message ZWEAM001I is now issued when API Mediation Layer starts. (#3523)

SSL is now disabled when profile attls is active to simplify AT-TLS configuration. (#3521)

Valid OIDC tokens are now forwarded to the downstream service when the distributed ID is not mapped. (#3497)

Included OIDC JWKSet in the gateway JWKs. JWKs retrieved from the Identity Provider allow clients and services to

validate the OIDC access token locally. (#3499)

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://github.com/zowe/zowe-install-packaging/pull/3812
https://github.com/zowe/zowe-install-packaging/pull/3799
https://github.com/zowe/Zowe-Common-C/pull/442
https://github.com/zowe/Zowe-Common-C/pull/429
https://github.com/zowe/Zowe-Common-C/pull/431
https://github.com/zowe/zowe-common-c/issues/432
https://github.com/zowe/Zowe-Common-C/pull/433
https://github.com/zowe/Zowe-Common-C/pull/437
https://github.com/zowe/api-layer/issues/3523
https://github.com/zowe/api-layer/pull/3521
https://github.com/zowe/api-layer/issues/3497
https://github.com/zowe/api-layer/issues/3499

Moved OIDC access token from cookie to special header. If the user ID from the token cannot be mapped to a

mainframe account, the access token is now sent via the request header OIDC-token. (#3513)

Zowe CLI

Zowe CLI (Core)

Added a prompt for user ID/password on SSH commands when a token is stored in configuration. (#2081)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Bug fixes

Zowe Version 2.16.0 contains the bug fixes that are described in the following topics.

Zowe Install Packaging

zowe.network.validatePortFree and zowe.network.vipaIp variables were moved from zowe.network to

zowe.network.server in the schema but not in the code, causing inability to use them without the workaround of

specifying them as environment variables ZWE_NETWORK_VALIDATE_PORT_FREE and ZWE_NETWORK_VIPA_IP

instead. Now, the variables match the schema: zowe.network.server is used instead of zowe.network . (#3784)

configmgr operations now run with HEAPPOOLS64 set to OFF to avoid abends caused when this parameter is not

OFF . (#3799)

Zowe Application Framework

Zluz App Server

Removed message saying node not found prior to discovery of node. Now, you will only get an error message if node

is not found after lookup in NODE_HOME . (#301)

ZSS

AUX should take leap seconds into account in their log messages' timestamp . (#690), (#691)

https://github.com/zowe/api-layer/issues/3513
https://github.com/zowe/zowe-cli/pull/2081
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-install-packaging/pull/3784
https://github.com/zowe/zowe-install-packaging/pull/3799
https://github.com/zowe/zlux-app-server/pull/301
https://github.com/zowe/zss/pull/690
https://github.com/zowe/zss/issues/691

Zowe API Mediation Layer

Allow key exchange port configuration (#3453)

Changed the scheme of the service homepage when AT-TLS is enabled and fix a bug in the UI. (#3346)

Checked for NullPointerException when the JWK key cannot be retrieved. (#3503)

Fixed an issue when PAT passed as the authorization header with the auth scheme zoweJwt (#3505)

Fixed the header position in the API Catalog. (#3345)

Fixed the log message about unauthorized calls. (#3326)

Allow for more general exception handling to detect TCP Stack restart. (#3462)

Fixed configuration enabling JWT Token Refresh Functionality. (#3474)

Fixed the Zowe logo and trademark info in the API Catalog. (#3338)

Zowe CLI

Zowe CLI (Core)

Fixed the command zowe daemon enable installing an invalid daemon binary on macOS. (#2126)

Fixed error in the zos-files list all-members command that could occur when members contain control

characters in the name. (#2104)

Resolved technical currency by updating the tar dependency. (#2101)

Resolved technical currency by updating the markdown-it dependency. (#2106)

Fixed default base profile missing in configuration generated by the zowe config auto-init command. (#2084)

Updated dependencies of the daemon client for technical currency. (#2076)

DB2 Plug-in for Zowe CLI

Updated follow-redirects transitive dependency to resolve technical debt. (#147)

FTP Plug-in for Zowe CLI

Fixed error when listing spool for active jobs to. Now prints a warning that says that no spool files are available.

(#156)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

https://github.com/zowe/api-layer/issues/3453
https://github.com/zowe/api-layer/issues/3346
https://github.com/zowe/api-layer/issues/3503
https://github.com/zowe/api-layer/issues/3505
https://github.com/zowe/api-layer/issues/3345
https://github.com/zowe/api-layer/issues/3326
https://github.com/zowe/api-layer/issues/3462
https://github.com/zowe/api-layer/issues/3474
https://github.com/zowe/api-layer/issues/3338
https://github.com/zowe/zowe-cli/pull/2126
https://github.com/zowe/zowe-cli/pull/2104
https://github.com/zowe/zowe-cli/issues/2101
https://github.com/zowe/zowe-cli/pull/2106
https://github.com/zowe/zowe-cli/pull/2084
https://github.com/zowe/zowe-cli/pull/2076
https://github.com/zowe/zowe-cli-db2-plugin/pull/147
https://github.com/zowe/zowe-cli-ftp-plugin/issues/156
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not

disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and

how you upgrade Zowe. When a new release is published, Zowe publishes the vulnerabilities fixed in the previous

release. For more information about the Zowe security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.15.

BDSA-2023-1804

CVE-2023-46589 (BDSA-2023-3298)

BDSA-2021-2621

CVE-2023-45857 (BDSA-2023-2855)

BDSA-2023-3572

https://www.zowe.org/security.html

Version: v3.3.x LTS

Version 2.15.0 (March 2024)

Welcome to the Zowe Version 2.15.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues

addressed in this release.

Download v2.15.0 build: Want to try new features as soon as possible? You can download the v2.15.0 build from

Zowe.org.

New features and enhancements

Zowe Version 2.15.0 contains the enhancements that are described in the following topics:

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe minor release, look for the release

demo recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe

Project Calendar for the latest schedule.

Zowe API Mediation Layer

Timeout configuration values of the websocket webclient are now supported in the API Gateway. (#3315)

Zowe CLI

Zowe CLI (Core)

Added --binary and --encoding options to the zos-files edit command in Zowe CLI V2, allowing users to

download and edit binary files and data sets, or to edit files and data sets with a user-specified encoding. (#1725)

Hid the progress bar if the CI environment variable is set, or if the FORCE_COLOR environment variable is set to 0 , to

prevent the progress bar from displaying improperly in some cases. (#1845)

Zowe CLI Imperative Framework

Added multiple APIs to the ProfileInfo class to help manage schemas between client applications. (Zowe CLI

#2012)

Hid the progress bar if the CI environment variable is set, or if the FORCE_COLOR environment variable is set to 0 , to

prevent the progress bar from displaying improperly in some cases.. (Zowe CLI #1845)

IMS Plug-in for Zowe CLI

Deprecated the IMS Plug-in for Zowe CLI due to compatibility issues between the plug-in, the Zowe IMS Operations

API, and IBM IMS running on the mainframe.

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://github.com/zowe/api-layer/issues/3315
https://github.com/zowe/zowe-cli/issues/1725
https://github.com/zowe/zowe-cli/issues/1845
https://github.com/zowe/zowe-cli/issues/2012
https://github.com/zowe/zowe-cli/issues/2012
https://github.com/zowe/zowe-cli/issues/1845

Added notices in documentation announcing the deprecation of the IMS Plug-in for Zowe CLI. (#66)

z/OS FTP Plug-in for Zowe CLI

Updated the version of zos-node-accessor to 1.0.16. (#149)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Bug fixes

Zowe Version 2.15.0 contains the bug fixes that are described in the following topics:

Zowe installation and packaging

zwe diagnose has been updated to use configmgr (#3627)

The Zowe PSWI has been updated to address known installation and configuration issues in prior versions. (#3779)

Zowe Application Framework

Zowe Common C

Removed obsolete building script build_configmgr.sh . (#410) and (#423)

Zlux Server Framework

App-server is now able to merge HTTPS and HTTP addresses and can run in HTTP mode for AT-TLS setup. (#532)

Zowe API Mediation Layer

Displaying the base path in API Catalog has been fixed. (#3297)

Disabling EhCache using apiml.caching.enabled=false has been fixed. (#3280)

Zowe CLI

Zowe CLI (Core)

https://github.com/zowe/zowe-cli-ims-plugin/pull/66
https://github.com/zowe/zowe-cli-ftp-plugin/pull/149
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-install-packaging/issues/3627
https://github.com/zowe/zowe-install-packaging/issues/3779
https://github.com/zowe/zowe-common-c/issues/410
https://github.com/zowe/zowe-common-c/pull/423
https://github.com/zowe/zlux-server-framework/pull/532
https://github.com/zowe/api-layer/issues/3297
https://github.com/zowe/api-layer/issues/3280

Fixed race condition in the config convert-profiles command that may fail to delete secure values for old profiles.

Resolved technical currency by updating socks transitive dependency. (#2049)

Updated zos-files copy dsclp system tests to include large mock files. This improves system test coverage for edge

cases involving large data sets. (#2023)

Zowe CLI Imperative Framework

Fixed race condition in the config convert-profiles command that may fail to delete secure values for old profiles.

(Zowe CLI #2055)

Resolved issue in ProfileInfo where schema comparisons fail, specifically when comparing the cached schema

against a command-based schema during registration. (Zowe CLI #2045)

Resolved technical currency by updating socks transitive dependency. (Zowe CLI #2049)

Updated mustache and jsonschema dependencies for technical currency. (Zowe CLI #2024)

Fixed issue where secure property names could be returned for the wrong profile. (Zowe Explorer #2633)

Fixed issue when a property is not found in ProfileInfo.updateProperty({forceUpdate: true}) so extenders can

set or update a property in a team configuration even if it is not defined in the schema without their

application/extension failing. (Zowe Explorer #2493)

IMS Plug-in for Zowe CLI

Added missing shrinkwrap to specify versions of dependencies installed with the plug-in. (#65)

z/OS FTP Plug-in for Zowe CLI

Fixed an issue specific to Windows where uploading a data set with JCL content hangs, preventing further actions

through the zFTP VSCode Extension. (#2533)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Vulnerabilities fixed

https://github.com/zowe/zowe-cli/pull/2049
https://github.com/zowe/zowe-cli/pull/2023
https://github.com/zowe/zowe-cli/pull/2055
https://github.com/zowe/zowe-cli/pull/2045
https://github.com/zowe/zowe-cli/pull/2049
https://github.com/zowe/zowe-cli/pull/2024
https://github.com/zowe/zowe-explorer-vscode/issues/2633
https://github.com/zowe/zowe-explorer-vscode/issues/2493
https://github.com/zowe/zowe-cli-ims-plugin/pull/65
https://github.com/zowe/zowe-explorer-vscode/issues/2533
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not

disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and

how you upgrade Zowe. When a new release is published, Zowe publishes the vulnerabilities fixed in the previous

release. For more information about the Zowe security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.14.

BDSA-2023-2553

CVE-2023-35116 (BDSA-2023-1491)

CVE-2023-6378 (BDSA-2023-3307)

BDSA-2023-3341

BDSA-2018-4022

CVE-2023-34055 (BDSA-2023-3275)

BDSA-2023-2481

https://www.zowe.org/security.html

Version: v3.3.x LTS

Version 2.14.0 (January 2024)

Welcome to the Zowe Version 2.14.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues

addressed in this release.

Download v2.14.0 build: Want to try new features as soon as possible? You can download the v2.14.0 build from

Zowe.org.

New features and enhancements

Zowe Version 2.14.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe minor release, look for the release

demo recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe

Project Calendar for the latest schedule.

Zowe installation and packaging

The code has been revised to return a Zowe configuration along with the information of the High Availability (HA)

instance (if requested). After the enhancement, we get the correct information about if the component is enabled or

disabled and more configuration details with the information of the requested HA instance. (#3692)

Zowe Application Framework

Zlux App Server

Updated schema to specify multiple discovery servers instead of juse one.(#290)

Zowe API Mediation Layer

Introduced a native identity mapper as a replacement for ZSS identity mapping of x509 and OIDC id. The native

identity mapper removes a dependency on an external component and significantly improves performance by

switching from an HTTP request to an in-memory call for certificate mapping. (#3252)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Explorer API

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://github.com/zowe/zowe-install-packaging/pull/3692
https://github.com/zowe/zlux-app-server/pull/290
https://github.com/zowe/api-layer/issues/3252
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md

See the Zowe Explorer API changelog for updates included in this release.

Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Bug fixes

Zowe Version 2.14.0 contains the bug fixes that are described in the following topics.

Zowe installation and packaging

Environment variables were not using the values specified for each High Availability (HA) instance when

zowe.useConfigmgr was set to true . (#3692)

Zowe Application Framework

Zlux Server Framework

App-server could not load when multiple discovery servers were present and the App-server was unable to reach

the first one specified. Now, the App-server will iterate through the list of servers until an accessible one is reached.

(#522)

App-server would not correctly detect when it was running in a high-availability configuration environment. (#521)

A call to GET /plugins would trigger an authorization check regardless of if rbac was set ON or OFF .(#523)

Zowe API Mediation Layer

Fixed the truststore for websockets in the Spring Cloud Gateway (v2). (#3249)

Fixed the keyring path update to properly support keyring paths by Spring Cloud Gateway. (#3265)

Fixed a conflict of XML processing between EhCache and the onboarding process. (#3266)

Fixed using a keystore during creation of a request without a client certificate in Spring Cloud Gateway. (#3273)

Fixed closing WebSocket to prevent a memory leak. (#3271)

Fixed disabling EhCache. (#3276)

Fixed enabling CORS by default in AT-TLS mode used in the API Gateway. (#3270)

Zowe CLI

Zowe CLI (Core)

Corrected extra character being displayed at the end of lines when issuing command zowe files compare on

Windows. (#1992)

Corrected the online help description for zowe files compare uss . (#1754)

Fixed typo in command help for zowe zos-workflows create commands. (#2003)

Zowe CLI Imperative Framework

https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-install-packaging/pull/3692
https://github.com/zowe/zlux-server-framework/pull/522
https://github.com/zowe/zlux-server-framework/pull/521
https://github.com/zowe/zlux-server-framework/pull/523
https://github.com/zowe/api-layer/issues/3249
https://github.com/zowe/api-layer/issues/3265
https://github.com/zowe/api-layer/issues/3266
https://github.com/zowe/api-layer/issues/3273
https://github.com/zowe/api-layer/issues/3271
https://github.com/zowe/api-layer/issues/3276
https://github.com/zowe/api-layer/issues/3270
https://github.com/zowe/zowe-cli/issues/1992
https://github.com/zowe/zowe-cli/issues/1754
https://github.com/zowe/zowe-cli/pull/2003

Updated the error message shown for a command with a null or undefined option definition to include the

command handler file path to better identify the command causing the error. (#2002)

DB2 Plug-in for Zowe CLI

Updated follow-redirects transitive dependency to resolve technical debt. (#139)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not

disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and

how you upgrade Zowe. When a new release is published, Zowe publishes the vulnerabilities fixed in the previous

release. For more information about the Zowe security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.13.

BDSA-2023-2855

https://github.com/zowe/zowe-cli/issues/2002
https://github.com/zowe/zowe-cli-db2-plugin/pull/139
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://www.zowe.org/security.html

Version: v3.3.x LTS

Version 2.13.0 (December 2023)

Welcome to the Zowe Version 2.13.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues

addressed in this release.

Download v2.13.0 build: Want to try new features as soon as possible? You can download the v2.13.0 build from

Zowe.org.

New features and enhancements

Zowe Version 2.13.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe minor release, look for the release

demo recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe

Project Calendar for the latest schedule.

Zowe installation and packaging

Added utility getesm into bin/utils . It tells you which ESM your system is using. (#3662)

Zowe Application Framework

ZLUX App Server

Updated schema to allow cipher customization in IANA format. (#284)

Updated schema to allow curve customization. (#284)

Updated defaults to read TLS settings and IP settings from the zowe.network.server attribute of Zowe.yaml .

(#284)

ZLUX Server Framework

Added support for using zowe.network and components.app-server.zowe.network to set listener IP and TLS

properties including max and min version , ciphers , and ECDH curves . (#511)

Zowe Common C

Added support for using zowe.network and components.zss.zowe.network to set TLS version properties. (#411

ZSS

Added support for using zowe.network and components.zss.zowe.network to set listener IP and TLS version

properties. (#659)

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://github.com/zowe/zowe-install-packaging/issues/3662
https://github.com/zowe/zlux-app-server/pull/284
https://github.com/zowe/zlux-app-server/pull/284
https://github.com/zowe/zlux-app-server/pull/284
https://github.com/zowe/zlux-server-framework/pull/511
https://github.com/zowe/zowe-common-c/pull/411
https://github.com/zowe/zss/pull/659

Added support for using zowe.network and components.zss.zowe.network to set cipher suites.

Changed pattern matching for keyrings to allow more types of keyrings in the future. (#581)

Consolidated JWK warnings into improved ZWES1606W message . (#663)

Zowe API Mediation Layer

CORS is now enabled in default mode with AT-TLS profile. This configuration allows for AT-TLS to allow all origins by

default. (#3221)

Zowe authentication scheme has been added to the Cloud Gateway. (#3214)

The endpoint /zaas/zoweJwt has been added to provide Zowe JWT token for Spring Cloud Gateway. (#3199)

The endpoint /zaas/zosmf has been added to provide z/OSMF JWT/LTPA2 token for Spring Cloud Gateway. (#3153)

The endpoint /zaas/safIdt has been added to provide the SAF IDT token for Spring Cloud Gateway. (#3220)

z/OSMF scheme in Spring Cloud Gateway is now supported. (#3190)

Fixes have been applied for Azure JWKS reader. (#3200)

Additional Discovery Service registration by Spring Cloud Gateway is now supported. (#3181)

Gateway additional registrations HA (#3127)

Fetch JWK from OIDC providers. This feature implements a mechanism and new properties in OIDC to configure the

JWK keys location obtained according to documentation from the authorization server's metadata. (#3137)

The following two properties in the zowe.yaml file have been deprecated in the current release as OIDC configuration

has become more general:

components.gateway.apiml.security.oidc.clientId

components.gateway.apiml.security.oidc.clientSecret

Zowe CLI

Zowe CLI (Core)

Incorporated all source code from the zowe/imperative Github repository into the zowe/zowe-cli repository for a

more streamlined code architecture. This change should have no user impact. (#1821)

Deprecated getDataSet in the zosfiles command group utility functions. getDataSet will be removed in Zowe V3.

Use zosfiles SDK's ZosFilesUtils.getDataSetFromName command instead. (#1696)

z/OS FTP Plug-in for Zowe CLI

Added a step to check the validity of a USS file path for the upload and stdin-to-uss-file commands. (#145)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

https://github.com/zowe/zss/pull/581
https://github.com/zowe/zss/pull/663
https://github.com/zowe/api-layer/issues/3221
https://github.com/zowe/api-layer/issues/3214
https://github.com/zowe/api-layer/issues/3199
https://github.com/zowe/api-layer/issues/3153
https://github.com/zowe/api-layer/issues/3220
https://github.com/zowe/api-layer/issues/3190
https://github.com/zowe/api-layer/issues/3200
https://github.com/zowe/api-layer/issues/3181
https://github.com/zowe/api-layer/issues/3127
https://github.com/zowe/api-layer/issues/3137
https://github.com/zowe/zowe-cli/pull/1821
https://github.com/zowe/zowe-cli/issues/1696
https://github.com/zowe/zowe-cli-ftp-plugin/pull/145
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Bug fixes

Zowe Version 2.13.0 contains the bug fixes that are described in the following topics.

Zowe installation and packaging

Users were not able to use zOSMF workflows because the workflow files were not encoded in ASCII format. In this

release, the workflow files in the Zowe PAX are encoded in ASCII format. (#3591).

Zowe API Mediation Layer

ZSS

Corrected build environment file's use of IP address to github.com. (3660)

Fixed signing the outgoing call from Cloud Gateway where necessary. (#3203)

Fixed AT-TLS support by fixing the AT-TLS filter setup, adding a debug message for AT-TLS support mode initialization,

disabling routing to the Discovery service from the Gateway, and updating dsl in the security chain setup. (#3186)

Fixed read public key from keyring. (#3212)

Updated bean definitions for noop cache mode. (#3197)

Changed ehCache storage location. This fix uses the correct environment variable to avoid a resource lock when

reading the cache directory in HA setup. (#3184)

Fixed qualifier for the JWT clock. (#3180)

Set HTTP client timeouts. (#3174)

Made style updates for Catalog UI and Caching Fix for static file distribution in API Catalog. (#3168)

Gateway additional registration fixes. (#3172)

Set defaults in the cloud-gateway-service application.yml. (#3167)

Added Qualifier for clock to avoid conflict in extension. (#3166)

Enhanced error handling in the UI. (#3158)

Fixed context path from the application property in the mock catalog controller. (#3159)

Zowe CLI

Zowe CLI Imperative Framework

Added missing npm-shrinkwrap.json file to package.json . (#1978)

https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-install-packaging/issues/3591
https://github.com/zowe/zss/issues/660
https://github.com/zowe/api-layer/issues/3203
https://github.com/zowe/api-layer/issues/3186
https://github.com/zowe/api-layer/issues/3212
https://github.com/zowe/api-layer/issues/3197
https://github.com/zowe/api-layer/issues/3184
https://github.com/zowe/api-layer/pull/3180
https://github.com/zowe/api-layer/issues/3174
https://github.com/zowe/api-layer/issues/3168
https://github.com/zowe/api-layer/issues/3172
https://github.com/zowe/api-layer/issues/3167
https://github.com/zowe/api-layer/pull/3166
https://github.com/zowe/api-layer/issues/3158
https://github.com/zowe/api-layer/issues/3159
https://github.com/zowe/zowe-cli/pull/1978

Added missing z/OSMF connection options to the z/OS logs command group. (#1842)

Removed out-of-date Perf-Timing performance timing package to improve Zowe CLI maintainability. (#1830)

Fixed behavior where a specified directory name was being lowercased on non-PDS data sets when downloading all

data sets. (#1722)

Fixed bug where encoding is not passed to the Download USS Directory API. (#1825)

Zowe CLI Imperative Framework

Fixed AbstactRestClient command failing to return when streaming a large data set or USS file. (#1805, #1813,

#1824)

DB2 Plug-in for Zowe CLI

Added missing npm-shrinkwrap.json file to package.json . (#137)

Updated ibm_db dependency for technical currency. (#134)

z/OS FTP Plug-in for Zowe CLI

Added missing npm-shrinkwrap.json file to package.json . (#147)

Provided new utility function to check file names for valid characters. (#143)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not

disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and

how you upgrade Zowe. When a new release is published, Zowe publishes the vulnerabilities fixed in the previous

release. For more information about the Zowe security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.12.

CVE-2023-33201 (BDSA-2023-1625)

CVE-2022-25883

CVE-2023-34034 (BDSA-2023-1825)

https://github.com/zowe/zowe-cli/pull/1842
https://github.com/zowe/zowe-cli/pull/1830
https://github.com/zowe/zowe-cli/issues/1722
https://github.com/zowe/zowe-cli/issues/1825
https://github.com/zowe/zowe-cli/issues/1805
https://github.com/zowe/zowe-cli/issues/1813
https://github.com/zowe/zowe-cli/issues/1824
https://github.com/zowe/zowe-cli-db2-plugin/pull/137
https://github.com/zowe/zowe-cli-db2-plugin/pull/134/files
https://github.com/zowe/zowe-cli-ftp-plugin/pull/147
https://github.com/zowe/zowe-cli-ftp-plugin/issues/143
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://www.zowe.org/security.html

CVE-2023-38286 (BDSA-2023-1804)

Version: v3.3.x LTS

Version 2.12.0 (October 2023)

Welcome to the Zowe Version 2.12.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues

addressed in this release.

Download v2.12.0 build: Want to try new features as soon as possible? You can download the v2.12.0 build from

Zowe.org.

New features and enhancements

Zowe Version 2.12.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe minor release, look for the release

demo recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe

Project Calendar for the latest schedule.

Zowe Application Framework

Zlux App Server

New versions of the components can change the location of their plug-ins, as the app-server will now re-inspect the

plugin locations on each startup. (#280)

ZLUX Server Framework

Auth plug-ins that are not requested by any dataservice found at startup are no longer loaded by the server. (#504)

ZSS

ZSS now defaults to using TLS 1.3 , which requires a minimum of zOS Version 2.4 . (#646)

Added configuration parameter components.zss.agent.https.maxTls to control which level of TLS to use, allowing

downgrading to tls 1.2 if desired with value TLSv1.2 . (#654)

Added configuration parameter components.zss.agent.https.trace which can be set to true if desired to capture

a GSK trace, which will be put into the log directory. (#654)

Zowe API Mediation Layer

Added a Central API ML registry endpoint to the Cloud Gateway to access an aggregated view of all services from all

domains. (#3076)

It is now possible to forward the client certificate from Central Gateway to Domain Gateway in the request header.

(#3046)

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://github.com/zowe/zlux-app-server/pull/280
https://github.com/zowe/zlux-server-framework/pull/504
https://github.com/zowe/zss/pull/646
https://github.com/zowe/zss/pull/654
https://github.com/zowe/zss/pull/654
https://github.com/zowe/api-layer/issues/3076
https://github.com/zowe/api-layer/issues/3046

You can now register the Gateway to an additional Discovery service. Clients outside of the API ML cluster can now

know about other gateways to facilitate routing to clusters and domains. (#3068 and #3044)

You can now verify service SSO support from API ML. (#3054)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Bug fixes

Zowe Version 2.12.0 contains the bug fixes that are described in the following topics.

Zowe Installation and packaging

Fixed a rare bug where zwe could hang when running a unix program. (#3590)

Zowe Application Framework

ZLUX App Server

Removed error message components/app-server/bin/configure.sh 26: .: FSUM6807 expression syntax error

seen in startup of Zowe in Version 2.11.0 , caused by incorrect shell syntax. (#283)

Zowe API Mediation Layer

Fixed normalization of baseUrl in ZAAS client. (#3123)

Added the JVM heap configuration to zowe.yaml . (#3087)

Fixed an error preventing the Catalog UI to load when a service does not have a required parameter. (#3050)

Fixed a navigation issue in the Catalog when using the browser back button. (#3135)

Zowe CLI

Zowe CLI (Core)

Fixed bug where encoding is not passed to the Download USS Directory API. (#1825)

Bumped Imperative to Version 5.18.2 to fix issues with normalizing newlines on file uploads. (#1815)

https://github.com/zowe/api-layer/issues/3068
https://github.com/zowe/api-layer/issues/3044
https://github.com/zowe/api-layer/issues/3054
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-install-packaging/pull/3590
https://github.com/zowe/zlux-app-server/pull/283
https://github.com/zowe/api-layer/issues/3123
https://github.com/zowe/api-layer/issues/3087
https://github.com/zowe/api-layer/issues/3050
https://github.com/zowe/api-layer/issues/2998
https://github.com/zowe/zowe-cli/issues/1825
https://github.com/zowe/zowe-cli/issues/1815

Bumped Secrets SDK to Version 7.18.6 to use core-foundation-rs instead of the now-archived security-

framework crate; to include the edge-case bug fix for Linux; and to resolve build failures for FreeBSD users.

Zowe CLI Imperative Framework

Fixed normalization on stream chunk boundaries. (#1815)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog.

Zowe Explorer API

See the Zowe Explorer API changelog.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog.

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not

disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and

how you upgrade Zowe. When a new release is published, Zowe publishes the vulnerabilities fixed in the previous

release. For more information about the Zowe security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.11.

CVE-2023-33546 (BDSA-2023-1535)

CVE-2023-34462 (BDSA-2023-1556)

BDSA-2023-1804

CVE-2023-26136

https://github.com/zowe/zowe-cli/issues/1815
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://www.zowe.org/security.html

Version: v3.3.x LTS

Version 2.11.0 (September 2023)

Welcome to the Zowe Version 2.11.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues

addressed in this release.

Download v2.11.0 build: Want to try new features as soon as possible? You can download the v2.11.0 build from

Zowe.org.

New features and enhancements

Zowe Version 2.11.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe V2 minor release, look for the

release demo recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe

Project Calendar for the latest schedule.

Zowe Installation and Packaging

Added zowe.sysMessages as a property to the Zowe YAML configuration file. This property is a new array that allows

you to select messages that will be duplicated into the z/OS syslog, when found in Zowe’s job log. (#93)

Zowe Application Framework

The title and description of the app server tile within the API Catalog has been updated to be more accurate and

detailed. (#497)

Zowe Common C

Functions for printing messages to z/OS syslog via WTO have been added to zos.(#397)

Zowe API Mediation Layer

Swagger is now validated for registered services whereby all endpoints listed in the swagger can be called and give a

documented response. This feature also checks that the API is correctly versioned. (#3039)

Zowe CLI

Zowe CLI (Core)

Bumped Secrets SDK to 7.18.3 . It uses more reliable resolution logic for prebuilds folder; adds static CRT for

Windows builds. (#1791)

Updated daemon on MacOS to use universal binary which adds support for Apple Silicon. (#1766)

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://github.com/zowe/launcher/pull/93
https://github.com/zowe/zlux-server-framework/pull/497
https://github.com/zowe/zowe-common-c/pull/391
https://github.com/zowe/api-layer/issues/3039
https://github.com/zowe/zowe-cli/pull/1791
https://github.com/zowe/zowe-cli/pull/1766

Added support for mutliple zowe auth login apiml operations on a single zowe config secure call. (#1734)

Replaced use of node-keytar with the keyring module from @zowe/secrets-for-zowe-sdk . See Secrets SDK for

more information.

Updated the Imperative Framework to add support for unique cookie identifiers from API ML. (#1734)

Created zos-files edit commands to edit a data set or uss file locally. (PR #1672)

Zowe CLI Imperative Framework

Replaced use of node-keytar with the new keyring module from @zowe/secrets-for-zowe-sdk . See Secrets SDK

for more information. (Zowe CLI #1622)

Added inSchema property for ProfileInfo to indicate if argument is a known schema argument. (#899)

Handled unique cookie identifier in the form of dynamic token types. (#966)

Added a new utility method to ImperativeExpect to match regular expressions. (#966)

Added support for multiple login operations in a single config secure command execution. (#966)

Bug fixes

Zowe Version 2.11.0 contains the bug fixes that are described in the following topics.

Zowe Installation and Packaging

Fixed a bug where using recent versions of Java 8 to generate a Zowe PKCS12 keystore would result in an unusable

keystore to ZSS and other z/OS software that utilizes GSK / SystemSSL. The fix uses a compatibility option in Java to

revert its keystore generation behavior to prior behavior that worked for Zowe.(#3507)

Zowe Application Framework

Fixed regression that prevented use of multiple certificatate authorities when specified via the

zowe.certificate.pem.certificateAuthorities section of the Zowe YAML configuration file. (#266)

Zowe API Mediation Layer

The default value of nonStrictVerifySslCertificatesOfServices is now set to false. (#3029)

Fixed newlines and SSL error message in z/OSMF validation. (#3024)

Improvements have been made in z/OSMF logging in debug and error handling. (#2998)

Zowe CLI

Zowe CLI (Core)

Fixed an issue in the Daemon server which prevents users on Windows with uppercase letters in their username from

using the Daemon. (#1765)

Added a check to the zowe files create data-set command to prevent users from specifying an invalid block size

for sequential data sets with variable block format. (#1439)

Fixed a failure with the zowe auth logout apiml command that occurred if the user had an invalid or expired token.

A user with an invalid or expired token can use the zowe auth logout apiml command to remove the expired token

https://github.com/zowe/zowe-cli/pull/1734
https://github.com/zowe/zowe-cli/blob/master/packages/secrets/OVERVIEW.md
https://github.com/zowe/zowe-cli/pull/1734
https://github.com/zowe/zowe-cli/pull/1672
https://github.com/zowe/zowe-cli/blob/master/packages/secrets/OVERVIEW.md
https://github.com/zowe/zowe-cli/issues/1622
https://github.com/zowe/imperative/issues/899
https://github.com/zowe/imperative/pull/996
https://github.com/zowe/imperative/pull/996
https://github.com/zowe/imperative/pull/996
https://github.com/zowe/zowe-install-packaging/pull/3507
https://github.com/zowe/zlux-server-framework/pull/266
https://github.com/zowe/api-layer/issues/3029
https://github.com/zowe/api-layer/issues/3024
https://github.com/zowe/api-layer/issues/2998
https://github.com/zowe/zowe-cli/pull/1765
https://github.com/zowe/zowe-cli/issues/1439

from their secure credential storage. (#1734)

Removed the need to check for basepath when the user was logging out to prevent misleading basePath error

when credentials are invalid. (#1734)

Zowe CLI Imperative Framework

Fixed merging of profile properties in ProfileInfo.createSession . (#1008)

Fixed an issue to now allow a user to run the zowe auth logout apiml command multiple times without failing.

(#966)

Updated the auto-init command to prevent an unwanted second login request if the user already has a token.

(#966)

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not

disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and

how you upgrade Zowe. When a new release is published, Zowe publishes the vulnerabilities fixed in the previous

release. For more information about the Zowe security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.10.

BDSA-2023-1491

CVE-2023-33546

CVE-2022-1471 (BDSA-2022-3447)

BDSA-2023-0953

CVE-2023-20883 (BDSA-2023-1225)

CVE-2023-20873

https://github.com/zowe/zowe-cli/pull/1734
https://github.com/zowe/zowe-cli/pull/1734
https://github.com/zowe/imperative/issues/1008
https://github.com/zowe/imperative/pull/996
https://github.com/zowe/imperative/pull/996
https://www.zowe.org/security.html

Version: v3.3.x LTS

Version 2.10.0 (July 2023)

Welcome to the Zowe Version 2.10.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues

addressed in this release.

Download v2.10.0 build: Want to try new features as soon as possible? You can download the v2.10.0 build from

Zowe.org.

New features and enhancements

Zowe Version 2.10.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe V2 minor release, look for the

release demo recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe

Project Calendar for the latest schedule.

Zowe installation and packaging

Added a new zwe diagnose command to get help on zowe error messages. (#3455)

Zowe Application Framework

Zowe API Mediation Layer

The API Catalog now allows pre-defined style customizations. (#2965)

Zlux App Server

Migrated app-server configuration options into a defaults.yaml file which adheres to the schema of the Zowe

config. This allows users to see the default behaviors more clearly and can serve as an example by which users can

customize their Zowe config to override such defaults. (#247)

Zlux Server Framework

Avoid going directly to the Desktop when the gateway is active, by redirecting to the gateway equivalent homepage

when the homepage is accessed. The redirect behavior can be prevented if desired by using the query parameter ?

zwed-no-redirect=1 in your URL. (#449)

Zowe Common C

The configmgr can now use the zos module in YAML config templates. The zos module is only added when run on

zOS. For a list of available functions, see this link. (#384)

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://github.com/zowe/zowe-install-packaging/pull/3455
https://github.com/zowe/api-layer/pull/2965
https://github.com/zowe/zlux-app-server/pull/247
https://github.com/zowe/zlux-server-framework/pull/449
https://github.com/zowe/zowe-install-packaging/blob/v2.x/staging/build/zwe/types/%40qjstypes/zos.d.ts
https://github.com/zowe/zowe-common-c/pull/384

Zowe CLI

Zowe CLI Imperative Framework

Performed back-end preparation for the upcoming ZOWE_V3_ERR_FORMAT environment variable to enable the ability to

display errors in a more reader-friendly format. (Zowe CLI #935)

Bug fixes

Zowe Version 2.10.0 contains the bug fixes that are described in the following topics.

Zowe Application Framework

Zlux App Server

Fixed the URLs that app-server would print in the logs describing where it was accessible from. Messages were

incorrectly providing URLs indicating the app-server’s location from the discovery server instead of the gateway

server. (#247)

Zlux App Manager

Fixed a timing issue with the iframe-adapter for Firefox. (#532)

ZSS

Datasets with VOLSER set to an MVS symbol would cause dataset read, write, and metadata API calls to fail for those

datasets. It is fixed now.(#603)

Previously, the zss/datasetMetadata API could encounter an 0C9-09 error when accessing a dataset with 0 block

size. This is fixed. Now it does not have an error while accessing such datasets. (#606)

Zowe Common C

configmgr parsing of YAML to JSON has been updated to 1024 characters to allow for up to max unix path strings.

Earlier it was limited to 256 characters for strings. (#383)

Zowe API Mediation Layer

The client is provided with information about an expired password. (c4dc217, closes #2969)

Zowe CLI

Zowe CLI (Core)

Fixed the zowe files create data-set command failing when no additional options are specified. (#1736)

Added check for invalid block size when creating a sequential data set. (#1439)

Added the ability to list all data set members when some members have invalid names. (#1730)

Removed extra calls to list data sets matching patterns if authentication to z/OSMF fails. (#1731, Zowe Explorer

#2262)

Zowe CLI Imperative Framework

https://github.com/zowe/zowe-cli/issues/935
https://github.com/zowe/zlux-app-server/pull/247
https://github.com/zowe/zlux-app-manager/pull/532
https://github.com/zowe/zss/pull/603
https://github.com/zowe/zss/pull/606
https://github.com/zowe/zowe-common-c/pull/383
https://github.com/zowe/api-layer/commit/c4dc217
https://github.com/zowe/api-layer/issues/2969
https://github.com/zowe/zowe-cli/pull/1736
https://github.com/zowe/zowe-cli/issues/1439
https://github.com/zowe/zowe-cli/pull/1730
https://github.com/zowe/zowe-cli/pull/1731
https://github.com/zowe/zowe-explorer-vscode/issues/2262
https://github.com/zowe/zowe-explorer-vscode/issues/2262

Enabled NextVerFeatures.useV3ErrFormat() to form the right environment variable name even if

Imperative.init() has not been called. (Zowe CLI #935)

Handle logic for if a null command handler is provided. (#990)

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not

disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and

how you upgrade Zowe. When a new release is published, Zowe publishes the vulnerabilities fixed in the previous

release. For more information about the Zowe security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.9.

BDSA-2023-1491

CVE-2023-33546

CVE-2022-1471 (BDSA-2022-3447)

BDSA-2023-0953

CVE-2023-20883 (BDSA-2023-1225)

CVE-2023-20873

https://github.com/zowe/zowe-cli/issues/935
https://github.com/zowe/imperative/pull/990
https://www.zowe.org/security.html

Version: v3.3.x LTS

Version 2.9.0 (June 2023)

Welcome to the Zowe Version 2.9.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues

addressed in this release.

Download v2.9.0 build: Want to try new features as soon as possible? You can download the v2.9.0 build from

Zowe.org.

New features and enhancements

Zowe Version 2.9.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe V2 minor release, look for the

release demo recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe

Project Calendar for the latest schedule.

Zowe installation and packaging

Users who have not set the value of zowe.useConfigmgr will now have the behavior set to true . If you still wish to

use false, set zowe.useConfigmgr=false explicitly. (#3423)

Zowe Application Framework

Zlux Server Framework

zowe.certificates.pem is no longer needed when using keyrings. (#448)

Zowe Common C

configmgr's z/OS module now has a resolveSymbol function which takes a string starting with & which can be

used to resolve static and dynamic z/OS symbols. (#378)

Zowe API Mediation Layer

Personal access tokens are now accepted as Bearer authentication and in the apimlAuthenticationToken cookie.

(7c393a6, closes #2908)

A OAuth2 access token is now accepted as an authentication source. (3809622, closes #2835)

The maximum idle timeout for websocket connections (between the gateway and the registered service) is now

configurable. (020da87, closes #2914)

Imperative CLI Framework

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://github.com/zowe/zowe-install-packaging/pull/3423
https://github.com/zowe/zlux-server-framework/pull/448
https://github.com/zowe/zowe-common-c/pull/378
https://github.com/zowe/api-layer/commit/7c393a6
https://github.com/zowe/api-layer/issues/2908
https://github.com/zowe/api-layer/commit/3809622
https://github.com/zowe/api-layer/issues/2835
https://github.com/zowe/api-layer/commit/020da87
https://github.com/zowe/api-layer/issues/2914

Added the function IO.giveAccessOnlyToOwner to restrict access to only the currently running user ID for security.

(#987)

Enabled command arguments to change {$Prefix}_EDITOR . Updated IDiffOptions to include names for the files

that are to be compared. Updated IO.getDefaultTextEditor() for different OS versions. Updated return value types

for CliUtils.readPrompt . This prepares development of future commands in Zowe CLI. (#967)

Altered TextUtils behavior slightly to enable daemon color support without TTY. (#977)

Zowe CLI

Updated daemon to use tokio library instead of the unmaintained named_pipe library for technical currency.

(#1710)

Added the zowe files copy dsclp command to copy a data set from one LPAR to another, making data transfer

between LPARs easier. (#1098)

Re-enabled color in the daemon client to differentiate text displayed in the terminal. (#1379)

Zowe Explorer

Added option to save unique data set attributes as a template after allocation for future use. (#1425)

Added "Cancel Job" feature for job nodes in Jobs panel view. (#2251)

Enhanced ID generation for parent tree nodes to ensure uniqueness. (#2325)

Added support for custom credential manager extensions. (#2212)

Bug fixes

Zowe Version 2.9.0 contains the bug fixes that are described in the following topics.

Zowe Application Framework

ZLux App Server

Recognizers from multiple plug-ins could not be merged due to an error in the merge code execution at startup.

(#256)

Zowe API Mediation Layer

Client certificates in a request are ignored when x509 authentication is not enabled. (406f588, closes #2930)

The correct list of public keys are returned when z/OSMF is not available. (030a34f, closes #2936)

Imperative CLI Framework

Added logic to display a warning in cases where a null command handler is provided. (#990)

Fixed a logic error in the config list command that caused unwanted behavior when a positional argument and

the --locations option were both passed in the command. (#989)

Reduced file loading time by searching for command definitions with the fast-glob NPM module instead of the

glob module. (#986)

Removed validation of the deprecated pluginHealthCheck property because it was an unused feature. (#980)

https://github.com/zowe/imperative/pull/987
https://github.com/zowe/imperative/pull/967
https://github.com/zowe/imperative/pull/977
https://github.com/zowe/zowe-cli/pull/1710
https://github.com/zowe/zowe-cli/issues/1098
https://github.com/zowe/zowe-cli/issues/1379
https://github.com/zowe/zowe-explorer-vscode/issues/1425
https://github.com/zowe/zowe-explorer-vscode/issues/2251
https://github.com/zowe/zowe-explorer-vscode/pull/2325
https://github.com/zowe/zowe-explorer-vscode/issues/2212
https://github.com/zowe/zlux-app-server/pull/256
https://github.com/zowe/api-layer/commit/406f588
https://github.com/zowe/api-layer/issues/2930
https://github.com/zowe/api-layer/commit/030a34f
https://github.com/zowe/api-layer/issues/2936
https://github.com/zowe/imperative/pull/990
https://github.com/zowe/imperative/pull/989
https://github.com/zowe/imperative/pull/986
https://github.com/zowe/imperative/issues/980

Zowe CLI

Enabled ANSI in Windows-based terminals to better display progress bars when using daemon mode. (#1701)

Changed daemon to spawn as its own process to avoid unintentional termination of the daemon mode. (#1241,

#1277, #1309)

Fixed --secondary data set allocation option being specified as 1 unit on BLANK type data sets with the zowe files

create data-set command. (#1595)

Fixed --range option so it is not ignored on the zowe files view uss-file command. (#1717)

Fixed --binary option ignored by commands that upload and download USS directories when the .zosattributes

file is used. (#1717)

Fixed --include-hidden option ignored by the zowe files upload dir-to-uss command when it was used without

the --recursive option. (#1717)

Implemented several updates for technical currency. Updated Imperative to allow for special handling of chalk and

coloring in daemon client (#1721). Updated imperative to fix undesired behavior in the zowe config list

command in certain situations (#1721). Updated tar dependency (#1719).

IBM Db2 Database Plug-in for Zowe CLI

Updated ibm_db dependency for better support with Node.js 18. (#125)

Zowe Explorer

Fixed issue where the Disable Validation for Profile context menu option did not update to Enable Validation

for Profile after use. (#1897)

Removed "/" characters in path.join() calls. (#2172)

Fixed issue where user was not able to view job spool file with the same DD name in different steps because of

duplicated local file name. (#2279)

Fixed issue where user was not able to view job spool file from jobs with duplicated step names because of

duplicated local file name. (#2315)

Fixed issue with Windows path when uploading file to data set. (#2323)

Fixed an issue with mismatch etag error returned not triggering the diff editor and possible loss of data due to the

issue. (#2277)

Fixed issue where refreshing views collapsed the tree views in their respective panels. (#2215)

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not

disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and

how you upgrade Zowe. When a new release is published, Zowe publishes the vulnerabilities fixed in the previous

release. For more information about the Zowe security policy, see the Security page on the Zowe website.

https://github.com/zowe/zowe-cli/issues/1701
https://github.com/zowe/zowe-cli/issues/1241
https://github.com/zowe/zowe-cli/issues/1277
https://github.com/zowe/zowe-cli/issues/1309
https://github.com/zowe/zowe-cli/issues/1595
https://github.com/zowe/zowe-cli/pull/1717
https://github.com/zowe/zowe-cli/pull/1717
https://github.com/zowe/zowe-cli/pull/1717
https://github.com/zowe/zowe-cli/pull/1721
https://github.com/zowe/zowe-cli/pull/1721
https://github.com/zowe/zowe-cli/pull/1719
https://github.com/zowe/zowe-cli-db2-plugin/pull/125
https://github.com/zowe/zowe-explorer-vscode/issues/1897
https://github.com/zowe/zowe-explorer-vscode/issues/2172
https://github.com/zowe/zowe-explorer-vscode/issues/2279
https://github.com/zowe/zowe-explorer-vscode/issues/2315
https://github.com/zowe/zowe-explorer-vscode/issues/2323
https://github.com/zowe/zowe-explorer-vscode/issues/2277
https://github.com/zowe/zowe-explorer-vscode/issues/2215
https://www.zowe.org/security.html

Version: v3.3.x LTS

Version 2.8.0 (April 2023)

Welcome to the Zowe Version 2.8.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues

addressed in this release.

Download v2.8.0 build: Want to try new features as soon as possible? You can download the v2.8.0 build from

Zowe.org.

New features and enhancements

Zowe Version 2.8.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe V2 minor release, look for the

release demo recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe

Project Calendar for the latest schedule.

Zowe installation and packaging

Component installation can now print stdout of install scripts. (#3361)

Zowe Application Framework

ZSS

Added the API /datasetCopy to copy data sets.

/datasetMetadata now returns prime, secnd, and space fields for showing the primary and secondary extent sizes

and the unit type for them. (#582)

ZSS data set creation API now supports space values of BYTE , KB , and MB , instead of just CYL and TRK .

Zowe Common C

fileCopy now copies with the target having the permissions of the source, as opposed to the previous 700

permissions.

Zlux App Manager

Added new isSingleAppModeSimple() to iframe-adapter to differentiate between standalone mode and simple

standalone mode.

Replaced existing snapshot preview with lighter UI to significantly increase multi-app Desktop performance.

Zlux Server Framework

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://github.com/zowe/zowe-install-packaging/pull/3361
https://github.com/zowe/zss/pull/582

Added support for zowe.verifyCertificates=NONSTRICT . (#468)

Allow dataservices to pass CAs into the call() function. (#462)

Zlux Editor

Renamed openFile to openBuffer in editor-control.serverice.ts .

Zowe API Mediation Layer

A unique authentication cookie name has been added for multi-instance deployment (#2812) (6654271), closes

#2812.

Zowe CLI

Zowe CLI (Core)

Updated Imperative to add --prune option to zowe config secure command to delete unused properties.

(Imperative #547)

Added range option to zos-files view uss-file command.

Imperative CLI Framework

Added --prune option to zowe config secure command to delete unused properties. (#547)

Added credMgrOverride property to IProfOpts interface that can be used to override credential manager in the

ProfileInfo API. (Zowe CLI #1632)

Deprecated the requireKeytar property on the IProfOpts interface. Use the credMgrOverride property instead

and pass the callback that requires Keytar to ProfileCredentials.defaultCredMgrWithKeytar .

Added AbstractPluginLifeCycle to enable plug-ins to write their own postInstall and preUninstall functions,

which will be automatically called by the Zowe plug-in's install and uninstall commands.

Added pluginLifeCycle property to IImperativeConfig to enable a plug-in to specify the path name to its own

module which implements the AbstractPluginLifeCycle class.

Added a list of known credential manager overrides to Imperative. When a credential manager cannot be loaded, a

list of valid credential managers displays in an error message.

Added a CredentialManagerOverride class containing utility functions to replace the default CLI credential manager

or restore the default CLI credential manager. Plug-ins which implement a credential manager override can call these

utilities from their AbstractPluginLifeCycle functions.

Added documentation Overriding_the_default_credential_manager describing the techniques for overriding the

default CLI credential manager with a plug-in.

z/OS FTP Plug-in for Zowe CLI

Updated example of upload file-to-data-set command in the plug-in help.

Zowe Explorer

https://github.com/zowe/zlux-server-framework/pull/468
https://github.com/zowe/zlux-server-framework/pull/462
https://github.com/zowe/api-layer/commit/6654271
https://github.com/zowe/api-layer/issues/2812
https://github.com/zowe/imperative/issues/547
https://github.com/zowe/imperative/issues/547
https://github.com/zowe/zowe-cli/issues/1632
https://github.com/zowe/imperative/blob/master/doc/Plugin%20Architecture/Overriding_the_default_credential_manager.md

Added a new Zowe Explorer setting, zowe.logger , with a default setting of INFO to allow users to select the level of

logging they want to see. Logging levels range from TRACE (most verbose) to FATAL (only fatal).

Added an output channel, Zowe Explorer , for logging within VS Code's Output view so users can view Zowe Explorer

logs within VS Code. The log level is set by the new Zowe Explorer setting, zowe.logger .

Opening a dialog for Upload or Download of files will now open at the project level directory or the user's home

directory if no project is opened. (#2203)

Updated linter rules and addressed linter errors throughout the codebase. (#2184)

Added the new setting zowe.files.logsFolder.path that can be used to override the Zowe Explorer logs folder if

the default location is read-only. (#2186)

Bug fixes

Zowe Version 2.8.0 contains the bug fixes that are described in the following topics.

Zowe installation and packaging

Component environment variables will not be aliased to the configs shorthand when the component had a

configure script, but not a validate script, and zowe.useConfigmgr was enabled.

When zowe.useConfigmgr=true , component installation will not run the installation script from the component root

directory, but instead from the place zwe was executed, causing relative path differences versus

zowe.useConfigmgr=false .

Zowe Application Framework

ZSS

Changed conflicting message IDs in the ZIS dynamic linkage base plug-in.

Zowe Common C

fileCopy would not work when convert encoding was not requested. The destination file would be created, but

without the requested content.

respondWithUnixFileMetadata would not return UID or GID of a file if the id-to-name mapping failed, which is

possible when an account is removed.

Zlux App Manager

Fixed the iframe-adapter not properly recognizing standalone mode.

Fixed Iframes from unintentionally loading their sources multiple times during refocus and multi-app situations.

Zlux Editor

Fixed app2app openDataset function.

Renamed openFile to openBuffer in editor-control.serverice.ts .

https://github.com/zowe/zowe-explorer-vscode/issues/2203
https://github.com/zowe/zowe-explorer-vscode/issues/2184
https://github.com/zowe/zowe-explorer-vscode/issues/2186

Zowe API Mediation Layer

Mitigate storing password in memory for V2 (#2858) (b1596eb), closes #2858.

Mitigate storing password in memory for V1 (#2867) (3356b7c), closes #2867.

Read response from http client to prevent exahusting connection pool (#2854) (137be23), closes #2854.

Passticket generation and limit Eureka replication peers threads (#2845) (42b491e), closes #2845.

Refactor SSL configuration (#2832) (33f4882), closes #2832.

Zowe CLI

Zowe CLI (Core)

Fixed encoding option for zos-files view uss-file command. (#1495)

Added notification that encoding , binary , and record options conflict on the zos-files view data-set and zos-

files view uss-file commands.

Updated Imperative to fix the zowe auth li and zowe auth lo aliases. (Imperative #964)

Fixed URI encoding on zos-jobs commands. (#1596)

Updated Imperative to fix an error on Windows preventing plug-ins from installing if a local file or directory contains

a space. (Imperative #959)

Updated daemon executable to resolve technical debt.

Fixed URI encoding on zos-files commands. (#1073)

Solved daemon issue where Windows usernames were treated as case-sensitive when checking the daemon process

owner during Zowe commands.

Fixed the login and logout handlers, fixing the li and lo aliases.

Fixed broken plug-in install command for Windows when a file has a space in the name.

Fixed plug-in install error not displayed correctly. (#954)

Fixed environment file not applying to daemon client environment variables.

CICS Plug-in for Zowe CLI

Updated xml2js dependency to resolve security vulnerability.

MQ Plug-in for Zowe CLI

Fixed GitHub repository URL in package.json .

Zowe Explorer

Fixed issue with silent failures when uploading members into a data set. (#2167)

Added back fix that was accidentally removed between updates: Resolved an issue where VS Code did not provide

all context menu options for a profile node after a multi-select operation. (#2108)

Fixed issue where Paste option is shown for a multi-select operation in the Data Sets pane.

Fixed z/OSMF profiles issue with Data Sets and Jobs with special characters in the names. (#2175)

Fixed redundant text in error messages that included the same error details twice.

Fixed error message when no data sets found that match pattern.

Fixed secure credential storage not possible to enable in Theia.

https://github.com/zowe/api-layer/commit/b1596eb
https://github.com/zowe/api-layer/issues/2858
https://github.com/zowe/api-layer/commit/3356b7c
https://github.com/zowe/api-layer/issues/2867
https://github.com/zowe/api-layer/commit/137be23
https://github.com/zowe/api-layer/issues/2854
https://github.com/zowe/api-layer/commit/42b491e
https://github.com/zowe/api-layer/issues/2845
https://github.com/zowe/api-layer/commit/33f4882
https://github.com/zowe/api-layer/issues/2832
https://github.com/zowe/zowe-cli/issues/1495
https://github.com/zowe/imperative/issues/964
https://github.com/zowe/zowe-cli/issues/1596
https://github.com/zowe/imperative/issues/959
https://github.com/zowe/zowe-cli/issues/1073
https://github.com/zowe/imperative/issues/954
https://github.com/zowe/zowe-explorer-vscode/issues/2167
https://github.com/zowe/zowe-explorer-vscode/pull/2108
https://github.com/zowe/zowe-explorer-vscode/issues/2175

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not

disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and

how you upgrade Zowe. When a new release is published, Zowe publishes the vulnerabilities fixed in the previous

release. For more information about the Zowe security policy, see the Security page on the Zowe website.

https://www.zowe.org/security.html

Version: v3.3.x LTS

Version 2.7.0 (March 2023)

Welcome to the Zowe Version 2.7.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues

addressed in this release.

Download v2.7.0 build: Want to try new features as soon as possible? You can download the v2.7.0 build from

Zowe.org.

New features and enhancements

Zowe Version 2.7.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe V2 minor release, look for the

release demo recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe

Project Calendar for the latest schedule.

Zowe installation and packaging

The zowe authorized loadlib now contains a new ZIS plug-in as a member named ZWESISDL . This is the ZIS Dynamic

Plug-in, and exists for use by other plug-ins that wish to access zowe-common-c utilities at runtime without needing to

statically link them in the other plug-in. This plug-in must be referenced in the ZWESIP00 parmlib member before use.

The samplib for ZWESIP00 now references this ZWESISDL member and it is recommended that you update your

ZWESIP00 member using the samplib if you need to use this plug-in.

Zowe Application Framework

ZSS

A new ZIS plug-in, ZISDYNAMIC , is available within the LOADLIB as ZWESISDL. This plug-in allows for ZIS plug-ins to

access utility functions of the zowe-common-c libraries without needing to statically build them into the plug-in itself.

New REST endpoint that maps distributed username to RACF user ID.

Zlux Editor

Added the feature to copy the line content and copy URL link to open a file at a specific line.

Zowe API Mediation Layer

API ML now supports additional keyring types (#2799) (952bf2b), closes #2799.

OIDC info is now available via webfinger (#2757) (71e88ba), closes #2757.

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://github.com/zowe/api-layer/commit/952bf2b
https://github.com/zowe/api-layer/issues/2799
https://github.com/zowe/api-layer/commit/71e88ba
https://github.com/zowe/api-layer/issues/2757

The API Catalog can now be configured to hide service information (#2743) (2fbbc65), closes #2743.

Zowe CLI

Zowe CLI (Core)

Added support for a CLI-specific environment variable file for users who are not able to set system environment

variables. (#1484)

Added support for downloading job spool content in binary and record formats so you have more options in how to view

results. (#1607)

Zowe CLI Imperative Framework

Added the ~/.<cli_name>.env.json file to provide environment variables to the Imperative framework during

Imperative initialization. This allows sites without environment variable access to specify process specific environment

variables. (#943)

Added ProfileInfo.removeKnownProperty to delete profile properties to use as an alternative to the existing

ProfileInfo.updateKnownProperty to update a property with an undefined value. To do so, allowed type IProfArgValue

to be of type undefined to support removing properties more easily. (#917)

Zowe Explorer

Added Job search label to the Jobs tree to display the current search query. (#2062)

Added feature to copy datasets (partitioned datasets, sequential, members across partitioned datasets) with multi-select

capabilities. (#1150)

Bug fixes

Zowe Version 2.7.0 contains the bug fixes that are described in the following topics.

Zowe installation and packaging

When zwe components install detects that the given component is already installed, you will get a message to run zwe

components upgrade.

Launcher parameters such as shareAs could not be customized globally due to zowe.launcher schema being wrong

with some parameters nested inside another.

Launcher parameters within an individual component were not documented to exist despite the launcher allowing per-

component customization.

zwe detects and warns against nodejs lower than version 14 (due to end of life of v12).

Tracing and writing to log files would not work for component scripts when zowe.useConfigmgr=true.

Zowe Application Framework

Zlux App Server

https://github.com/zowe/api-layer/commit/2fbbc65
https://github.com/zowe/api-layer/issues/2743
https://github.com/zowe/zowe-cli/issues/1484
https://github.com/zowe/zowe-cli/pull/1607
https://github.com/zowe/imperative/pull/943
https://github.com/zowe/imperative/issues/917
https://github.com/zowe/zowe-explorer-vscode/pull/2064
https://github.com/zowe/zowe-explorer-vscode/issues/1550

Explicitly prefer ipv4 dns results to be compatible with node 18 since it switched to prefer ipv6 without configuration.

This behavior can be cusomized via components.app-server.dns.lookupOrder='ipv4' or ipv6 . It defaults to ipv4 .

ZSS

Fixed /unixfile/metadata not working when URL encoded spaces were present in file names.

Zlux Editor

Added a few rules for JCL syntax highlighter.

Set USS path to correct directory, when opening the directory or file in new browser tab respectively.

Getting 400 BAD REQUEST in the browser when opening the file or data set in a new browser tab.

When opening New File , editor keeps on using the earlier opened file and its model.

Zowe API Mediation Layer

Updated keyring config (#2828) (c1e1cc9), closes #2828.

Ran gateway instances with own cache storage (#2807) (4d08707), closes #2807.

Fixed stack overflow during cleaning websocket client (#2815) (376f818), closes #2815.

Fixed support of different type of keyrings in proper format (just two slashes) (#2687) (dfb0168), closes #2687.

Addressed WebSocket connection failure (#2805) (232bade), closes #2805.

Enabled Periodical clean of the connection pool (#2797) (7058290), closes #2797.

Recognized profile settings (#2789) (adf5ea5), closes #2789.

Eureka peer connections loop (#2775) (85a27ea), closes #2775.

Reduced the number of WARN logs (#2780) (df0243f), closes #2780.

Fixed bug in Wizard static onboarding method (#2773) (c8d7c66), closes #2773.

Improved handling of SSL errors (#2744) (bb9792b), closes #2744.

Zowe CLI

Zowe CLI (Core)

Enabled option to download output from a submitted job with the -d flag. The -e flag now enables changes to file

extension as originally intended. (#729)

Changed default value for modify-jobs option in the Zowe jobs command group to 2.0 . This change results in calls to

z/OSMF becoming synchronous, and a successful response from the modify , cancel , and delete commands indicates

the requested action was completed successfully. (#1459)

https://github.com/zowe/api-layer/commit/c1e1cc9
https://github.com/zowe/api-layer/issues/2828
https://github.com/zowe/api-layer/commit/4d08707
https://github.com/zowe/api-layer/issues/2807
https://github.com/zowe/api-layer/commit/376f818
https://github.com/zowe/api-layer/issues/2815
https://github.com/zowe/api-layer/commit/dfb0168
https://github.com/zowe/api-layer/issues/2687
https://github.com/zowe/api-layer/commit/232bade
https://github.com/zowe/api-layer/issues/2805
https://github.com/zowe/api-layer/commit/7058290
https://github.com/zowe/api-layer/issues/2797
https://github.com/zowe/api-layer/commit/adf5ea5
https://github.com/zowe/api-layer/issues/2789
https://github.com/zowe/api-layer/commit/85a27ea
https://github.com/zowe/api-layer/issues/2775
https://github.com/zowe/api-layer/commit/df0243f
https://github.com/zowe/api-layer/issues/2780
https://github.com/zowe/api-layer/commit/c8d7c66
https://github.com/zowe/api-layer/issues/2773
https://github.com/zowe/api-layer/commit/bb9792b
https://github.com/zowe/api-layer/issues/2744
https://github.com/zowe/zowe-cli/issues/729
https://github.com/zowe/zowe-cli/issues/1459

Fix in employing --context-lines option for all diff/compare commands. Fixed broken --seqnum option implementation.

(#1529)

Updated Imperative to include bug fixes in version 5.8.2.

Zowe CLI Imperative Framework

Fixed --help-examples option failing on command groups. (Zowe CLI #1617)

Fixed npm not found on zowe plugins install when using daemon mode in Windows. (Zowe CLI #1615)

Fixed web help not showing top-level options like --version for the zowe command. (#927)

Removed --help-examples option from CLI help for commands as it only applies to groups. (#928)

Zowe Explorer

Fixed issue where job search queries were not working properly when favorited. (#2122)

Fixed issues where document changes may fail to upload if the environment has a slow filesystem or mainframe

connection, or when VS Code exits during an upload operation. (#1948)

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not

disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and

how you upgrade Zowe. When a new release is published, Zowe publishes the vulnerabilities fixed in the previous

release. For more information about the Zowe security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.6.

CVE-2022-40159

CVE-2022-42252 (BDSA-2022-3105)

CVE-2022-31159

CVE-2022-24999 (BDSA-2022-3375)

CVE-2022-31690 (BDSA-2022-3109)

CVE-2022-31692 (BDSA-2022-3106)

BDSA-2022-2580

BDSA-2022-2582

BDSA-2022-2583

CVE-2022-40151 (BDSA-2022-2580)

CVE-2022-40152 (BDSA-2022-2582)

CVE-2022-3517

CVE-2022-37603 (BDSA-2022-3812)

CVE-2022-37601 (BDSA-2022-3814)

CVE-2022-37599 (BDSA-2022-3811)

https://github.com/zowe/zowe-cli/issues/1529
https://github.com/zowe/zowe-cli/issues/1617
https://github.com/zowe/zowe-cli/issues/1615
https://github.com/zowe/imperative/issues/927
https://github.com/zowe/imperative/issues/928
https://github.com/zowe/zowe-explorer-vscode/issues/2122
https://github.com/zowe/zowe-explorer-vscode/issues/1948
https://www.zowe.org/security.html

Version: v3.3.x LTS

Version 2.6.1 (February 2023)

Welcome to the Zowe Version 2.6.1 release!

This release contains a minor packaging fix, no user action is required.

See Zowe's Version 2.6.0 release notes for the latest features, enhancements, and bug fixes.

Download v2.6.1 build: Want to try new features as soon as possible? You can download the V2.6.1 build from

Zowe.org.

https://docs.zowe.org/stable/whats-new/release-notes/v2_6_1/v2_6_0
https://www.zowe.org/download.html

Version: v3.3.x LTS

Version 2.6.0 (January 2023)

Welcome to the Zowe Version 2.6.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues

addressed in this release.

Download v2.6.0 build: Want to try new features as soon as possible? You can download the v2.6.0 build from

Zowe.org.

New features and enhancements

Zowe Version 2.6.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe V2 minor release, look for the

release demo recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe

Project Calendar for the latest schedule.

Zowe API Mediation Layer

Spring Cloud Gateway implementation - Support of remapping to Passticket (#2046)

Spring Cloud Gateway implementation - Support of remapping to client certificate (#2044)

Zowe Explorer

Added Job search prefix validator. (#1971)

Added file association for zowe.config.json and zowe.config.user.json to automatically detect them as JSON with

Comments. (#1997)

Added the ability to list all datasets, even those with Imperative Errors. (#235, #2036)

Added favorite job query to jobs view. (#1947)

Added confirmation message for "Submit Job" feature as an option in extension settings (set to "All jobs" by default).

(#998)

Updated error dialog when Zowe config is invalid, with option to "Show Config" within VS Code for diagnostics.

(#1986)

Bug fixes

Zowe Version 2.6.0 contains the bug fixes that are described in the following topics.

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://github.com/zowe/api-layer/issues/2046
https://github.com/zowe/api-layer/issues/2044
https://github.com/zowe/zowe-explorer-vscode/issues/1971
https://github.com/zowe/zowe-explorer-vscode/issues/1997
https://github.com/zowe/zowe-explorer-vscode/issues/235
https://github.com/zowe/zowe-explorer-vscode/issues/2036
https://github.com/zowe/zowe-explorer-vscode/issues/1947
https://github.com/zowe/zowe-explorer-vscode/issues/998
https://github.com/zowe/zowe-explorer-vscode/issues/1986

Zowe installation and packaging

When a component configure script failed during startup, no warning would be printed. Starting in 2.6, a warning will

be printed and there's also an option to prevent Zowe from continuing startup when this failure is seen, by setting

zowe.launchScript.onComponentConfigureFail to "exit".

Tar archived components would not be installed when zowe.useConfigmgr=true was set.

Various bugfixes made for reading and writing of parmlib configuration files when using the PARMLIB() syntax with

zwe commands or the ZWESLSTC job.

Revised help documentation syntax for substitution values to fix auto-documentation, by changing angle brackets to

square brackets.

Zowe Application Framework

zLUX Editor

Getting 400 BAD REQUEST in browser when opening the file or dataset in a new browser tab.

Zowe API Mediation Layer

Improve the information for failure of extension loading (#2721)

Correctly process metadata for the Plain Java Enabler running on z/OS (#1927)

Zowe CLI

Zowe CLI (Core)

Removed all line break encodings from strings for zos-files compare local-file-data-set (#1528)

Zowe CLI Imperative Framework

Exported AppSettings for CLI and other applications to use. (#840)

Exported the IAuthHandlerApi from imperative package. (#839)

Fixed ProfileInfo API failing to load schema for v1 profile when schema exists but no profiles of that type exist.

(#645)

Updated return type of ProfileInfo.getDefaultProfile method to indicate that it returns null when no profile exists for

the specified type.

Fixed a logic error where chained command handlers would cause plugin validation to fail. (#320)

Fixed IO.writeFileAsync method throwing uncatchable errors. (#896)

z/OS FTP Plug-in for Zowe CLI

Updated the list jobs command to throw an error when an invalid prefix or owner is specified. (Zowe Explorer

#1971)

https://github.com/zowe/api-layer/pull/2721
https://github.com/zowe/api-layer/issues/1927
https://github.com/zowe/zowe-cli/issues/1528
https://github.com/zowe/imperative/issues/840
https://github.com/zowe/imperative/issues/839
https://github.com/zowe/imperative/issues/645
https://github.com/zowe/imperative/issues/320
https://github.com/zowe/imperative/issues/896
https://github.com/zowe/zowe-explorer-vscode/issues/1971
https://github.com/zowe/zowe-explorer-vscode/issues/1971

Zowe Explorer

Updated UI/UX method calls to use standalone Gui module for better usability and maintainability. (#1967)

Fixed issue where responseTimeout (in Zowe config) was not provided for supported API calls. (#1907)

Fixed lack of legibility when "Show Attributes" feature displayed unsuitable colors with light Visual Studio Code

themes. (#2048)

Fixed settings not persisting in Theia versions >=1.29.0. (#2065)

Fixed issue with a success message being returned along with error for Job deletion. (#2075)

Removed extra files from the VSIX bundle to reduce download size by 64%. (#2042)

Surfaced any errors from a data set Recall/Migrate operation. (#2032)

Re-implemented regular dataset API call if the dataSetsMatching does not exist. (#2084)

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not

disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and

how you upgrade Zowe. When a new release is published, Zowe publishes the vulnerabilities fixed in the previous

release. For more information about the Zowe security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.5:

BDSA-2018-5235

CVE-2018-10237 (BDSA-2018-1358)

CVE-2020-8908 (BDSA-2020-3736)

CVE-2022-42003 (BDSA-2022-2765)

CVE-2022-42004 (BDSA-2022-2768)

CVE-2022-38752 (BDSA-2022-2590)

BDSA-2022-2584

BDSA-2022-2585

BDSA-2022-2586

https://github.com/zowe/zowe-explorer-vscode/issues/1967
https://github.com/zowe/zowe-explorer-vscode/issues/1907
https://github.com/zowe/zowe-explorer-vscode/issues/2048
https://github.com/zowe/zowe-explorer-vscode/pull/2065
https://github.com/zowe/zowe-explorer-vscode/issues/2075
https://github.com/zowe/zowe-explorer-vscode/pull/2042
https://github.com/zowe/zowe-explorer-vscode/issues/2032
https://github.com/zowe/zowe-explorer-vscode/issues/2084
https://www.zowe.org/security.html

Version: v3.3.x LTS

Version 2.5.0 (December 2022)

Welcome to the Zowe Version 2.5.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues

addressed in this release.

Download v2.5.0 build: Want to try new features as soon as possible? You can download the v2.5.0 build from

Zowe.org.

New features and enhancements

Zowe Version 2.5.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe V2 minor release, look for the

release demo recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe

Project Calendar for the latest schedule.

Zowe installation and packaging

zwe now has a zwe config get and zwe config validate command. The get command can be used to get a part

of the zowe yaml configuration without needing to read the yaml yourself. zwe config get only returns values upon

proving the configuration is valid first. zwe config validate can be used to perform validation of the zowe

configuration files without running any additional actions. This is useful for verifying that a change is valid before

starting zowe, for example.

A new component management command zwe components upgrade allows you to install an already-installed

component.

A new component management command zwe components uninstall allows you to remove an installed extension.

A new component management command zwe components search allows you to query for extensions.

zwe components subcommands can now search for, install, and upgrade extensions retrieved via an on-prem or

remote package registry. At this time, npm is supported as the registry and package manager technology that zwe

can use to download content. This is an optional feature and is not enabled by default: it must be configured. View

the schema for zowe.yaml to learn more about the "package registry" and "registry handler" technologies to

configure for this feature. More information and a recorded demo is available at https://github.com/zowe/zowe-

install-packaging/pull/2980

Zowe Application Framework

ZSS

Support ZIS runtime version check

Update the dynamic linkage stub vector to include new functions

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://github.com/zowe/zowe-install-packaging/pull/2980
https://github.com/zowe/zowe-install-packaging/pull/2980

Add ZIS plugin development documentation and samples

zLUX Editor

Added the feature to copy the line content and copy URL link to open a file at a specific line

Zowe Common C

Added embeddedjs command xplatform.appendFileUTF8 for appending to files rather than writing whole files.

Zowe API Mediation Layer

Zowe CLI

Zowe CLI (Core)

Added new functions to support the changing of a job class and the hold status of a job. Can now call zowe jobs

modify job [jobid] with options --jobclass , --hold , and --release . (#1156)

Updated Imperative to incorporate new zowe config report-env command from version 5.7.0 .

To view a subset of data set content instead of the entire file, added new command zowe files view ds ... --

range SSS-EEE | SSS,NNN . (#1539)

To define the unit of space allocation when creating a data set, added ZosFilesCreateOptions.alcunit option to

PDS definition. (#1203)

Zowe CLI Imperative Framework

Exported AppSettings for CLI and other applications to use (#840)

To view a diagnostic report of the CLI working environment, added the zowe config report-env command.

To show information for a plug-in's first steps, added the show-first-steps command. (#1325)

Zowe Explorer

Added ability to filter jobs by status. (#1925)

Added option to view PDS member attributes, and updated formatting for attributes webview. (#1577)

Streamlined attribute viewing options into one feature - "Show Attributes".

Bug fixes

Zowe Version 2.5.0 contains the bug fixes that are described in the following topics.

Zowe installation and packaging

Use of DVIPA may cause Zowe to believe a port is not free when it is. Starting in this release, Zowe can narrow its

port validation to a specific IP via zowe.network.vipaIp=some.ip or bypass the verification via

zowe.network.validatePortFree=false . Setting this to false will still cause the servers to be unable to connect if

the port is not free, but this can be a more accurate and portable setting.

component configure stages will now have their STDOUT printed when running at the INFO level of zwe verbosity.

zwe was not guaranteeing that the workspace folder had 770 permission when zowe.useConfigmgr=true was set

https://github.com/zowe/zowe-cli/issues/1156
https://github.com/zowe/zowe-cli/issues/1539
https://github.com/zowe/zowe-cli/issues/1203
https://github.com/zowe/imperative/issues/840
https://github.com/zowe/zowe-cli/issues/1325
https://github.com/zowe/zowe-explorer-vscode/issues/1925
https://github.com/zowe/zowe-explorer-vscode/issues/1577

Zowe Application Framework

ZSS

In 2.3 and 2.4, safkeyring:// syntax stopped working, only allowing safkeyring://// . Now, support for both is

restored.

zLUX Editor

Added a few rules for JCL syntax highlighter

Set USS path to correct directory, when opening the directory or file in new browser tab respectively

Zowe Common C

Fixed a bug that the configmgr binary would always return rc=0. Now, it has various return codes for the various

internal errors or config invalid responses.

Zowe API Mediation Layer

Zowe CLI

Zowe CLI (Core)

Documented in the CLI web help that the --token-type and --token-value options do not apply to SSH commands.

Updated Imperative to include bug fixes in version 5.7.2 .

Updated the zowe zos-files create data-set command to work without the --like flag. (#1252)

Zowe CLI Imperative Framework

Added validation for null/undefined command definitions. (#868)

Updated plugins --login command option to behave as expected when running in an NPM 9 environment.

Cleaned up uses of execSync in Imperative where it makes sense to do so.

Zowe Explorer

Fixed missing localization for certain VS Code error/info/warning messages. (#1722)

Fixed "Allocate Like" error that prevented proper execution. (#1973)

Fixed de-sync issue between Data Set and Favorites panels when adding or deleting datasets/members that were

favorited. (#1488)

Added logging in places where errors were being caught and ignored.

Fixed issue where parent in Jobs list closes after single/multiple job deletion. (#1676)

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not

disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and

how you upgrade Zowe. When a new release is published, Zowe publishes the vulnerabilities fixed in the previous

release. For more information about the Zowe security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.4.

https://github.com/zowe/zowe-cli/issues/1252
https://github.com/zowe/imperative/issues/868
https://github.com/zowe/zowe-explorer-vscode/issues/1722
https://github.com/zowe/zowe-explorer-vscode/issues/1973
https://github.com/zowe/zowe-explorer-vscode/issues/1488
https://github.com/zowe/zowe-explorer-vscode/issues/1676
https://www.zowe.org/security.html

CVE-2022-31159

BDSA-2022-2590

BDSA-2022-2580

BDSA-2022-2582

Version: v3.3.x LTS

Version 2.4.0 (October 2022)

Welcome to the Zowe Version 2.4.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues

addressed in this release.

Download v2.4.0 build: Want to try new features as soon as possible? You can download the v2.4.0 build from

Zowe.org.

New features and enhancements

Zowe Version 2.4.0 contains the enhancements that are described in the following topics.

Zowe installation and packaging

Updated ZWEWRF03 workflow to be up to date with the installed software.

Zowe Application Framework

ZSS

ZSS /datasetContents now has a PUT API for creating datasets.

ZIS dynamic linkage support

Zowe API Mediation Layer

Validate OIDC token (#2604) (cdd4a43)

Introduced service routing based on header to enables the Cloud Gateway to route to a southbound service by

information in the request header. (#2600) (6fafb60)

Introduced a new cloud gateway service that provides routing functionality for multi-sysplex environments. (#2576)

(7c618c0)

Zowe CLI

Zowe CLI (Core)

Added the zowe files download uss-dir command to download the contents of a USS directory. (#1038)

Updated the zowe files upload file-to-uss and zowe files upload dir-to-uss commands to improve how they

handle file encoding. (#1479)

Both commands now "chtag" files after uploading them to indicate their remote encoding. This matches the

already existing behavior of the zowe files download uss-file command which checks file tags before

downloading.

The behavior of .zosattributes files which can specify local and remote encoding has been changed. Files are

now converted to remote encoding, not just tagged. If no encoding is specified, the default transfer mode is text

instead of binary to be consistent with z/OSMF default behavior.

https://www.zowe.org/download.html
https://github.com/zowe/api-layer/issues/2604
https://github.com/zowe/api-layer/commit/cdd4a43
https://github.com/zowe/api-layer/issues/2600
https://github.com/zowe/api-layer/commit/6fafb60
https://github.com/zowe/api-layer/issues/2576
https://github.com/zowe/api-layer/commit/7c618c0
https://github.com/zowe/zowe-cli/issues/1038
https://github.com/zowe/zowe-cli/issues/1479

z/OS FTP Plug-in for Zowe CLI

Added a new profile property to support encoding for data sets. (#120)

Added the ability to filter jobs based on status (e.g., Active, Held, Output, Input). (#119)

Zowe Explorer

Added check for existing team configuration file in location during create, prompting user to continue with the create

action. (#1923)

Added a solution to allow Zowe Explorer extensions with a dependency on Zowe Explorer to work as web extension

without Zowe Explorer functionality in vscode.dev . (#1953)

Zowe Explorer FTP Extension

Added support for profile file encoding used for upload and download of MVS files. (#1942)

Bug fixes

Zowe Version 2.4.0 contains the bug fixes that are described in the following topics.

Zowe Application Framework

Zowe App Server

Plugin register/deregister would not consider app2app actions and recgonizers. Now, they are added on registration

and removed on deregistration.

Zowe API Mediation Layer

Do not require clientAuth extension (#2595) (e9e8092)

snakeyml update, scheme validation fix (#2577) (ae48669)

Add build info to the manifest.yaml (#2573) (93298dd)

Fix bug in the swagger (#2571) (36997c6)

Zowe CLI

Zowe CLI (Core)

Updated example for the zowe profiles create zosmf-profile command. (#1152)

Restored info message on daemon startup. (#1506)

Updated ssh2 dependency to fix "Received unexpected packet type" error on SSH commands. (#1516)

Updated the minimatch and keytar dependencies for technical currency.

Zowe CLI Imperative Framework

Updated the Config.search API to skip loading project config layers when project directory is false . (#883)

Updated glob , js-yaml , diff2html , and npm-package-arg dependencies for technical currency.

Zowe Explorer

https://github.com/zowe/zowe-cli-ftp-plugin/pull/120
https://github.com/zowe/zowe-cli-ftp-plugin/pull/119
https://github.com/zowe/zowe-explorer-vscode/issues/1923
https://github.com/zowe/zowe-explorer-vscode/pull/1953
https://github.com/zowe/zowe-explorer-vscode/pull/1942
https://github.com/zowe/api-layer/issues/2595
https://github.com/zowe/api-layer/commit/e9e8092
https://github.com/zowe/api-layer/issues/2577
https://github.com/zowe/api-layer/commit/ae48669
https://github.com/zowe/api-layer/issues/2573
https://github.com/zowe/api-layer/commit/93298dd
https://github.com/zowe/api-layer/issues/2571
https://github.com/zowe/api-layer/commit/36997c6
https://github.com/zowe/zowe-cli/issues/1152
https://github.com/zowe/zowe-cli/issues/1506
https://github.com/zowe/zowe-cli/issues/1516
https://github.com/zowe/imperative/issues/883

Fixed failed job status update for refresh job and spool file pull from mainframe. (#1936)

Fixed project profiles loaded when no workspace folder is open. (#1802)

Fixed serial saving of data sets and files to avoid conflict error. (#1868)

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not

disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and

how you upgrade Zowe. When a new release is published, Zowe publishes the vulnerabilities fixed in the previous

release. For more information about the Zowe security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.3.

CVE-2022-34305 (BDSA-2022-1742)

BDSA-2022-1887

BDSA-2022-1891

CVE-2016-1000027

https://github.com/zowe/zowe-explorer-vscode/pull/1936
https://github.com/zowe/zowe-explorer-vscode/issues/1802
https://github.com/zowe/zowe-explorer-vscode/issues/1868
https://www.zowe.org/security.html

Version: v3.3.x LTS

Version 2.3.1 (September 2022)

Welcome to the Zowe Version 2.3.1 release!

This release contains a minor packaging fix, no user action is required.

See Zowe's Version 2.3.0 release notes for the latest features, enhancements, and bug fixes.

Download v2.3.1 build: Want to try new features as soon as possible? You can download the V2.3.1 build from

Zowe.org.

https://docs.zowe.org/stable/whats-new/release-notes/v2_3_1/v2_3_0
https://www.zowe.org/download.html

Version: v3.3.x LTS

Version 2.3.0 (September 2022)

Welcome to the Zowe Version 2.3.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues

addressed in this release.

Download v2.3.0 build: Want to try new features as soon as possible? You can download the V2.3.0 build from

Zowe.org.

New features and enhancements

Zowe Version 2.3.0 contains the enhancements that are described in the following topics.

Zowe installation and packaging

Added a new dataset SZWELOAD. It contains versions of configmgr named ZWECFG31 , ZWECFG64 , and ZWERXCFG

which can be used to invoke configmgr from within a rexx program. The expected use case is to simplify how

complex JCL gets configuration information about Zowe.

Zowe can now start in a mode called configmgr mode. You can enable this in certain zwe commands by adding --

configmgr . Not all commands support this yet. For now, you can use it in zwe start , zwe stop , and zwe

components . This mode is generally significantly faster to start up Zowe, but also enforces validation of the

zowe.yaml configuration against the zowe.yaml schema files (found in /schemas).

Zowe can now start using multiple zowe.yaml files when using the configmgr mode. This works for the STC startup

as well as the zwe start , zwe stop , and zwe components commands. Each file must follow the same zowe.yaml

schema as before, but in the list of files, properties found in a file to the right will be overridden by the file to the left.

Through this, you can separate portions of Zowe configuration any way you want. To use multiple files, change your

existing --config / CONFIG input to instead be a list of FILE() entries which are colon : separated. For example, zwe

start --config FILE(/my/customizations.yaml):FILE(/zowe/defaults.yaml)

Zowe server YAML files can now have templates within them when using configmgr mode. When the value of any

attribute contains ${{ }} , the content within the brackets will be replaced with whatever the template evaluates to.

The entries are processed as ECMAScript2020-compatible JavaScript assignments. You can, for example, set one

property to the value of another, such as having parmlib: ${{ zowe.setup.dataset.prefix }}.MYPARM rather than

needing to type the prefix explicitly. You can also use this to set conditionals. For examples, check the ZSS default

yaml file.

Zowe Application Framework

Zowe App Server

app-server can now be configured by using configmgr. This increases startup time and validation of components and

their plugins to increase automatic detection of plugin compatibility issues. This mode can be enabled or disabled

with Zowe configuration property zowe.useConfigmgr=true/false .

Zowe Common C

Added a new build target configmgr-rexx , which builds a version of configmgr that can be used within rexx scripts.

https://www.zowe.org/download.html
https://github.com/zowe/zss/blob/013d11d700003483fde38e1df0a373bb5bd4ef8c/defaults.yaml
https://github.com/zowe/zss/blob/013d11d700003483fde38e1df0a373bb5bd4ef8c/defaults.yaml

ZSS

ZSS now utilizes the configuration parameters present in the zowe configuration file via the configmgr, simplifying

the startup of ZSS and increasing the validation of its parameters. The file zss/defaults.yaml shows the default

configuration parameters of zss, in combination with the schema of the parameters within zss/schemas, though

some parameters are derived from zowe-wide parameters or from other components when they involve those other

components.

Improved startup time due to using the configmgr to process plugin registration, and only when the app-server is not

enabled, as the app-server does the same thing.

Zowe API Mediation Layer

Introduction of a new cloud gateway service to provide routing functionality for multi-sysplex environments. (#2576)

(7c618c0), closes #2576

Introduced a new Personal Access Token (PAT) API to evict non-relevant tokens and rules (#2554) (f3aeafa), closes

#2554

Added a Redis sentinel enabled field that allows Sentinel configuration to be added to a file and kept available even

when Sentinel is not in use. (#2546) (3779072), closes #2546

Added customized code snippets to API Catalog. Customized snippets can now be defined as part of the service

metadata to be displayed in the API Catalog UI (#2526) (602392e), closes #2526

Code snippet configuration now enables direct integration of an endpoint into an application without requiring code

to integrate the other application's REST APIs. (#2509) (4d2298e), closes #2509

A Personal Access Token (PAT) for SSO is now accepted. The PAT can now be validated and invalidated using a REST

API on the Gateway (#2499) (ad17c18), closes #2499

Zowe CLI

Zowe CLI (Core)

Added the browser-view option to the zowe zos-files compare data-set command to compare two data sets, and

display the differences in the browser. (#1443)

Added the command zowe zos-files compare local-file-data-set to compare a local file and a data set, and

display the differences in the browser and terminal. (#1444)

Added the command zowe zos-files compare uss-files to compare two uss files, and display the differences in

the browser and terminal. (#1445)

Added the command zowe zos-files compare local-file-uss-file to compare a local file and a uss file, and

display the differences in the browser and terminal. (#1446)

Added the command zowe zos-files compare spool-dd to compare two spool dds, and display the differences in

the browser and terminal. (#1447)

Added the command zowe zos-files compare local-file-spool-dd to compare a local file and a spool dd, and

display the differences in the browser and terminal. (#1448)

Added the ZOWE_CLI_PLUGINS_DIR environment variable to override the location where plug-ins are installed.

(#1483)

Added the zowe zos-files compare data-set command to compare two data sets, and display the differences in

the terminal. (#1442)

Zowe CLI Imperative Framework

https://github.com/zowe/api-layer/commit/7c618c0
https://github.com/zowe/api-layer/issues/2576
https://github.com/zowe/api-layer/commit/f3aeafa
https://github.com/zowe/api-layer/issues/2554
https://github.com/zowe/api-layer/commit/3779072
https://github.com/zowe/api-layer/issues/2546
https://github.com/zowe/api-layer/commit/602392e
https://github.com/zowe/api-layer/issues/2526
https://github.com/zowe/api-layer/commit/4d2298e
https://github.com/zowe/api-layer/issues/2509
https://github.com/zowe/api-layer/commit/ad17c18
https://github.com/zowe/api-layer/issues/2499
https://github.com/zowe/zowe-cli/issues/1443
https://github.com/zowe/zowe-cli/issues/1444
https://github.com/zowe/zowe-cli/issues/1445
https://github.com/zowe/zowe-cli/issues/1446
https://github.com/zowe/zowe-cli/issues/1447
https://github.com/zowe/zowe-cli/issues/1448
https://github.com/zowe/zowe-cli/issues/1483
https://github.com/zowe/zowe-cli/issues/1442

Added ZOWE_CLI_PLUGINS_DIR environment variable to override the location where plug-ins are installed. (Zowe CLI

#1483)

Added Diff utility features for getting differences between two files and open diffs in browser. Also added web diff

generator for creating web diff dir at the CLI home.

Zowe Explorer

Added option to edit team configuration file via the + button for easy access. #1896

Added multiple selection to manage context menu of Datasets, USS, and Jobs views. #1428

Added Spool file attribute information to a hover over the Spool file's name. #1832

Added support for CLI home directory environment variable in Team Config file watcher, and support watching Team

Config files named zowe.config.json and zowe.config.user.json at both locations. #1913

Update to Job's View Spool file label to display PROCSTEP if available, if PROCSTEP isn't available the label will

display the Spool file's record count. #1889 #1832

Extensibility API for Zowe Explorer

New API ZoweVsCodeExtension.updateCredentials for credential prompting that updates the ProfilesCache after

obtaining credentials from user. #1852

New API ProfilesCache.updateProfilesArrays to update ProfilesCache.allProfiles for profiles that don't store

credentials locally in profile file. #1852

New API ProfilesCache.isCredentialsSecured to check if credentials are stored securely. #1852

Bug fixes

Zowe Version 2.3.0 contains the bug fixes that are described in the following topics.

Zowe installation and packaging

Schema pattern for semver range has been simplified as it was not compiling in configmgr

When zwe components install could not find or set the PC bit of a ZSS plugin, it would print out an example

command for fixing the issue. Now, it shows the exact command you could execute to fix the PC bit problem.

Zowe Application Framework

Zowe App Server

Schema regex pattern for semver range was not working in configmgr, and has been corrected.

Zowe Common C

Fixed lht functions of collections.c to avoid memory issues on negative keys

Fixed the help message on configmgr

ZSS

Fixed an 0C4 error within the /unixfile API in 31-bit mode. This was preventing files from being shown in the editor.

https://github.com/zowe/zowe-cli/issues/1483
https://github.com/zowe/zowe-cli/issues/1483
https://github.com/zowe/zowe-explorer-vscode/issues/1896
https://github.com/zowe/zowe-explorer-vscode/issues/1428
https://github.com/zowe/zowe-explorer-vscode/issues/1832
https://github.com/zowe/zowe-explorer-vscode/issues/1913
https://github.com/zowe/zowe-explorer-vscode/issues/1889
https://github.com/zowe/zowe-explorer-vscode/issues/1832
https://github.com/zowe/zowe-explorer-vscode/issues/1852
https://github.com/zowe/zowe-explorer-vscode/issues/1852
https://github.com/zowe/zowe-explorer-vscode/issues/1852

0C4 error messages from dataservices are now shown under the SEVERE log instead of the DEBUG log, so that

issues can be spotted more easily.

0C4 when lht hashmap functions were called with negative key

Zowe API Mediation Layer

snakeyml update, scheme validation fix (#2577) (ae48669), closes #2577

Add build info to the manifest.yaml (#2573) (93298dd), closes #2573

Fix bug in the swagger (#2571) (36997c6), closes #2571

AdditionalProperties must be outside of properties attribute (#2567) (fea515a), closes #2567

Enable hsts (#2565) (4cffe97), closes #2565

Fix code snippets bug (#2564) (23bed56), closes #2564

Enable redis storage mode in tests (#2522) (11bf491), closes #2522

Gradle publish after update (#2528) (1baa6f7), closes #2528

Remove multiple tokens from cookies (#2514) (d5bc187), closes #2514

Retrieve swagger api docs with or without certificate configuration enabled (#2500) (16ca734), closes #2500

Zowe CLI

Zowe CLI and related components contain the following bug fixes:

Updated Imperative to include bug fixes in version 5.5.1.

Renamed download data-set-matching to download data-sets-matching . The old name still exists as an alias.

Fixed output of download data-sets-matching being printed twice when some data sets fail to download.

Altered the zowe daemon disable command to kill only the daemon running for the current user.

Zowe CLI (Core)

Zowe CLI Imperative Framework

Prevented base profile secure-property lookup on the global layer when there is not default base profile. (#881)

Fixed exception when non-string passed to ImperativeExpect.toBeDefinedAndNonBlank() . (#856)

Removed periods in command example descriptions so descriptions look syntactically correct. (#795)

Improved performance of ProfileInfo API to load large team config files. (Zowe Explorer #1911)

Fixed dot-separated words incorrectly rendered as links in the web help. (#869)

Web-diff template directory included in files section of package.json file.

Changed the default log level of Console class from "debug" to "warn" so it is consistent with Logger class behavior.

In Zowe v2.0 the Logger class was changed to have a default log level of "warn" but the Console class was not

changed. To modify a log level, you can change it after initializing the console like this: console.level = "info";

(Zowe CLI #511)

Introduced examples for setting default profiles in zowe config set Examples section. (Zowe CLI #1428)

Fixed error when installing plug-ins that do not define profiles. (#859)

Removed some extraneous dependencies. (#477)

Db2 Plug-in for Zowe CLI

Updated ibm_db dependency to be compatible with Node.js 18.

https://github.com/zowe/api-layer/commit/ae48669
https://github.com/zowe/api-layer/issues/2577
https://github.com/zowe/api-layer/commit/93298dd
https://github.com/zowe/api-layer/issues/2573
https://github.com/zowe/api-layer/commit/36997c6
https://github.com/zowe/api-layer/issues/2571
https://github.com/zowe/api-layer/commit/fea515a
https://github.com/zowe/api-layer/issues/2567
https://github.com/zowe/api-layer/commit/4cffe97
https://github.com/zowe/api-layer/issues/2565
https://github.com/zowe/api-layer/commit/23bed56
https://github.com/zowe/api-layer/issues/2564
https://github.com/zowe/api-layer/commit/11bf491
https://github.com/zowe/api-layer/issues/2522
https://github.com/zowe/api-layer/commit/1baa6f7
https://github.com/zowe/api-layer/issues/2528
https://github.com/zowe/api-layer/commit/d5bc187
https://github.com/zowe/api-layer/issues/2514
https://github.com/zowe/api-layer/commit/16ca734
https://github.com/zowe/api-layer/issues/2500
https://github.com/zowe/imperative/issues/881
https://github.com/zowe/imperative/issues/856
https://github.com/zowe/imperative/issues/795
https://github.com/zowe/zowe-explorer-vscode/issues/1911
https://github.com/zowe/imperative/issues/869
https://github.com/zowe/zowe-cli/issues/511
https://github.com/zowe/zowe-cli/issues/1428
https://github.com/zowe/imperative/issues/859
https://github.com/zowe/imperative/issues/477

Zowe Explorer

Fixed extension being slow to load large team config files. #1911

Fix issue with cached profile information after updates to profiles. #1915

Fix for saving credentials to v1 profile's yaml file when un-secure and save is selected after credential prompting.

#1886

Fix for outdated cached information after Update Credentials. #1858

Fix to support ZOWE_CLI_HOME environment variable. #1747

Fixed activation failure when error reading team configuration file. #1876

Fixed Profile IO errors by refactoring use of Imperative's CliProfileManager. #1851

Fixed runtime error found in initForZowe call used by extenders. #1872

Added error notification for users when OS case sensitivitiy is not set up to avoid issues found with USS files in single

directory of same name but different case. #1484

Added file watcher for team configuration files to fix v2 profile update issues experienced during creation, updating,

and deletion of global or project level configuration files in VS Code. #1760

Updated dependencies for improved security. #1878

Optimized saving of files on DS/USS when utilizing autosave or experiencing slow upload speeds. #1800

Updates to use new Zowe Explorer APIs ZoweVsCodeExtension.updateCredentials for credential prompting and

ProfilesCache.updateProfilesArrays for profiles that don't store credentials locally in profile file. #1852

Zowe Explorer Extension for FTP

Fixed for profile properties like "rejectUnauthorized" being ignored.

Extensibility API for Zowe Explorer

Fix for extenders that call registerCustomProfileType() and recieved error when team configuration file was in

place. #1870

Deprecated ZoweVsCodeExtension.promptCredentials in favor of ZoweVsCodeExtension.updateCredentials . #1852

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not

disclose the vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and

how you upgrade Zowe. When a new release is published, Zowe publishes the vulnerabilities fixed in the previous

release. For more information about the Zowe security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.2.

BDSA-2019-3199

https://github.com/zowe/zowe-explorer-vscode/issues/1911
https://github.com/zowe/zowe-explorer-vscode/issues/1915
https://github.com/zowe/zowe-explorer-vscode/issues/1886
https://github.com/zowe/zowe-explorer-vscode/issues/1858
https://github.com/zowe/zowe-explorer-vscode/issues/1747
https://github.com/zowe/zowe-explorer-vscode/issues/1876
https://github.com/zowe/zowe-explorer-vscode/issues/1851
https://github.com/zowe/zowe-explorer-vscode/issues/1872
https://github.com/zowe/zowe-explorer-vscode/issues/1484
https://github.com/zowe/zowe-explorer-vscode/issues/1760
https://github.com/zowe/zowe-explorer-vscode/pull/1878
https://github.com/zowe/zowe-explorer-vscode/issues/1800
https://github.com/zowe/zowe-explorer-vscode/issues/1852
https://github.com/zowe/zowe-explorer-vscode/issues/1870
https://github.com/zowe/zowe-explorer-vscode/issues/1852
https://www.zowe.org/security.html

Version: v3.3.x LTS

Version 2.2.0 (July 2022)

Welcome to the Zowe Version 2.2.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues

addressed in this release.

Download v2.2.0 build: Want to try new features as soon as possible? You can download the V2.2.0 build from

Zowe.org.

New features and enhancements

Zowe Version 2.2.0 contains the enhancements that are described in the following topics.

Zowe installation and packaging

A new command configmgr is now present in /bin/utils . It can load, validate, and report on the Zowe

configuration file.

Zowe Application Framework

Added a script dependencies.sh which assists in managing external dependencies needed for project compilation

Added a new build target, configmgr , which builds a tool that can be called to either load, validate, and print the

zowe configuration, or load, validate, and run a JS script that is given the configuration.

Added an automated build for configmgr which is consumed by the Zowe packaging

Zowe API Mediation Layer

Revoke a Personal Access Token by admin (#2476) (e4d42a9), closes #2476

Caching Service can store invalidated token rules (#2460) (055aac9), closes #2460

Exchange client certificate for SAF IDT (#2455) (303087c), closes #2455 #2384

Fix SAF IDT scheme and service (#2224) (7772401), closes #2224

Generate Personal Access Token (#2452) (0e39aa7), closes #2452

Limit the scope of a Personal Access Token (#2456) (cc0aba4), closes #2456

Revoke a Personal Access Token (#2422) (c7f79d5), closes #2422

Validate ServiceId with Endpoint (#2413) (9f3825f), closes #2413

Zowe CLI

Zowe CLI (Core)

Added the zowe files download data-sets-matching command to download multiple data sets at once. (#1287)

Note: If you used this command previously in the extended files plug-in for Zowe v1, the --fail-fast option now

defaults to true which is different from the original behavior.

https://www.zowe.org/download.html
https://github.com/zowe/api-layer/commit/e4d42a9
https://github.com/zowe/api-layer/issues/2476
https://github.com/zowe/api-layer/commit/055aac9
https://github.com/zowe/api-layer/issues/2460
https://github.com/zowe/api-layer/commit/303087c
https://github.com/zowe/api-layer/issues/2455
https://github.com/zowe/api-layer/issues/2384
https://github.com/zowe/api-layer/commit/7772401
https://github.com/zowe/api-layer/issues/2224
https://github.com/zowe/api-layer/commit/0e39aa7
https://github.com/zowe/api-layer/issues/2452
https://github.com/zowe/api-layer/commit/cc0aba4
https://github.com/zowe/api-layer/issues/2456
https://github.com/zowe/api-layer/commit/c7f79d5
https://github.com/zowe/api-layer/issues/2422
https://github.com/zowe/api-layer/commit/9f3825f
https://github.com/zowe/api-layer/issues/2413
https://github.com/zowe/zowe-cli/issues/1287

Added the zowe zos-files compare data-set command to compare two datasets and display the differences on

the terminal. (#1442)

Zowe Explorer

Pull from Mainframe option added for JES spool files. #1837

Updated Licenses. #1841

Bug fixes

Zowe Version 2.2.0 contains the bug fixes that are described in the following topics.

Zowe API Mediation Layer

Immediately expire a passticket command to generate a passticket for each call (#2496) (8adca78), closes #2496

Optimize image builds (#2445) (e220cbd), closes #2445

Extend Tomcat to be able to recover after TCP/IP stack is restarted, so that the service does not require restart.

(#2421) (a851b8f), closes #2421

Zowe CLI

Zowe CLI and related components contain the following bug fixes.

Zowe CLI (Core)

Updated Imperative to address ProfileInfo related issues.

Fixed the Zowe Daemon binary exiting with an error if the daemon server does not start within 3 seconds.

Alter the zowe daemon disable command to only kill the daemon running for the current user.

Zowe CLI Imperative Framework

Expose the isSecured functionality from the ProfilesCredentials. (#549)

Allow the ConfigAutoStore to store plain-text properties that are defined as secure in the schema (for example, user,

password). (zowe/vscode-extension-for-zowe: #1804)

Added ANSI escape codes trimming for the Web Help. (#704)

Fixed AbstractRestClient not converting LF line endings to CRLF for every line when downloading large files on

Windows. (zowe/zowe-cli/#1458)

Fixed zowe --version --rfj including a trailing newline in the version field. (#842)

Fixed --response-format-json option not supported by some commands in daemon mode. (#843)

Removed some extraneous dependencies. (#477)

z/OS FTP Plug-in for Zowe CLI

Pick up zos-node-accessor v1.0.11 to fix listing single USS file or symbol link and update PDS dataset allocation.

Refine help of partitioned dataset allocation.

Zowe Explorer

https://github.com/zowe/zowe-cli/issues/1442
https://github.com/zowe/zowe-explorer-vscode/pull/1837
https://github.com/zowe/zowe-explorer-vscode/issues/1841
https://github.com/zowe/api-layer/commit/8adca78
https://github.com/zowe/api-layer/issues/2496
https://github.com/zowe/api-layer/commit/e220cbd
https://github.com/zowe/api-layer/issues/2445
https://github.com/zowe/api-layer/commit/a851b8f
https://github.com/zowe/api-layer/issues/2421
https://github.com/zowe/imperative/issues/549
https://github.com/zowe/zowe-explorer-vscode/issues/1804
https://github.com/zowe/imperative/issues/704
https://github.com/zowe/zowe-cli/issues/1458
https://github.com/zowe/imperative/issues/842
https://github.com/zowe/imperative/issues/843
https://github.com/zowe/imperative/issues/477

Updated imports to use the imperative instance provided by the CLI package. #1842

Fixed unwanted requests made by tree node when closing folder. #754

Fix for credentials not being updated after the invalid credentials error is displayed. #1799

Fixed hyperlink for Job submitted when profile is not already in JOBS view. #1751

Fixed key bindings for Refresh Zowe Explorer to not override default VSC key binding. See README.md for new key

bindings. #1826

Fixed Update Profile issue for missing nonsecure credentials. #1804

Fixed errors when operation cancelled during credential prompt. #1827

Login and Logout operations no longer require a restart of Zowe Explorer or VSC. #1750

Fix for Login token always being stored in plain text. #1840

Fixed Theia tests. #1665

https://github.com/zowe/zowe-explorer-vscode/issues/1842
https://github.com/zowe/zowe-explorer-vscode/issues/754
https://github.com/zowe/zowe-explorer-vscode/issues/1799
https://github.com/zowe/zowe-explorer-vscode/issues/1751
https://github.com/zowe/zowe-explorer-vscode/blob/master/packages/zowe-explorer/README.md#keyboard-shortcuts
https://github.com/zowe/zowe-explorer-vscode/issues/1826
https://github.com/zowe/zowe-explorer-vscode/issues/1804
https://github.com/zowe/zowe-explorer-vscode/issues/1827
https://github.com/zowe/zowe-explorer-vscode/issues/1750
https://github.com/zowe/zowe-explorer-vscode/issues/1840
https://github.com/zowe/zowe-explorer-vscode/issues/1665

Version: v3.3.x LTS

Version 2.1.0 (June 2022)

Welcome to the Version 2.1.0 release of Zowe!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues

addressed in this release.

Download v2.1.0 build: Want to try new features as soon as possible? You can download the V2.1.0 build from

Zowe.org.

New features and enhancements

Zowe API Mediation Layer

Added trivial schema files for lib components. Updated manifests to remove build metadata (#2379) (6eba58f),

closes #2379

Extended API operation filter in the Swagger UI (#2397) (cffd6cf), closes #2397

Generate basic code snippets (#2387) (79c67d0), closes #2387

New endpoint to retrieve default API doc for service (#2327) (502ba3c), closes #2327

Enhanced Discovery service health check (#2312) (2f167ff), closes #2312

Support for TLS v1.3 (#2314) (e96135a), closes #2314 #2269

Enhanced x509 authentication scheme to support client certificates (#2285) (a053b00), closes #2285

Enhanced zowejwt authentication scheme to support client certificates (#2292) (c602080), closes #2292

Enhanced z/OSMF authentication scheme to support client certificates (#2207) (5750072), closes #2207

Added support to change password via z/OSMF (#2095) (51e8bd3), closes #2095

Enabled Discovery Service and Gateway Service native library extensions (#1987) (fd03db5), closes #1987

Added methods for ZaaS client to support password change (#1991) (7597bd7), closes #1991

API ML sample extension (#1947) (a085cf3), closes #1947

Zowe Application Framework

USS Explorer contains the following enhancement.

Added the feature to download a file.

MVS Explorer contains the following enhancement.

Disabled the submit button and gave a warning message in Dialogs when dataset or dataset member name is

invalid.

JES Explorer contains the following enhancements.

Highlighted the selected Jobs and Job Files.

Updated the Job tree when a job is deleted or cancelled.

Added * support for job ID.

https://www.zowe.org/download.html
https://github.com/zowe/api-layer/commit/6eba58f
https://github.com/zowe/api-layer/issues/2379
https://github.com/zowe/api-layer/commit/cffd6cf
https://github.com/zowe/api-layer/issues/2397
https://github.com/zowe/api-layer/commit/79c67d0
https://github.com/zowe/api-layer/issues/2387
https://github.com/zowe/api-layer/commit/502ba3c
https://github.com/zowe/api-layer/issues/2327
https://github.com/zowe/api-layer/commit/2f167ff
https://github.com/zowe/api-layer/issues/2312
https://github.com/zowe/api-layer/commit/e96135a
https://github.com/zowe/api-layer/issues/2314
https://github.com/zowe/api-layer/issues/2269
https://github.com/zowe/api-layer/commit/a053b00
https://github.com/zowe/api-layer/issues/2285
https://github.com/zowe/api-layer/commit/c602080
https://github.com/zowe/api-layer/issues/2292
https://github.com/zowe/api-layer/commit/5750072
https://github.com/zowe/api-layer/issues/2207
https://github.com/zowe/api-layer/commit/51e8bd3
https://github.com/zowe/api-layer/issues/2095
https://github.com/zowe/api-layer/commit/fd03db5
https://github.com/zowe/api-layer/issues/1987
https://github.com/zowe/api-layer/commit/7597bd7
https://github.com/zowe/api-layer/issues/1991
https://github.com/zowe/api-layer/commit/a085cf3
https://github.com/zowe/api-layer/issues/1947

Added app2app arguments: expand - Boolean that says to expand the job. In a list of jobs, this expands the first

result. showDD - string that auto-opens any dataset definition with this name when expanding the job.

Zowe CLI

Zowe CLI contains the following enhancements and changes.

Zowe CLI (Core)

Updated the zowe config auto-init command to allow using certificates for authentication. (#1359)

Exposed profile type configuration from the respective SDKs.

Added the zowe zos-jobs view all-spool-content command to view all spool content given a job ID. (#946)

Added the zowe jobs submit uss-file command to submit a job from a USS file. (#1286)

Added the zowe files view data-set and the zowe files view uss-file commands to view a data set or a USS

file. (#1283)

Added the zowe jobs delete old-jobs command to delete (purge) jobs in OUTPUT status. (#1285)

Zowe CLI Imperative Framework

Added the ability for CLIs and Plug-ins to override some of the prompting logic if an alternate property is set.

Introduced the --show-inputs-only flag to show the inputs of the command that would be used if a command were

executed.

Added the dark theme mode to web help that is automatically used when system-wide dark mode is enabled.

Added environmental variable support to the ProfileInfo APIs by defaulting homeDir to cliHome . (#1777)

Bug fixes

Zowe API Mediation Layer

Add log masking class for sensitive logs (#2003) (994b483), closes #2003

API Catalog swagger link (#2344) (be07fda), closes #2344

Use same key and record lengths as jcl (#2341) (d8644f2), closes #2341

Add server-side logging for swagger handling code (#2328) (7b0455d), closes #2328

Preserve request cookies (#2293) (71c6649), closes #2293 #2269

ZaaS client compatibility with Zowe v2 (#2227) (abdf995), closes #2227

Add BearerContent filter to enable bearer auth (#2197) (1d41704), closes #2197

Configure southbound timeout with APIML_GATEWAY_TIMEOUT_MILLIS (#2154) (6af5d6f), closes #2154

Improve error handling for API diff endpoint (#2178) (1581e39), closes #2178

Update data model for infinispan storage in Caching service (#2156) (38a1348), closes #2156

Versioning in image publishing workflow (#2159) (db52527), closes #2159

Add x509 auth info to gw api doc (#2142) (0205470), closes #2142

Properly remove services when instances are removed from Discovery Service (#2128) (c675b91), closes #2128

Use ribbon LB for Web sockets (#2147) (4751dbc), closes #2147

Add missing fields in error response (#2118) (3b9745c), closes #2118

Do not require keyAlias for SSL configuration (#2110) (03bee79), closes #2110

https://github.com/zowe/zowe-cli/issues/1359
https://github.com/zowe/zowe-cli/issues/946
https://github.com/zowe/zowe-cli/issues/1286
https://github.com/zowe/zowe-cli/issues/1283
https://github.com/zowe/zowe-cli/issues/1285
https://github.com/zowe/zowe-explorer-vscode/issues/1777
https://github.com/zowe/api-layer/commit/994b483
https://github.com/zowe/api-layer/issues/2003
https://github.com/zowe/api-layer/commit/be07fda
https://github.com/zowe/api-layer/issues/2344
https://github.com/zowe/api-layer/commit/d8644f2
https://github.com/zowe/api-layer/issues/2341
https://github.com/zowe/api-layer/commit/7b0455d
https://github.com/zowe/api-layer/issues/2328
https://github.com/zowe/api-layer/commit/71c6649
https://github.com/zowe/api-layer/issues/2293
https://github.com/zowe/api-layer/issues/2269
https://github.com/zowe/api-layer/commit/abdf995
https://github.com/zowe/api-layer/issues/2227
https://github.com/zowe/api-layer/commit/1d41704
https://github.com/zowe/api-layer/issues/2197
https://github.com/zowe/api-layer/commit/6af5d6f
https://github.com/zowe/api-layer/issues/2154
https://github.com/zowe/api-layer/commit/1581e39
https://github.com/zowe/api-layer/issues/2178
https://github.com/zowe/api-layer/commit/38a1348
https://github.com/zowe/api-layer/issues/2156
https://github.com/zowe/api-layer/commit/db52527
https://github.com/zowe/api-layer/issues/2159
https://github.com/zowe/api-layer/commit/0205470
https://github.com/zowe/api-layer/issues/2142
https://github.com/zowe/api-layer/commit/c675b91
https://github.com/zowe/api-layer/issues/2128
https://github.com/zowe/api-layer/commit/4751dbc
https://github.com/zowe/api-layer/issues/2147
https://github.com/zowe/api-layer/commit/3b9745c
https://github.com/zowe/api-layer/issues/2118
https://github.com/zowe/api-layer/commit/03bee79
https://github.com/zowe/api-layer/issues/2110

Zowe CLI

Zowe CLI (Core)

Zowe CLI (Core) contains the following bug fixes:

Fixed an issue where config auto-init could report that it modified a config file that did not yet exist.

Updated Imperative to fix the config import and config secure commands that were not respecting the --

reject-unauthorized option.

Fixed an issue where privateKey is not being respected. (#1398 and #1392)

Moved the authConfig object from the core SDK into the CLI's base profile definition to fix invalid handler path.

Fixed an issue where SSH command waits forever when user has expired password. (#989)

Fixed the name of the positional in zowe zos-jobs submit uss-file command.

Updated the description of the zowe zos-jobs view all-spool-content command.

Updated the descriptions of the zowe zos-files view uss-file and zowe zos-files view data-set commands.

Removed the zowe zos-files view uss-file <file> --record option.

Fixed the description of the zowe zos-jobs delete command group.

Added the --modify-version option to the zowe zos-jobs delete old-jobs command for feature parity with zowe

zos-jobs delete job .

Updated Imperative to address ProfileInfo related issues.

Zowe CLI Imperative Framework

Zowe CLI Imperative Framework contains the following bug fixes:

Fixed ProfileInfo API argTeamConfigLoc not recognizing secure fields in multi-layer operations. (#800)

Fixed ProfileInfo API updateKnownProperty possibly storing information in the wrong location due to optional osLoc

information. (#800)

Fixed osLoc information returning project level paths instead of the global layer. (#805)

Fixed autoStore not being checked by updateKnownProperty . (#806)

Fixed the plugins uninstall command failing when there is a space in the install path.

Fixed an issue where config auto-init might fail to create project config when global config already exists. (#810)

Fixed config secure not respecting the rejectUnauthorized property in team config. (#813)

Fixed config import not respecting the rejectUnauthorized property in team config. (#816)

Updated the cli-table3 dependency for performance improvements.

Fixed config init not replacing empty values with prompted for values in team config. (#821)

Fixed config init saving empty string values to config file when prompt was skipped.

Fixed ConfigLayers.read skipping load of secure property values.

https://github.com/zowe/zowe-cli/issues/1398
https://github.com/zowe/zowe-cli/issues/1392
https://github.com/zowe/zowe-cli/issues/989
https://github.com/zowe/imperative/pull/800
https://github.com/zowe/imperative/pull/800
https://github.com/zowe/imperative/issues/805
https://github.com/zowe/imperative/issues/806
https://github.com/zowe/imperative/issues/810
https://github.com/zowe/imperative/issues/813
https://github.com/zowe/imperative/issues/816
https://github.com/zowe/imperative/issues/821

Improved the performance of ConfigLayers.activate by skipping config reload if the active layer directory has not

changed.

Removed the async keyword from the ConfigLayers.read method and the ConfigLayers.write method because

they do not contain asynchronous code.

Fixed ProfileInfo.readProfilesFromDisk failing when team config files and old-school profile directory do not

exist.

Fixed ProfileInfo.updateProperty not updating properties that are newly present after reloading team config.

Note: If you are developing an SDK that uses the ProfileInfo API, use the method ProfileInfo.getTeamConfig

instead of ImperativeConfig.instance.config which may contain outdated config or be undefined.

Fixed ProfileInfo API not detecting secure credential manager after profiles have been reloaded.

Zowe Application Framework

USS Explorer contains the following fix.

Fixed the bug where opening a file fails when USS path has / at the end.

JES Explorer contains the following fixes.

Fixed bug where URL requests fail when using # character in prefix.

Fixed a bug where using app2app params at launch would not use desired data.

Zowe Explorer

Fixed Quick-key Delete in USS and Jobs trees. #1821

Fixed issue with Zowe Explorer crashing during initialization due to Zowe config file errors. #1822

Fixed issue where Spool files failed to open when credentials were not stored in a profile. #1823

Fixed extra space in the Invalid Credentials dialog, at profile validation profilename. #1824

Updated dependencies for improved security. #1819

Fixed USS search filter fails on credential-less profiles. #1811

Fixed Zowe Explorer recognizing environment variable ZOWE_CLI_HOME. #1803

Fixed Zowe Explorer prompting for TSO Account number when saved in config file's TSO profile. #1801

Improved logging information to help diagnose Team Profile issues. #1776

Fixed adding profiles to the tree view on Theia. #1774

Updated Log4js version to resolve initialization problem on Eclipse Che. #1692

Fixed dataset upload issue by trimming labels. #1789

Fixed duplicate jobs appearing in the jobs view upon making an owner/prefix filter search for extenders. #1780

Fixed error displayed when opening a job file for extenders. #1701

https://github.com/zowe/zowe-explorer-vscode/pull/1821
https://github.com/zowe/zowe-explorer-vscode/pull/1822
https://github.com/zowe/zowe-explorer-vscode/pull/1823
https://github.com/zowe/zowe-explorer-vscode/pull/1824
https://github.com/zowe/zowe-explorer-vscode/pull/1819
https://github.com/zowe/zowe-explorer-vscode/pull/1811
https://github.com/zowe/zowe-explorer-vscode/pull/1803
https://github.com/zowe/zowe-explorer-vscode/pull/1801
https://github.com/zowe/zowe-explorer-vscode/pull/1776
https://github.com/zowe/zowe-explorer-vscode/issues/1774
https://github.com/zowe/zowe-explorer-vscode/issues/1692
https://github.com/zowe/zowe-explorer-vscode/issues/1789
https://github.com/zowe/zowe-explorer-vscode/pull/1780
https://github.com/zowe/zowe-explorer-vscode/pull/1701

Version: v3.3.x LTS

Version 2.0.0 (April 2022)

Welcome to the Version 2.0.0 release of Zowe!

Version 2.0 introduced breaking changes and a number of new features.

If you are upgrading from V1 to V2, review the Breaking changes first.

See New features and enhancements for a full list of changes to the functionality.

See Bug fixes for a list of V1 issues addressed in this release.

See Conformance and release compatibility for V2 Conformance Criteria updates and compatibility with v1.

Download v2.0.0 build: Want to try new features as soon as possible? You can download the V2.0.0 build from

Zowe.org.

v2 office hours videos: Zowe held a series of v2 LTS office hours for extenders and consumers to introduce all the V2

changes. Watch the videos to learn more about the new features.

Breaking changes

Zowe installation

You must pass -ppx when you unpax the Zowe convenience build to preserve extended file attributes.

All utility scripts, like zowe-install.sh , zowe-install-xmem.sh , zowe-install-proc.sh , validate-directory-is-

accessible.sh , are removed and migrated to the new zwe server command format.

If you rely on some of the scripts, find the alternative new zwe command or shell library functions.

ZWESVSTC is removed and ZWESLSTC will replace it to start Zowe.

instance.env is deprecated and replaced by zowe.yml .

In V2, you use the P command to terminate Zowe instead of the C cancel command.

Zowe now allows fine-grained customization of log, workspace, and configuration directories. By default, these

directories remain grouped under an instance directory (same as Zowe v1).

Environment variables are reorganized to better describe itself. All zowe.yaml configuration entries will be

automatically converted to environment variables for easy consumption. Check with the community what the new

alternative variable names are.

During Zowe configuration, redundant ip fields will be removed or consolidated in favor of hostname or domains .

Component or extension manifest is mandatory. You must use the zwe components install command to install the

extension.

API Mediation Layer

Removed the support for the old path pattern (#1770). This includes the changes to the endpoints used in ZAAS

client. If your application uses ZAAS client, please verify whether the configuration properties use the new path

pattern (/gateway/api/v1 instead of /api/v1/gateway).

Removed the support for different authentication schemas for different instances of service (#1051).

Zowe Application Framework

https://www.zowe.org/download.html
https://docs.zowe.org/stable/getting-started/zowe-office-hours
https://github.com/zowe/api-layer/issues/1770
https://github.com/zowe/api-layer/issues/1051

Some configuration, such as port and IP values, are different by default in V2 but can be reconfigured to old values.

However, some application framework extensions may not work in V2 without enhancements.

zLUX App Manager

Due to new library versions, native apps such as Angular and React apps written for Zowe v1 may not work in Zowe

v2. Rebuilding the apps with the same versions and the latest webpack build scripts is recommended.

zLUX Server Framework

The list of properties sent back from the /server/environment has changed to reflect the different environment

values present in Zowe v2

Adjusted the server to respect ZSS's new cookie format in which the port or HA instance ID is a suffix of the ZSS

cookie. This means that the server may not work properly when paired with a v1 ZSS and works best with v2

ZSS.

zLUX Editor

The app now uses angular 12, making it compatible with Zowe v2 desktop and incompatible with v1 desktop.

Basic VT Terminal Emulator

Upgrade to Angular 12, Typescript 4, and Corejs 3 to match Desktop libraries in Zowe v2. This app may no longer

work in the Zowe v1 Desktop, and v2 should be used instead.

Basic TN3270 Display Emulator

Upgrade to Angular 12, Typescript 4, and Corejs 3 to match Desktop libraries in Zowe v2. This app may no longer

work in the Zowe v1 Desktop, and v2 should be used instead.

Sample angular app

The app now uses angular 12, making it compatible with Zowe v2 desktop and incompatible with v1 desktop.

Zowe CLI

Breaking changes for Zowe CLI end users:

zowe config no longer manages app settings (Imperative and CLI)

fail-on-error default changed to true for zowe plugins validate (Imperative and CLI)

Default Imperative and CLI log level changed from DEBUG to WARN (Imperative and CLI), which potentially

changes troubleshooting steps for providing information to support.

Breaking changes that could prevent a V1 plug-in or SDK from working in V2

CLI package should be removed as a plug-in peer dep (Imperative)

AbstractRestClient.mDecode defaults to true so any plug-in with custom RestClient implementation that adds

gzip decompression may break

The return value for PluginManagementFacility.requirePluginModuleCallback changed. Application and plug-

in developers requiring a module from a plug-in's relative path using the requirePluginModuleCallback function

no longer need to provide the plug-in name in a separate variable this.pluginNmForUseInCallback =

pluginName before binding the class this.requirePluginModuleCallback.bind(this) . Instead they can call

this.requirePluginModuleCallback(pluginName) .

Previously in V1:

In V2:

Breaking changes for Zowe CLI and Imperative plug-in developers

These changes only impact early adopters of @next as these are breaking changes made during the technical

preview validation phase. Thanks to the community for the feedback.

tokenType and tokenValue were combined into authToken , which later was reverted (Imperative and CLI)

Options in zowe config group are renamed: --user is renamed to --user-config , and --global to --global-

config .

Zowe.schema.json format changed a few times (version 2, version 3): ConfigSchemas.loadProfileSchemas is

changed to ConfigSchemas.loadSchema

Config.set no longer coerces string values to other types unless parseString = true which might impact the

SDK instead of CLI plug-ins.

New features and enhancements

Zowe installation

Introduced a new server command zwe to balance between simplification and flexibility on installation and

configuration.

Almost all Zowe utility scripts in V1 are consolidated into new zwe server command. This new command defines

consistent help messages, logging options, and so on. See the ZWE Command Reference for more information.

Provides shell function library to help extensions to achieve common tasks. For example, execute TSO command,

operator command, submit job and check job completion, and so on.

Keep away from commands/functions marked as experimental and internal.

Installation / Configuration changes

During installation, no new runtime directory will be created.

A zowe.yaml file can be used to centralize all configuration options. This configuration is compatible with all

Zowe use cases (including high availability and containerization).

For almost all Zowe configuration steps, an automation option zwe init command is provided. You can still

choose to run all steps one by one.

Provides the --security-dry-run mode that allows you to generate security commands and pass along to your

system admin.

You can run all steps from USS now.

A Zowe component or extension can use manifest.yaml to define how it interacts with Zowe and other components.

The component or extension must define a manifest.yaml or manifest.json file to describe itself. The manifest

allows you to define how to register on Zowe API ML Discovery, how to register under Zowe Desktop, and

whether it’s Java extension library for API ML, and so on.

Components can define their own configs in manifest.yaml which shows you how to customize this component

and provides default values if they are not defined. This option is compatible with Zowe running in high

availability mode.

https://docs.zowe.org/stable/whats-new/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-clean

Introduced new data sets to better organize the contents.

Added SZWEEXEC to contain few utility tools.

You can customize your own PARMLIB, APF Authorized LOADLIB and APF-authorized ZIS plug-ins library.

CUST.JCLIB is a data set where Zowe will store temporary JCLs.

Zowe API Mediation Layer

There is now the option to change your password via the Catalog UI (#2035) (139a231), closes #2035

Discovery service can be configured to modify the service ID at registration time (#2229) (63f6fde), closes #2229

There is now the option to specify base packages for the extensions loader(#2081) (9a4be5a), closes #2081

There is a new design of the logout panel in the Catalog dashboard (#2102) (1382f24), closes #2102

Add missing tooltips to all onboarding options (#2194) (5446fd5), closes #2194

Migrate API Catalog to the Material UI library (2c595d5, 0da7f15, 95da488, c60371d, 537fa34, 81ab2ed), closes

#1169

Made various improvements to the onboarding wizard (#1772) (20dd70b), closes #1772

Zowe Application Framework

zLUX App Manager

New desktop library versions are Angular 6->12, Corejs 2->3, Typescript 2->4, and so on. For more information,

visit https://www.zowe.org/vnext.

The web-browser and admin-desktop-notification apps now contains a manifest file so that it can be installed

with zwe components install.

zLUX App Server

Renamed ZLUX_ environment variables to ZWED_ for consistency. Backwards compatible with old environment

variables.

Added support for new logDirectory variable specification in zowe.yaml

Added support for reading from zowe.yaml instead of server.json

zLUX Server Framework

Added support for reading zowe.yaml directly, as opposed to server.json .

The server can now support checks on the existence and version of APIML if a plug-in states a dependency on

APIML in the "requirements.components" section of its plug-in definition.

The list of parameters for server configuration is now documented in json-schema for validation, you can find

this in the zlux repository

ZSS Package

New configuration option that allows to run 64-bit ZSS

zLUX Editor

Cookie name now has a suffix which includes the port or if in an HA instance, the HA ID.

Basic VT Terminal Emulator

https://github.com/zowe/api-layer/commit/139a231
https://github.com/zowe/api-layer/issues/2035
https://github.com/zowe/api-layer/commit/63f6fde
https://github.com/zowe/api-layer/issues/2229
https://github.com/zowe/api-layer/commit/9a4be5a
https://github.com/zowe/api-layer/issues/2081
https://github.com/zowe/api-layer/commit/1382f24
https://github.com/zowe/api-layer/issues/2102
https://github.com/zowe/api-layer/commit/5446fd5
https://github.com/zowe/api-layer/issues/2194
https://github.com/zowe/api-layer/commit/2c595d5
https://github.com/zowe/api-layer/commit/0da7f15
https://github.com/zowe/api-layer/commit/95da488
https://github.com/zowe/api-layer/commit/c60371d
https://github.com/zowe/api-layer/commit/537fa34
https://github.com/zowe/api-layer/commit/81ab2ed
https://github.com/zowe/api-layer/issues/1169
https://github.com/zowe/api-layer/commit/20dd70b
https://github.com/zowe/api-layer/issues/1772
https://www.zowe.org/vnext

The app now contains a manifest file so that it can be installed with zwe components install

Sample angular app

The app now contains a manifest file so that it can be installed with zwe components install

USS Explorer

USS-explorer no longer uses explorer-ui-server, but now depends on app-server. In a standard Zowe environment,

this will result in less processes but does break links about getting to the explorer via APIML routes. The explorer is

now available via the app-server's APIML route.

JES Explorer

JES-explorer no longer uses explorer-ui-server, but now depends on app-server. In a standard Zowe environment, this

will result in less processes but does break links about getting to the explorer via APIML routes. The explorer is now

available via the app-server's APIML route.

MVS Explorer

MVS-explorer no longer uses explorer-ui-server, but now depends on app-server. In a standard Zowe environment,

this will result in less processes but does break links about getting to the explorer via APIML routes. The explorer is

now available via the app-server's APIML route.

Zowe CLI

Zowe CLI contains the following enhancements and changes:

Team Configuration:

Team configuration significantly improves the configuration/onboarding experience and provides the ability to easily

share configuration information with others in an organization.

Automatic Team Configuration:

Automatic team configuration leverages the Zowe API Mediation Layer to automatically configure connections for

conformant API ML services that also have a CLI plug-in.

Daemon Mode:

Daemon Mode significantly improves the performance of Zowe CLI by not requiring separate node processes to be

spawned for every command.

Secure by Default:

Secure by default provides a secure out-of-the-box experience by including the secure credential store feature,

previously offered as a plug-in in V1, as part of the core Zowe CLI package.

Migrating to Zowe V2 Team Configuration:

After installing @zowe/cli@zowe-v2-lts and all desired plug-ins @zowe-v2-lts , you can easily migrate to Zowe V2

team configuration by issuing the following command:

https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles
https://docs.zowe.org/stable/user-guide/cli-using-using-daemon-mode

Zowe CLI Plug-ins

Zowe maintained CLI plug-ins are Zowe V2 LTS conformant. As such, they integrate with Team configuration, daemon

mode, and the team configuration migration utility. For information about enhancements and bug fixes, see the

changelogs for the following plug-ins:

IBM CICS Plug-in for Zowe CLI

IBM Db2 Database Plug-in for Zowe CLI

IBM z/OS FTP Plug-in for Zowe CLI

IBM IMS Plug-in for Zowe CLI

IBM MQ Plug-in for Zowe CLI

Imperative CLI Framework

Imperative is the infrastructure on which various Zowe technologies are built. For information about enhancements and

bug fixes, see the Imperative CLI Framework changelog.

Nodejs SDK

The Nodejs SDK packages were updated to make use of key Zowe V2 features, including Team Configuration. For

information about enhancements and bug fixes, see the changelogs for the following packages:

Core Package

Provisioning Package

z/OS Console Package

z/OS Files Package

z/OS Jobs Package

z/OS Logs Package

z/OS Management Facility Package

z/OS TSO Package

z/OS USS Package

z/OS Workflows Package

Zowe Explorer

Zowe Explorer makes use of Team Configuration and is secure by default. For information about enhancements and bug

fixes, see the following changelogs:

Zowe Explorer

Zowe Explorer CICS Extension

Zowe Explorer FTP Extension

Bug fixes

Zowe API Mediation Layer

Caching service logging (#2222) (5ff64d9), closes #2222

https://github.com/zowe/cics-for-zowe-client/releases
https://github.com/zowe/zowe-cli-db2-plugin/blob/master/CHANGELOG.md
https://github.com/zowe/zowe-cli-ftp-plugin/blob/master/CHANGELOG.md
https://github.com/zowe/zowe-cli-ims-plugin/blob/master/CHANGELOG.md
https://github.com/zowe/zowe-cli-mq-plugin/blob/master/CHANGELOG.md
https://github.com/zowe/imperative/blob/master/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/core/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/provisioning/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zosconsole/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zosfiles/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zosjobs/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zoslogs/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zosmf/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zostso/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zosuss/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/workflows/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/next/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/cics-for-zowe-client/releases
https://github.com/zowe/zowe-explorer-vscode/blob/next/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/api-layer/commit/5ff64d9
https://github.com/zowe/api-layer/issues/2222

Add x509 Authentication information to the API Documentation of the API Gateway (#2142) (072ad23), closes

#2142

Authorization provider set empty as default (#2107) (aa77926), closes #2107

Update URL of the API Catalog to work with the V2 version of the Zowe Desktop (6f4257a), closes #2022

Zowe Application Framework

zLUX Server Framework

When paired with the Zowe server infrastructure, the app-server will now automatically register and de-register plug-

ins at startup depending on each plug-in's component enabled status.

ZSS Package

Do not use "tee" when log destination is /dev/null

Cookie name now has a suffix which includes the port or if in an HA instance, the HA ID.

Conformance and release compatibility

Backward compatibility

Zowe v1 conformant extensions/plug-ins are not guaranteed to be compatible with Zowe v2 and therefore may not be

operable. In general, plug-ins/extensions which leverage v2 APIs that have known breaking changes are at high risk of

incompatibility and unpredictable results.

Recommendation: All v1 extenders test with Zowe v2, identify any issues, and disclose results to consumers to clearly

indicate backward compatibility status in the extension documentation. If unable to test, clearly document as such.

Forward compatibility

Zowe v2 conformant (planning to earn conformance) extensions/plug-ins are not guaranteed to be compatible with Zowe

v1 LTS. In general, plug-ins/extensions with no known dependency on any newly introduced Zowe v2 functions are at

minimum risk.

Recommendation: All v2 extenders test with Zowe v1 LTS, identify any issues, and disclose results to consumers to

clearly indicate forward compatibility status in the extension documentation. If unable to test, clearly document as such.

Conformance compatibility

Zowe v1 conformant extensions/plug-ins are likely to require changes to meet Zowe v2 conformance criteria. All

extensions (regardless of v1 conformance status) must apply for v2 conformance and satisfy all required v2 testing

criteria. You can find the V2 Conformance Criteria here.

Recommendation: All extenders interested in earning v2 conformance review the v2 conformance criteria, determine if

technical changes are necessary, make appropriate modifications and prepare to apply for v2 conformance.

Need help? For assistance with reviewing or completing the Zowe Conformance Zowe v2 application, reach out to

members of the Zowe Onboarding Squad on Slack at https://slack.openmainframeproject.org in the #zowe-onboarding

channel.

https://github.com/zowe/api-layer/commit/072ad23
https://github.com/zowe/api-layer/issues/2142
https://github.com/zowe/api-layer/commit/aa77926
https://github.com/zowe/api-layer/issues/2107
https://github.com/zowe/api-layer/commit/6f4257a
https://github.com/zowe/api-layer/issues/2022
https://github.com/openmainframeproject/foundation/files/8489757/Zowe.Conformance.Program.-.Test.Evaluation.Guide.Table.pdf
https://slack.openmainframeproject.org/

Version: v3.3.x LTS

Zowe overview

Zowe™ is an open source software which provides both an extensible framework, and a set of tools that allow

mainframe development and operation teams to securely manage, develop, and automate resources and services on

z/OS family mainframes. Zowe offers modern interfaces to interact with z/OS and allows users to interact with the

mainframe system in a way that is similar to what they experience on cloud platforms today. Users can work with these

interfaces as delivered or through plug-ins and extensions created by customers or third-party vendors. All members of

the IBM Z platform community, including Independent Software Vendors (ISVs), System Integrators, and z/OS consumers,

benefit from the modern and open approach to mainframe computing delivered by Zowe.

Zowe is a member of the Open Mainframe Project governed by Linux Foundation™.

Zowe demo video

Watch this video to see a quick demo of Zowe.

Introduction to Zowe (Feb. 26, 2021)Introduction to Zowe (Feb. 26, 2021)

Download the deck for this video | Download the script

Zowe component overview

Zowe is comprised of the following server side and client side components:

Zowe Launcher

The Zowe Launcher makes it possible to launch Zowe z/OS server components in a high availability configuration, and

performs the following operations:

https://www.youtube.com/embed/NX20ZMRoTtk
https://www.youtube.com/watch?v=7XpOjREP8JU
https://docs.zowe.org/assets/files/Zowe_introduction_video_deck-fbb2a23bfe28dd10f5a003a305350c92.pptx
https://docs.zowe.org/assets/files/Zowe_introduction_video_script-cd119a2662821b55ad9bb5108f40f261.txt

Start all Zowe server components using the START (or S) operator command.

Stop Zowe server components using the STOP (or P) operator command.

Stop and start specific server components without restarting the entire Zowe instance using MODIFY (or F) operator

command.

API Mediation Layer

The API Mediation Layer provides a single point of access for APIs of mainframe services, and provides a Single Sign On

(SSO) capability for mainframe users.

The API Mediation Layer (API ML) facilitates secure communication between loosely coupled clients and services through

a variety of API types, such as REST, GraphQL or Web-Socket. API ML consists of these core components: the API

Gateway, the Discovery Service, the API Catalog, and the Caching service:

The API Gateway provides secure routing of API requests from clients to registered API services.

The Discovery Service allows dynamic registration of microservices and enables their discoverability and status

updates.

The API Catalog provides a user-friendly interface to view and try out all registered services, read their associated

APIs documentation in OpenAPI/Swagger format.

The API ML Caching Service allows components to store, search and retrieve their state. The Caching service can be

configured to store the cached data using various backends. Recommended is usage of Inifinispan packaged with the

Caching Service.

The API Mediation Layer offers enterprise, cloud-like features such as high-availability, scalability, dynamic API discovery,

consistent security, a single sign-on experience, and API documentation.

Key features

Consistent Access: API routing and standardization of API service URLs through the Gateway component

provides users with a consistent way to access mainframe APIs at a predefined address.

Dynamic Discovery: The Discovery Service automatically determines the location and status of API services.

High-Availability: API Mediation Layer is designed with high-availability of services and scalability in mind.

Caching Service: This feature is designed for Zowe components in a high availability configuration, and supports

high availability of all components within Zowe. As such, components can remain stateless whereby the state of

the component is offloaded to a location accessible by all instances of the service, including those which just

started.

Redundancy and Scalability: API service throughput is easily increased by starting multiple API service instances

without the need to change configuration.

Presentation of Services: The API Catalog component provides easy access to discovered API services and their

associated documentation in a user-friendly manner.

Encrypted Communication: API ML facilitates secure and trusted communication across both internal

components and discovered API services.

API Mediation Layer structural architecture

Learn more

https://docs.zowe.org/stable/user-guide/api-mediation-sso
https://docs.zowe.org/stable/user-guide/api-mediation-sso

The following diagram illustrates the single point of access through the Gateway, and the interactions between API

ML components and services:

Components

The API Layer consists of the following key components:

Gateway Service

Services that comprise the API ML service ecosystem are located behind a gateway (reverse proxy). All end users

and API client applications interact through the Gateway. Each service is assigned a unique service ID that is used in

the access URL. Based on the service ID, the Gateway forwards incoming API requests to the appropriate service.

Multiple Gateway instances can be started to achieve high-availability. The Gateway access URL remains

unchanged. The Gateway Service is built on Spring Cloud Gateway and Spring Boot technology.

Discovery Service

The Discovery Service is the central repository of active services in the API ML ecosystem. The Discovery Service

continuously collects and aggregates service information and serves as a repository of active services. When a

service is started, it sends its metadata, such as the original URL, assigned serviceId, and status information to the

Discovery Service. Back-end microservices register with this service either directly or by using a Eureka client.

Multiple enablers are available to help with service on-boarding of various application architectures including plain

Java applications and Java applications that use the Spring Boot framework. The Discovery Service is built on Eureka

and Spring Boot technology.

API Catalog

The API Catalog is the catalog of published API services and their associated documentation. The Catalog provides

both the REST APIs and a web user interface (UI) to access them. The web UI follows the industry standard Swagger

UI component to visualize API documentation in OpenAPI JSON format for each service. A service can be

implemented by one or more service instances, which provide exactly the same service for high-availability or

scalability. API Catalog requires authentication from the accessing user.

Caching Service

An API is provided in high-availability mode which offers the possibility to store, retrieve, and delete data associated

with keys.

Onboarding APIs

Essential to the API Mediation Layer ecosystem is the API services that expose their useful APIs. Use the following

topics to learn more about adding new APIs to the API Mediation Layer and using the API Catalog:

Onboarding Overview

Onboarding a Spring Boot based REST API service

Onboarding a Micronaut based REST API service

Onboard an existing Node.js based REST API service

Onboard an existing Python based REST API service

Onboarding a REST of GraphQL API without code changes required

Using API Mediation Layer

To learn more about the architecture of Zowe, see Zowe architecture.

Zowe Application Framework

A web user interface (UI) that provides a virtual desktop containing a number of apps allowing access to z/OS function.

Base Zowe includes apps for traditional access such as a 3270 terminal and a VT Terminal, as well as an editor and

explorers for working with JES, MVS Data Sets and Unix System Services.

The Zowe Application Framework modernizes and simplifies working on the mainframe. With the Zowe Application

Framework, you can create applications to suit your specific needs. The Zowe Application Framework contains a web

UI that has the following features:

The web UI works with the underlying REST APIs for data, jobs, and subsystem, but presents the information in a

full screen mode as compared to the command line interface.

The web UI makes use of leading-edge web presentation technology and is also extensible through web UI plug-

ins to capture and present a wide variety of information.

The web UI facilitates common z/OS developer or system programmer tasks by providing an editor for common

text-based files like REXX or JCL along with general purpose data set actions for both Unix System Services

Learn more

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://docs.zowe.org/stable/extend/extend-apiml/onboard-spring-boot-enabler
https://docs.zowe.org/stable/extend/extend-apiml/onboard-micronaut-enabler
https://docs.zowe.org/stable/extend/extend-apiml/onboard-nodejs-enabler
https://docs.zowe.org/stable/extend/extend-apiml/onboard-python-enabler
https://docs.zowe.org/stable/extend/extend-apiml/onboard-static-definition
https://docs.zowe.org/stable/user-guide/api-mediation/using-api-mediation-layer
https://docs.zowe.org/stable/getting-started/zowe-architecture

(USS) and Partitioned Data Sets (PDS) plus Job Entry System (JES) logs.

The Zowe Application Framework consists of the following components:

Zowe Desktop

The desktop, accessed through a browser. The desktop contains a number of applications, including a TN3270

emulator for traditional Telnet or TLS terminal access to z/OS, a VT Terminal for SSH commands, as well as rich

web GUI applications including a JES Explorer for working with jobs and spool output, a File Editor for working

with USS directories and files and MVS data sets and members. The Zowe desktop is extensible and allows

vendors to provide their own applications to run within the desktop. See Extending the Zowe Desktop. The

following screen capture of a Zowe desktop shows some of its composition as well as the TN3270 app, the JES

Explorer, and the File Editor open and in use.

Zowe Application Server

The Zowe Application Server runs the Zowe Application Framework. It consists of the Node.js server plus the

Express.js as a webservices framework, and the proxy applications that communicate with the z/OS services and

components.

ZSS Server

The ZSS Server provides secure REST services to support the Zowe Application Server. For services that need to

run as APF authorized code, Zowe uses an angel process that the ZSS Server calls using cross memory

communication. During installation and configuration of Zowe, you will see the steps needed to configure and

launch the cross memory server.

Application plug-ins

Several application-type plug-ins are provided. For more information, see Using the Zowe Application Framework

application plug-ins.

https://docs.zowe.org/stable/extend/extend-desktop/mvd-extendingzlux
https://docs.zowe.org/stable/user-guide/mvd-using#zowe-desktop-application-plugins
https://docs.zowe.org/stable/user-guide/mvd-using#zowe-desktop-application-plugins

Zowe CLI

Zowe CLI is a command-line interface that lets you interact with the mainframe in a familiar, off-platform format. Zowe

CLI helps to increase overall productivity, reduce the learning curve for developing mainframe applications, and exploit

the ease-of-use of off-platform tools. Zowe CLI lets you use common tools such as Integrated Development Environments

(IDEs), shell commands, bash scripts, and build tools for mainframe development. Though its ecosystem of plug-ins, you

can automate actions on systems such as IBM Db2, IBM CICS, and more. It provides a set of utilities and services for

users that want to become efficient in supporting and building z/OS applications quickly.

Zowe CLI provides the following benefits:

Enables and encourages developers with limited z/OS expertise to build, modify, and debug z/OS applications.

Fosters the development of new and innovative tools from a computer that can interact with z/OS. Some Zowe

extensions are powered by Zowe CLI, for example the Visual Studio Code Extension for Zowe.

Ensure that business critical applications running on z/OS can be maintained and supported by existing and

generally available software development resources.

Provides a more streamlined way to build software that integrates with z/OS.

Note: For information about software requirements, installing, and upgrading Zowe CLI, see Installing Zowe.

Zowe CLI capabilities

With Zowe CLI, you can interact with z/OS remotely in the following ways:

Interact with mainframe files: Create, edit, download, and upload mainframe files (data sets) directly from

Zowe CLI.

Submit jobs: Submit JCL from data sets or local storage, monitor the status, and view and download the output

automatically.

Issue TSO and z/OS console commands: Issue TSO and console commands to the mainframe directly from

Zowe CLI.

Integrate z/OS actions into scripts: Build local scripts that accomplish both mainframe and local tasks.

Produce responses as JSON documents: Return data in JSON format on request for consumption in other

programming languages.

For detailed information about the available functionality in Zowe CLI, see Zowe CLI Command Groups.

For information about extending the functionality of Zowe CLI by installing plug-ins, see Extending Zowe CLI.

More Information:

System requirements for Zowe CLI

Installing Zowe CLI

Zowe Explorer

Learn more

https://docs.zowe.org/stable/user-guide/ze-install
https://docs.zowe.org/stable/user-guide/installandconfig
https://docs.zowe.org/stable/user-guide/cli-using-understanding-core-command-groups
https://docs.zowe.org/stable/user-guide/cli-extending
https://docs.zowe.org/stable/user-guide/systemrequirements-cli
https://docs.zowe.org/stable/user-guide/cli-installcli

Zowe Explorer is a Visual Studio Code extension that modernizes the way developers and system administrators interact

with z/OS mainframes. Zowe Explorer lets you interact with data sets, USS files, and jobs that are stored on z/OS. The

extension complements your Zowe CLI experience and lets you use authentication services like API Mediation Layer. The

extension provides the following benefits:

Enables you to create, modify, rename, copy, and upload data sets directly to a z/OS mainframe.

Enables you to create, modify, rename, and upload USS files directly to a z/OS mainframe.

Provides a more streamlined way to access data sets, uss files, and jobs.

Letting you create, edit, and delete Zowe CLI zosmf compatible profiles.

Lets you use the Secure Credential Store plug-in to store your credentials securely in the settings.

Lets you leverage the API Mediation Layer token-based authentication to access z/OSMF.

For more information, see Information roadmap for Zowe Explorer.

Zowe Client Software Development Kits (SDKs)

The Zowe Client SDKs consist of programmatic APIs that you can use to build client applications or scripts that interact

with z/OS. The following SDKs are available:

Zowe Node.js Client SDK

Zowe Java Client SDK

Zowe Kotlin Client SDK

Zowe Python Client SDK

For more information, see Using the Zowe SDKs.

Zowe Chat (Technical Preview)

Zowe Chat is a chatbot that aims to enable a ChatOps collaboration model including z/OS resources and tools. Zowe

Chat enables you to interact with the mainframe from chat clients such as Slack, Microsoft Teams, and Mattermost. Zowe

Chat helps to increase your productivity by eliminating or minimizing the context switching between different tools and

user interfaces.

Zowe Chat key features

Manage z/OS resource in chat tool channels Check your z/OS job, data set, and USS files status directly in

chat tool channels. You can also issue z/OS console commands directly in the chat tool. You can drill down on a

specific job, data set, error code, and so on to get more details through button or drop-down menu that Zowe

Chat provides.

Execute Zowe CLI commands in chat tool channels

You can also issue Zowe CLI commands to perform operations such as help and z/OS resource management

including z/OS job, data set, USS file, error code, and console command. Theoretically, most of Zowe CLI

commands are supported as long as it is executable with single-submit.

Extensibility

Learn more

https://docs.zowe.org/stable/getting-started/user-roadmap-zowe-explorer
https://docs.zowe.org/stable/user-guide/sdks-using

Zowe Chat is extensible via plug-ins. You can extend Zowe Chat by developing plug-ins and contributing code to

the base Zowe Chat or existing plug-ins.

Security:

Zowe Chat makes use of z/OS SAF calls and supports the three main security management products on z/OS

(RACF, Top Secret, ACF2). You can log in to the chat client via enterprise standards, including two factor

authentication if required. The first time you issue a command to the Zowe Chat installed in the chat workspace,

it prompts you to log in with the mainframe ID using a one-time URL. Once authenticated against the mainframe

security, Zowe Chat securely caches in memory the relationship between your Chat tool ID and the mainframe

ID. Zowe Chat’s Security Facility will generate credentials for downstream API requests.

Display alerts:

Allows you to send alert or event to a channel in the chat tool in use. An event data model enables Zowe Chat

extenders to send alerts to a channel in the chat through Zowe Chat.

Read the following blogs to learn more about Zowe Chat:

Zowe Gets Chatty

Zowe Chat can make you more productive: user scenarios

Zowe Chat architecture

Zowe Chat is based on the Common Bot framework, which is required for the chat platform Slack, Mattermost, and

Microsoft Teams.

For more information, see Installing Zowe Chat and Using Zowe Chat.

https://medium.com/zowe/zowe-gets-chatty-842e3b548902
https://medium.com/zowe/zowe-chat-can-make-you-more-productive-user-scenarios-f52a9985dd50
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_install_overview
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_use_interact_methods

ZEBRA (Zowe Embedded Browser for RMF/SMF and APIs) - Incubator

ZEBRA Provides re-usable and industry compliant JSON formatted RMF/SMF data records, so that many other ISV SW and

users can exploit them using open-source SW for many ways.

For more information, see the ZEBRA documentation.

Zowe Explorer plug-in for IntelliJ IDEA

Zowe Explorer plug-in for IntelliJ IDEA is a smart and interactive mainframe code editing tool that allows you to browse,

edit, and create data on z/OS via z/OSMF REST API.

The plug-in helps to:

Start working with z/OS easily with no complex configurations

Organize data sets on z/OS, files on USS into working sets

Allocate data sets, create members, files and directories with different permissions

Perform operations like renaming, copying and moving data in a modern way

Edit data sets, files and members. Smart auto-save keeps your content both in the editor and on the mainframe in

sync

Create multiple connections to different z/OS systems

Perform all available operations with jobs

Work with TSO Console directly in the IDE

To learn more about the plug-in, you can start with Zowe Explorer plug-in for IntelliJ IDEA use cases.

Zowe Bill of Materials

For information about the Zowe Bill of Materials (BOM), see this link to the appendix.

https://github.com/zowe/zebra/tree/main/Documentation
https://docs.zowe.org/stable/user-guide/intellij-use-cases
https://docs.zowe.org/stable/appendix/bill-of-materials

Version: v3.3.x LTS

Zowe architecture

Zowe™ is a collection of components that together form a framework that makes Z-based functionality accessible across

an organization. Zowe functionality includes exposing Z-based components, such as z/OSMF, as REST APIs. The Zowe

framework provides an environment where other components can be included and exposed to a broader non-Z based

audience.

The following diagram illustrates the high-level Zowe architecture.

The diagram shows the default port numbers that are used by Zowe. These are dependent on each instance of Zowe and

are held in the Zowe YAML configuration file.

Zowe components can be categorized by location: server or client. While the client is always an end-user tool such as a

PC, browser, or mobile device, the server components can be further categorized by what machine they run on.

Zowe server components can be installed and run entirely on z/OS, but a subset of the components can alternatively run

on Linux or z/Linux via Docker. While on z/OS, many of these components run under UNIX System Services (USS). The

components that do not run under USS must remain on z/OS when using Docker in order to provide connectivity to the

mainframe.

Zowe architecture with high availability enablement on

Sysplex

The following diagram illustrates the difference in locations of Zowe components when deploying Zowe into a Sysplex

with high availability enabled as opposed to running all components on a single z/OS system.

Zowe has a high availability feature built in. To enable this feature, you can define the haInstances section in your YAML

configuration file.

The preceding diagram shows that ZWESLSTC has started two Zowe instances running on two separate LPARs that can be

on the same or different sysplexes.

Sysplex distributor port sharing enables the API Gateway 7554 ports to be shared so that incoming requests can be

routed to either the Gateway on LPAR A or LPAR B.

The discovery servers on each LPAR communicate with each other and share their registered instances, which allows

the API Gateway on LPAR A to dispatch APIs to components either on its own LPAR, or alternatively to components on

LPAR B. As indicated in the diagram, each component has two input lines: one from the API Gateway on its own LPAR

and one from the Gateway on the other LPAR. When one of the LPARs goes down, the other LPAR remains operating

within the Sysplex, thereby providing high availability to clients that connect through the shared port irrespective of

which Zowe instance is serving the API requests.

The zowe.yaml file can be configured to start Zowe instances on more than two LPARS, and also to start more than one

Zowe instance on a single LPAR, thereby providing a grid cluster of Zowe components that can meet availability and

scalability requirements.

The configuration entries of each LPAR in the zowe.yaml file control which components are started. This configuration

mechanism makes it possible to start just the desktop and API Mediation Layer on the first LPAR, and start all of the

Zowe components on the second LPAR. Because the desktop on the first LPAR is available to the Gateway of the second

LPAR, all desktop traffic is routed there.

The caching services for each Zowe instance, whether on the same LPAR, or distributed across the sysplex, are

connected to each other by the same shared VSAM data set. This arrangement allows state sharing so that each

instance behaves similarly to the user irrespective of where their request is routed.

Zowe architecture when running in Kubernetes cluster

The following diagram illustrates the difference in locations of Zowe components when deploying Zowe into a

Kubernetes cluster as opposed to running all components on a single z/OS system.

When deploying other server components into container orchestration software like Kubernetes, Zowe follows standard

Kubernetes practices. The cluster can be monitored and managed with common Kubernetes administration methods.

All Zowe workloads run on a dedicated namespace (zowe by default) to distinguish from other workloads in same

Kubernetes cluster.

Zowe has its own ServiceAccount to help with managing permissions.

Server components use similar zowe.yaml on z/OS, which are stored in ConfigMap and Secret , to configure and

start.

Server components can be configured by using the same certificates used on z/OS components.

Zowe claims its own Persistent Volume to share files across components.

Each server component runs in separated containers.

Components may register themselves to Discovery with their own Pod name within the cluster.

Zowe workloads use the zowe-launch-scripts initContainers step to prepare required runtime directories.

Only necessary components ports are exposed outside of Kubernetes with Service .

App Server

The App Server is a portable, extensible HTTPS server written in node.js. It can be extended with expressjs routers to

add REST or Websocket APIs. This server is responsible for the Zowe Application Framework, including the Desktop which

is described later in this page.

When the API Gateway is running, this server and the Desktop are accessible at

https://<ZOWE_HOST_IP>:7554/zlux/ui/v1/ . When the API Catalog is running, this server's API documentation is

accessible at the API Catalog tile Zowe Application Server , which can be viewed at

https://<ZOWE_HOST_IP>:7554/apicatalog/ui/v1/#/tile/zlux/zlux . When running on z/OS, this server uses the

jobname suffix of DS1.

ZSS

Zowe System Services (ZSS) is a z/OS native, extensible HTTPS server which allows you to empower web programs with

z/OS functionality due to ZSS' conveniences for writing REST and Websocket APIs around z/OS system calls. The Zowe

desktop delegates a number of its services to the ZSS server.

When the API Gateway is running, this server is accessible at https://<ZOWE_HOST_IP>:7554/zss/api/v1 . When the API

Catalog is running, this server's API documentation is accessible at the API Catalog tile Zowe System Services (ZSS)

which can be viewed at https://<ZOWE_HOST_IP>:7554/apicatalog/ui/v1/#/tile/zss/zss When running on z/OS, the

server uses the jobname suffix of SZ.

ZIS

ZIS is a z/OS native, authorized cross-memory server that allows a secure and convenient way for Zowe programs,

primarily ZSS, to build powerful APIs to handle z/OS data that would otherwise be unavailable or insecure to access from

higher-level languages and software. As part of Zowe's security model, this server is not accessible over a network but

rather empowers the less privileged servers. It runs as a separate STC, ZWESISTC to run the program ZWESIS01 under its

own user ID ZWESIUSR .

Unlike all of the servers described above which run under the ZWESLSTC started task as address spaces for USS

processes, the Cross Memory server has its own separate started task ZWESISTC and its own user ID ZWESIUSR that runs

the program ZWESIS01 .

API Mediation Layer

The API Mediation Layer is a collection of services for management and administration of APIs, and is comprised of the

following components that are described in detail below:

API Gateway

API Catalog

API Discovery Service

Caching Service

ZAAS

API Gateway

The API Gateway is a proxy server that routes requests from clients on its northbound or upstream edge, such as web

browsers or the Zowe command line interface, to servers on its southbound (downstream) edge that are able to provide

data to serve the request. The API Gateway is also responsible for generating the authentication token used to provide

single sign-on (SSO) functionality. The API Gateway homepage is https://<ZOWE_HOST_IP>:7554 . Following

authentication, this URL enables users to navigate to the API Catalog.

When the API Gateway is running, this server is accessible at https://<ZOWE_HOST_IP>:7554/ . When running on z/OS,

the server uses the jobname suffix of AG.

API Catalog

The API Catalog provides a list of the API services that have registered themselves as catalog tiles. These tiles make it

possible to view the available APIs from Zowe's southbound (downstream) servers, as well as test REST API calls.

When the API Gateway is running, this server is accessible at https://<ZOWE_HOST_IP>:7554/apicatalog/ui/v1 . When

the API Catalog is running, the API documentation of this server is accessible at the API Catalog tile Zowe Applications

which can be viewed at https://<ZOWE_HOST_IP>:7554/apicatalog/ui/v1/#/tile/apimediationlayer/apicatalog

When running on z/OS, the server uses the jobname suffix of AC.

API Discovery Service

The API Discovery Service acts as the registration service broker between the API Gateway and its southbound

(downstream) servers. This server can be accessed through the URL https://<ZOWE_HOST_IP>:7552 making it possible

to view a list of registered API services on the API discovery homepage.

When running on z/OS, the server uses the jobname suffix of AD.

Caching Service

The Caching service aims to provide an API which offers the possibility to store, retrieve, and delete data associated with

keys. The service is used only by internal Zowe applications and is not exposed to the internet. The Caching service URL

is https://<ZOWE_HOST_IP>:7555 . For more information about the Caching service, see Using the Caching Service.

When the API Gateway is running, this server is accessible at https://<ZOWE_HOST_IP>:7554/cachingservice/api/v1 .

When the API Catalog is running, the API documentation of this server is accessible at the API Catalog tile Zowe

Applications which can be viewed at https://<ZOWE_HOST_IP>:7554/apicatalog/ui/v1/#/tile/zowe/cachingservice .

When running on z/OS, the server uses the jobname suffix of CS.

Desktop Apps

Zowe provides a number of rich GUI web applications for working with z/OS. Such applications include the Editor for files

and datasets, the JES Explorer for jobs, and the IP Explorer for the TCPIP stack. You can access them through the Zowe

desktop.

https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation-caching-service

Version: v3.3.x LTS

Zowe Security Overview

Zowe implements comprehensive measures to secure mainframe services and data resources in transition and in rest:

Digital certificates are used by Zowe to facilitate secure electronic communication and data exchange between

people, systems, and devices online.

User identity is authenticated through modern authentication methods such as OIDC/Oauth2, JWT, or Personal

Access Token (PAT). Potentially with added Multi-Factor Authentication (MFA).

User access is authorized by System Authorization Facility (SAF) / External Security Manager (ESM).

Before installation and use of Zowe server-side components, it is practical to first learn about the core security features

built into the Zowe architecture.

This document provides an overview of the security technologies and features implemented by Zowe and links to Zowe

practical guides on how to achieve specific tasks and goals.

Note: If you are familiar with security technologies and concepts such as digital certificates, authentication,

authorization, and z/OS security, you may prefer to skip the introductory sections, and see the Additional resources

section at the end of this article to jump directly to the security related technical guidance provided on how to Set up

Zowe, Use Zowe or Extend Zowe.

Review the following sections to learn about how Zowe leverages modern security concepts and technologies:

Zowe Security Overview

Digital certificates

Digital certificates usage

User Authentication

Access Authorization

SAF resource check

Additional resources

Digital certificates

A Digital Certificate is an electronic file that is tied to a cryptographic (public and private) key pair and authenticates the

identity of a website, individual, organization, user, device or server. The de-facto standard is the x.509 family type of

certificates, which are the foundation behind Public Key Infrastructure (PKI) security. An X.509 certificate binds an

identity to a public key using a digital signature. A certificate contains an identity (a hostname, or an organization, or an

individual) and a public key (RSA, DSA, ECDSA, ed25519, etc.).

A certificate can be self-signed or issued by a Certificate Authority (CA). A CA is a trusted organization which provides

infrastructure for creation, validation and revocation of the certificates according to the contemporary security

standards.

NOTE

For testing purposes of Zowe, it is acceptable to use certificates issued and signed either by the company's local

Certificate Authority (CA), or even certificates issued by Zowe security tools and signed by generated CA specific for

the target technology platform. Use of certificates signed by generated CA, however, is not recommended for

production environments.

TIP

Review digital certificates terminology in the Zowe security glossary before getting started with configuring

certificates.

Digital certificates usage

Zowe uses digital certificates to secure the communication channel between Zowe components as well as between

Zowe clients and Zowe services. Digital client certificates can also be used to validate that the identity of a client-user

(the service user) is known to the mainframe security facility.

Next Steps:

For more information about the mechanics of digital certificate, see Using certificates.

To learn more about the various options for Zowe certificate configuration, see Zowe certificate configuration

overview under the Use tab.

User Authentication

Zowe always authenticates the users accessing its interfaces and services.

Zowe API ML implements a Single-Sign-On feature which allows users to authenticate once, whereby users can access all

mainframe resources that they are granted access rights to for the period in which the Zowe credentials remain valid.

API ML uses multiple authentication methods - Basic Auth (username-password), OIDC/OAuth2, Client certificates and

Personal Access Tokens, with possibility of strengthening of the security by adding external Multi-Factor Authentication

provider.

Next steps:

For details about authentication methods used by Zowe, see Zowe User Authentication.

Access Authorization

Authorization is the mechanism by which a security system grants or rejects access to protected resources.

Zowe fully relies on the SAF/ESM for control on the user access to mainframe resources. Authorization is processed by

SAF when a mainframe service attempts to access these services under the identity of the user authenticated by Zowe.

TIP

We recommend you review the core Authorization concepts by reading the related topics in the Zowe Security

Glossary.

SAF resource check

https://docs.zowe.org/stable/getting-started/appendix/zowe-security-glossary#certificate-concepts
https://docs.zowe.org/stable/user-guide/use-certificates
https://docs.zowe.org/stable/user-guide/configure-certificates
https://docs.zowe.org/stable/user-guide/configure-certificates
https://docs.zowe.org/stable/getting-started/zowe-security-authentication
https://en.wikipedia.org/wiki/Authorization
https://en.wikipedia.org/wiki/Authorization
https://docs.zowe.org/stable/appendix/zowe-security-glossary
https://docs.zowe.org/stable/appendix/zowe-security-glossary

In some cases Zowe API ML can check for the authorization of the user on certain endpoints even before the request is

propagated to the target mainframe service. Access to a SAF resource is checked with the installed z/OS External

Security Manager (ESM).

Next steps: For more information about the SAF resource check, see Configuring SAF resource checking.

Additional resources

For more information about getting started with certificates including determining your certificate configuration use

case, importing certificates, generating certificates and using certificates, see the following resources:

Certificate configuration scenarios

Generating a certificate

Importing and configuring a certificate

Configuring certificates

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-saf-resource-checking
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios
https://docs.zowe.org/stable/user-guide/generate-certificates
https://docs.zowe.org/stable/user-guide/import-certificates
https://docs.zowe.org/stable/user-guide/configure-certificates

Version: v3.3.x LTS

Glossary of Zowe Security terminology

Zowe implements a number of modern cyber-security concepts. Before getting started with configuring certificates, it is

useful to familiarize yourself with the basic terminology. Read the following definitions for explanation of the security

terms related to the core security technologies applied by Zowe:

Certificate concepts

Certificate verification

Zowe certificate requirements

Certificate setup types

Certificate concepts

Keystore

Truststore

PKCS12

z/OS Key Ring

Server certificate

Client certificate

Self-signed certificates

Keystore

The keystore is the location where Zowe stores certificates that Zowe servers present to clients and other servers. In the

simplest case, the keystore contains one private key and a certificate pair, which can then be used by each Zowe server.

When using a key ring, a single key ring can serve both as a keystore and as a truststore if desired.

Truststore

The truststore is used by Zowe to verify the authenticity of the certificates it encounters, whether communicating with

another server, with one of Zowe own servers, or with a client that presents a certificate. A truststore is composed of

Certificate Authority (CA) certificates which are compared against the CAs that an incoming certificate claims to be

signed by. To ensure a certificate is authentic, Zowe must verify that the certificate's claims are correct. Certificate

claims include that the certificate was sent by the host that the certificate was issued to, and that the cryptographic

signature of the authorities the certificate claims to have been signed by match those signatures found within the

truststore. This process helps to ensure that Zowe only communicates with hosts that are trusted and have been verified

as authentic.

When using a key ring, a single key ring can be both a keystore and a truststore if desired.

PKCS12

PKCS12 is a file format that allows a Zowe user to hold many cryptographic objects in one encrypted, password-

protected file. This file format is well-supported across platforms but because it is just a file, you may prefer to use z/OS

key rings instead of PKCS12 certificates for ease of administration and maintenance.

z/OS Key Ring

z/OS provides an interface to manage cryptographic objects in "key rings". As opposed to PKCS12 files, using z/OS key

rings allows the crypto objects of many different products to be managed in a uniform manner. z/OS key rings are still

encrypted, but do not use passwords for access. Instead, SAF privileges are used to manage access. Java's key ring API

requires that the password field for key ring access be set to "password", so despite not needing a password, you may

see this keyword.

Use of a z/OS keystore is the recommended option for storing certificates if system programmers are already familiar

with the certificate operation and usage. Creating a key ring and connecting the certificate key pair requires elevated

permissions. When the TSO user ID does not have the authority to manipulate key rings and users want to create a Zowe

sandbox environment or for testing purposes, the USS keystore is a good alternative.

Server certificate

Servers need a certificate to identify themselves to clients. Every time you go to an HTTPS website for example, your

browser checks the server certificate and its CA chain to verify that the server you reached is authentic.

Client certificate

Clients do not always need certificates when communicating with servers, but sometimes client certificates can be used

wherein the server verifies authenticity of the client similar to how the client verifies authenticity for the server. When

client certificates are unique to a client, this can be used as a form of authentication to provide convenient yet secure

login.

Self-signed certificates

A self-signed certificate is one that is not signed by a CA at all – neither private nor public. In this case, the certificate is

signed with its own private key, instead of requesting verification from a public or a private CA. This arrangement,

however, means there is no chain of trust to guarantee that the host with this certificate is the one you wanted to

communicate with. Note that these certificates are not secure against other hosts masquerading as the one you want to

access. As such, it is highly recommended that certificates be verified against the truststore for production

environments.

Certificate verification

When you configure Zowe, it is necessary to decide whether Zowe will perform verification of certificates against its

truststore. In the Zowe configuration YAML, the property zowe.verifyCertificates controls the verification behavior. It

can be DISABLED , NONSTRICT , or STRICT .

You can set this property either before or after certificate setup, but it is recommended to set

zowe.verifyCertificates before certificate setup because it affects the automation that Zowe can perform during

certificate setup.

DISABLED verification

NON-STRICT verification

STRICT verification

DISABLED verification

If you set zowe.verifyCertificates to DISABLED , certificate verification is not performed. This is not recommended for

security reasons, but may be used for proof of concept or when certificates within your environment are self-signed.

If you set DISABLED before certificate setup, Zowe will not automate putting z/OSMF trust objects into the Zowe

truststore. This can result in failure to communicate with z/OSMF if at a later time you enable verification. As such, it is

recommended to either set verification on by default, or to re-initialize the keystore if you choose to turn verification on

at a later point.

NON-STRICT verification

If you set zowe.verifyCertificates to NONSTRICT , certificate verification will be performed except for hostname

validation. Using this setting, the certificate Common Name or Subject Alternate Name (SAN) is not checked. Skipping

hostname validation facilitates deployment to environments where certificates are valid but do not contain a valid

hostname. This configuration is for development purposes only and should not be used for production.

STRICT verification

STRICT is the recommended setting for zowe.verifyCertificates . This setting performs maximum verification on all

certificates Zowe sees and uses a Zowe truststore.

Zowe certificate requirements

If you do not yet have certificates, Zowe can create self-signed certificates for you. This is not recommended for

production. Note that the certificates must be valid for use with Zowe.

Extended key usage

Hostname validity

z/OSMF access

Extended key usage

Zowe server certificates must either not have the Extended Key Usage (EKU) attribute, or have both the TLS Web

Server Authentication (1.3.6.1.5.5.7.3.1) and TLS Web Client Authentication (1.3.6.1.5.5.7.3.2) values

present within.

Some Zowe components act as a server, some as a client, and some as both - client and server. The component

certificate usage for each of these cases is controlled by the Extended Key Usage (EKU) certificate attribute. Zowe

components use a single certificate/the same certificate for client and server authentication. As such, it is necessary that

this certificate is valid for the intended usage/s of the component - client, server, or both. The EKU certificate extension

attribute is not required. If, however, the EKU certificate extension attribute is specified, it must be defined with the

intended usage/s. Otherwise, connection requests will be rejected by the other party.

Hostname validity

The host communicating with a certificate should have its hostname match one of the values of the certificate's

Common Name or Subject Alternate Name (SAN). If this condition is not true for at least one of the certificates seen by

Zowe, then you may wish to set NON-STRICT verification within Zowe configuration.

z/OSMF access

The z/OSMF certificate is verified according to Zowe Certificate verification setting, as is the case with any certificate

seen by Zowe. However, Zowe will also set up a trust relationship with z/OSMF within the Zowe truststore during

certificate setup automation if the certificate setting is set to any value other than DISABLED.

Certificate setup types

Whether importing or letting Zowe generate certificates, the setup for Zowe certificate automation and the configuration

to use an existing keystore and truststore depends upon the content format: file-based (PKCS12) or z/OS key ring-based.

File-based (PKCS12) certificate setup

z/OS key ring-based certificate setup

File-based (PKCS12) certificate setup

Zowe is able to use PKCS12 certificates that are stored in USS. Zowe uses a keystore directory to contain its certificates

primarily in PKCS12 (.p12 , .pfx) file format, but also in PEM (.pem) format. The truststore is in the truststore

directory that holds the public keys and CA chain of servers which Zowe communicates with (for example z/OSMF).

z/OS key ring-based certificate setup

Zowe is able to work with certificates held in a z/OS Key ring.

The JCL member .SZWESAMP(ZWEKRING) contains security commands to create a SAF keyring. By default, this key ring is

named ZoweKeyring . You can use the security commands in this JCL member to generate a Zowe certificate authority

(CA) and sign the server certificate with this CA. The JCL contains commands for all three z/OS security managers: RACF,

TopSecret, and ACF2.

There are two ways to configure and submit ZWEKRING :

Copy the JCL ZWEKRING member and customize its values.

Customize the zowe.setup.certificate section in zowe.yaml and use the zwe init certificate command.

You can also use the zwe init certificate command to prepare a customized JCL member using ZWEKRING as a

template.

A number of key ring scenarios are supported:

Creation of a local certificate authority (CA) which is used to sign a locally generated certificate. Both the CA and the

certificate are placed in the ZoweKeyring .

Import of an existing certificate already held in z/OS to the ZoweKeyring for use by Zowe.

Creation of a locally generated certificate and signed by an existing certificate authority. The certificate is placed in

the key ring.

Version: v3.3.x LTS

Zowe Certificates overview

In order to leverage certificates in Zowe, it is useful to review the key concepts of digital certificates-based security and

how Zowe implements this technology.

Zowe Certificates overview

Digital certificates definition

Digital certificates usage

Public key infrastructure

Transport Layer Security

Digital certificates types

Certificates storage

Keystore and Truststore

Keystores

Truststores

SAF Keyring

Digital certificates definition

A Digital Certificate is an electronic file that is tied to a cryptographic (public and private) key pair and authenticates the

identity of a website, individual, organization, user, device or server. The de facto standard is the x.509 family type of

certificates, which are the foundation behind Public Key Infrastructure (PKI) security.

An X.509 certificate binds an identity to a public key using a digital signature. A certificate contains an identity (a

hostname, or an organization, or an individual) and a public key (RSA, DSA, ECDSA, ed25519, etc.).

Certificates can be self-signed or issued by a Certificate Authority (CA). A CA is an organization which provides

infrastructure for the creation, validation, and revocation of certificates according to contemporary security standards.

NOTE

For testing purposes of Zowe, it is acceptable to use certificates issued and signed either by a company local CA, or

certificates that are signed by a CA created by Zowe security tools specific for the target technology platform. Use

of self-signed certificates is not recommended for production environments.

Digital certificates usage

Digital certificates according to x.509 standard specification are the cornerstone for securing communication channels

between clients and servers.

X.509 Digital certificates are primarly used to implement the following functions:

Verification of the identity of a sender/receiver of an electronic message during TLS handshake.

Encryption/Decryption of the messages between the sender and the receiver.

Identification of client-service users.

Zowe uses digital certificates as a foundational element for both communication and for identity security. Additionally,

Zowe provides a client identity validation functionality based on the ownership of the provided x.509 client certificate

and the mainframe security authentication mechanism.

For more information about how Zowe leverages certificates, see Zowe certificate usage.

To review the various Zowe certificate configuration options, see the Zowe certificate configuration overview.

Public key infrastructure

Public Key Infrastructure (PKI) is a key element of internet security. PKI is both the technology and processes that make

up the framework for encryption to protect and authenticate digital communications. PKI includes software, hardware,

policies, and procedures that are used to create, distribute, manage, store, and revoke digital certificates and manage

public-key encryption.

For detailed information about Public Key Infrastructure (PKI), see How Does PKI Work? in the Keyfactor documentation.

Visit the following link to learn more about PKI in the context of the z/OS Cryptographic Services.

Transport Layer Security

Transport Layer Security (TLS) is a networking cryptography protocol that provides authentication, privacy, and data

integrity between two communicating computer applications. TLS is a successor to Secure Socket Layer (SSL), which was

deprecated in 2015.

NOTE

While the transition from SSL 3.0 to TLS 1.0 occurred in 1999, the term SSL continues to be in common usage. At

the time of this publication, this technology is still oftentimes referred to as SSL/TLS.

TLS defines a client-server handshake mechanism to establish an encrypted and secure connection, to ensure the

authenticity of the communication between parties. During the handshake, the parties negotiate an exchange algorithm,

cipher suites, and exchange key material to establish a stateful encrypted connection. The exact steps of the TLS

handshake depend on the protocol version/s supported by the client and the server. The current version at the time of

this publication is 1.3, while version 1.2 is widely supported.

Being familiar with the key concepts and terms describing TLS security helps to properly set up the Zowe servers

network security and to troubleshoot configuration issues. The following list presents some of the key concepts and

terms:

Cipher Suite

Key Exchange

Symmetric Encryption

Asymmetric Encryption

Authentication

Basic vs mutually-authenticated handshake

The following diagram illustrates the TLS handshake steps:

https://docs.zowe.org/stable/user-guide/use-certificates
https://docs.zowe.org/stable/user-guide/configure-certificates
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://www.keyfactor.com/education-center/what-is-pki/#section2
https://www.ibm.com/docs/en/zos/2.3.0?topic=planning-introducing-pki-services
https://en.wikipedia.org/wiki/Transport_Layer_Security

The architecture of Zowe strictly relies on Transport Layer Security (TLS) to secure communication channels between

Zowe components, as well as between client applications and Zowe server components.

For more information, see the TLS requirements in Zowe API ML requirements.

NOTE

When installed on a mainframe system, Zowe is able to utilize AT-TLS implementation if supported by the

corresponding z/OS version/installation. For more information, see Configuring AT-TLS for Zowe server.

https://docs.zowe.org/stable/extend/extend-apiml/zowe-api-mediation-layer-security-overview#zowe-api-ml-tls-requirements
https://docs.zowe.org/stable/user-guide/configuring-at-tls-for-zowe-server

Digital certificates types

Zowe's architecture also distinguishes several aspects of PKI artifacts and their usage. Based on these artifacts and use-

cases, users can determine which certificate type to use. Some certificate types are specific for a given technology,

while others are generic and applicable across a wider spectrum of platforms.

Certificates come in various file formats and can be stored in different certificates storage types.

Digital X.509 certificates can be issued in various file formats such as PEM, DER, PKCS#7 and PKCS#12. PEM and

PKCS#7 formats use Base64 ASCII encoding, while DER and PKCS#12 use binary encoding.

The choice of certificate format depends on the technologies used in the implementation of the server components and

on the certificate storage type. For example, Java servers can use JKS and JCEKS keystores, which are specific for the

platform.

Zowe supports:

file-based PKCS12

PKCS12 certificates are the most general and widely deployed certificate format.

z/OS keyring-based keystore (JKS/JCEKS)

JKS/JCEKS certificates are specific types of certificates that depend on the Java environment.

NOTE

Java 9 and higher can also work with PKCS12 certificates.

Certificates storage

There are two options for the storage of certificates:

Keystore and Truststore combination

SAF Keyrings

Keystore and Truststore

Two key concepts to understand storage and verification of certificates are keystores and truststores.

Keystores are used to store certificates and the verification of these certificates.

Truststores are used to store the verification.

Zowe supports keystores and truststores that are either z/OS keyrings (when on z/OS) or PKCS12 files. By default, Zowe

reads a PKCS12 keystore from keystore directory in zowe.yaml. This directory contains a server certificate, the Zowe

generated certificate authority, and a truststore which holds intermediate certificates of servers that Zowe

communicates with (for example z/OSMF).

Keystores

Zowe can use PKCS12 certificates stored in USS to encrypt TLS communication between Zowe clients and Zowe z/OS

servers, as well as intra z/OS Zowe server to Zowe server communication. Zowe uses a keystore directory to contain its

external certificate, and a truststore directory to hold the public keys of servers which Zowe communicates with (for

example z/OSMF).

Truststores

Truststores are essential to provide secure communication with external services. The truststore serves as a secure

repository for storing certificates and trust anchors. In the context of Zowe, the truststore establishes the trust

relationships with external services as well as manages the relationship between Zowe's components and the

certificates presented by the external services.

In addition to utilizing the intra-address space of certificates, Zowe incorporates external services on z/OS to enhance

the encryption of messages transmitted between its servers. These external services, such as z/OSMF or Zowe

conformant extensions, have registered themselves with the API Mediation Layer.

API Mediation Layer, acting as an intermediary, validates these certificates. When API ML receives a certificate from an

external service, it examines each certificate in the certificate chain and compares it to the certificates in the truststore.

By leveraging the truststore, Zowe ensures that only trusted and authorized external services can establish

communication with its servers.

SAF Keyring

An alternative to certificate storage with keystores and trustores is to use a SAF Keyring. Use of a SAF Keyring is more

secure than PKCS12 files. This SAF keyring method also makes it possible to import an existing certificate or generate

new certificates with Top Secret, ACF2, and RACF.

For details about SAF Keyring, see the documentation API ML SAF Keyring in the article Certificate management in

Zowe API Mediation Layer.

https://docs.zowe.org/stable/extend/extend-apiml/certificate-management-in-zowe-apiml#api-ml-saf-keyring

Version: v3.3.x LTS

Zowe User Authentication

The API Mediation Layer provides multiple methods which clients can use to authenticate.

Zowe User Authentication

Authentication with JSON Web Tokens (JWT)

Authentication with client certificates

Authentication with Personal Access Token (PAT)

Multi-factor authentication (MFA)

Advanced Authentication Mainframe (AAM)

Authentication with JSON Web Tokens (JWT)

When the user successfully authenticates with API ML, the client receives a JWT in exchange. This token can be used by

the client to access REST services behind the API ML Gateway and also for subsequent user authentication. The access

JWT is signed with the private key that is configured in the Zowe Identity Provider's certificate store, regardless of

whether the token is in a keystore or keyring.

To utilize Single-Sign-On (SSO), the Zowe API ML client needs to provide an access token to API services in the form of

the cookie apimlAuthenticationToken , or in the Authorization: Bearer HTTP header as described in this

authenticated request example.

Authentication with client certificates

If the keyring or a truststore contains at least one valid certificate authority (CA) other than the CA of API ML, it is

possible to use client certificates issued by this CA to authenticate to API ML.

Authentication with Personal Access Token (PAT)

A Personal Access Token (PAT) is a specific scoped JWT with a configurable validity duration. The PAT authentication

method is an alternative to using a client certificate for authentication. It is disabled by default. To enable this

functionality, see Enabling single sign on for clients via personal access token configuration.

Benefits of PAT

Long-lived. The maximum validity is 90 days.

Scoped. Users are required to provide a scope. It is only valid for the specified services.

Secure. If a security breech is suspected, the security administrator can invalidate all the tokens based on criteria as

established by rules.

For more information about PAT, see Authenticating with a Personal Access Token documentation.

Multi-factor authentication (MFA)

https://docs.zowe.org/stable/user-guide/api-mediation-sso
https://github.com/zowe/sample-spring-boot-api-service/blob/master/zowe-rest-api-sample-spring/docs/api-client-authentication.md#authenticated-request
https://github.com/zowe/sample-spring-boot-api-service/blob/master/zowe-rest-api-sample-spring/docs/api-client-authentication.md#authenticated-request
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-personal-access-token
https://docs.zowe.org/stable/user-guide/api-mediation/authenticating-with-personal-access-token

Multi-factor authentication is provided by third-party products with which Zowe is compatible. The following are known to

work with Zowe:

Advanced Authentication Mainframe

IBM Z Multi-Factor Authentication.

Additionally, Zowe API ML can be configured to accept OIDC/OAuth2 user authentication tokens. In this particular case,

MFA support is built into the OIDC provider system. While mainframe MFA technology is not utilized in this case, an equal

level of security is provided.

Advanced Authentication Mainframe (AAM)

To add a dynamic element to the authentication, you can configure the Advanced Authentication Mainframe to enable

multi-factor authentication. For more information about AAM, see the Advanced Authentication Mainframe 2.0

documentation in Broadcom Tech Docs.

https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-advanced-authentication-mainframe/2-0.html
https://www.ibm.com/products/ibm-multifactor-authentication-for-zos
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-advanced-authentication-mainframe/2-0.html

Version: v3.3.x LTS

High Availability

In order to deploy Zowe in high availability (HA) mode, it is necessary to set up a Parallel Sysplex® environment. A

Parallel Sysplex is a cluster of z/OS® systems that cooperatively use certain hardware and software components to

achieve a high-availability workload processing environment. A production instance with this High Availability setup is

required to achieve the necessary availability.

Sysplex architecture and configuration

A Sysplex is required to make sure multiple Zowe instances can work together. For more configuration details, see

Configuring Sysplex for high availability.

To enable high availability when Zowe runs in a Sysplex, it is necessary to meet the following requirements:

The Zowe instance is installed on every LPAR.

The API services are registered to each Zowe instance.

A shared file system is created between LPARs in the Sysplex. For details, see How to share file systems in a Sysplex.

z/OSMF High Availability mode is configured. For details, see Configuring z/OSMF high availability in Sysplex.

The instance on every LPAR is started.

Configuration with high availability

The configuration for the specific instance is composed of the defaults in the main section and the overrides in the

haInstances section of the zowe.yaml configuration file.

In this section, ha-instance represents any Zowe high availability instance ID. Every instance has an internal id and a

section with overrides compared to the main configuration in the beginning of the zowe.yaml file. For more information,

see Zowe YAML server configuration reference.

Caching service setup and configuration

Zowe uses the Caching Service to centralize the state data persistent in high availability (HA) mode. This service can be

used to share information between services.

If you are running the Caching Service on z/OS, there are three storage methods with their own characteristics:

Infinispan (recommended)

Part of the Caching service

Does not need separate processes

Highly performant

VSAM (deprecated)

Familiar to z/OS engineers

Slow

Redis

Needs to run in Distributed world separately

https://docs.zowe.org/stable/user-guide/configure-sysplex
https://www.ibm.com/docs/en/zos/2.4.0?topic=planning-sharing-file-systems-in-sysplex
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-ha
https://docs.zowe.org/stable/appendix/zowe-yaml-configuration#yaml-configurations---hainstances
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-infinispan#infinispan-configuration
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-infinispan#infinispan-configuration
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-infinispan#infinispan-configuration
https://docs.zowe.org/stable/user-guide/configure-caching-service-ha#vsam-deprecated
https://docs.zowe.org/stable/user-guide/configure-caching-service-ha#vsam-deprecated
https://docs.zowe.org/stable/user-guide/configure-caching-service-ha#vsam-deprecated
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-redis#redis-configuration

Good for Kubernetes deployment

Version: v3.3.x LTS

Zowe FAQs

Check out the following FAQs to learn more about the purpose and function of Zowe™.

Zowe FAQ

Zowe CLI FAQ

Zowe Explorer FAQ

Zowe FAQ

What is Zowe?

Zowe is an open source project within the Open Mainframe Project that is part of The Linux Foundation. The Zowe

project provides modern software interfaces on IBM z/OS to address the needs of a variety of modern users. These

interfaces include a new web graphical user interface, a script-able command-line interface, extensions to existing

REST APIs, and new REST APIs on z/OS.

Who is the target audience for using Zowe?

Zowe technology can be used by a variety of mainframe IT and non-IT professionals. The target audience is primarily

application developers and system programmers, but the Zowe Application Framework is the basis for developing

web browser interactions with z/OS that can be used by anyone.

What language is Zowe written in?

Zowe consists of several components. The primary languages for API Mediation Layer are Java and JavaScript. Zowe

CLI, Explorer for VSCode, and Desktop are written in TypeScript. Zowe Explorer plug-in for IntelliJ IDEA is written in

Kotlin, ZSS is written in C, while the cross memory server is written in metal C.

What is the licensing for Zowe?

Zowe source code is licensed under EPL2.0. For license text click here and for additional information click here.

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

https://www.openmainframeproject.org/
https://www.linuxfoundation.org/
https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.txt
https://www.eclipse.org/legal/epl-2.0/faq.php

In the simplest terms (taken from the FAQs above) - "...if you have modified EPL-2.0 licensed source code and you

distribute that code or binaries built from that code outside your company, you must make the source code

available under the EPL-2.0."

Why is Zowe licensed using EPL2.0?

The Open Mainframe Project wants to encourage adoption and innovation, and also let the community share new

source code across the Zowe ecosystem. The open source code can be used by anyone, provided that they adhere

to the licensing terms.

What are some examples of how Zowe technology might be used by z/OS products

and applications?

The Zowe Desktop (web user interface) can be used in many ways, such as to provide custom graphical dashboards

that monitor data for z/OS products and applications.

Zowe CLI can also be used in many ways, such as for simple job submission, data set manipulation, or for writing

complex scripts for use in mainframe-based DevOps pipelines.

The increased capabilities of RESTful APIs on z/OS allows APIs to be used in programmable ways to interact with

z/OS services.

What is the best way to get started with Zowe?

Zowe provides a convenience build that includes the components released-to-date, as well as IP being considered

for contribution, in an easy to install package on Zowe.org. The convenience build can be easily installed and the

Zowe capabilities seen in action.

To install the complete Zowe solution, see Installing Zowe.

To get up and running with the Zowe CLI component quickly, see Zowe CLI quick start.

What are the prerequisites for Zowe?

Prerequisites vary by component used, but in most cases the primary prerequisites are Java and NodeJS on z/OS and

the z/OS Management Facility enabled and configured. For a complete list of software requirements listed by

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

https://zowe.org/
https://docs.zowe.org/stable/user-guide/installandconfig
https://docs.zowe.org/stable/getting-started/cli-getting-started

component, see System requirements for z/OS components and System requirements for Zowe CLI.

What's the difference between using Zowe with or without Docker?

Technical Preview

Docker is a download option for Zowe that allows you to run certain Zowe server components outside of z/OS. The

Docker image contains the Zowe components that do not have the requirement of having to run on z/OS: The App

server, API Mediation Layer, and the USS/MVS/JES Explorers.

Configurating components with Docker is similar to the procedures you would follow without Docker, however tasks

such as installation and running with Docker are a bit different, as these tasks become Linux oriented, rather than

utilizing Jobs and STCs.

NOTE

z/OS is still required when using the Docker image. Depending on which components of Zowe you use, you'll

still need to set up z/OS Management Facility as well as Zowe's ZSS and Cross memory servers.

Is the Zowe CLI packaged within the Zowe Docker download?

Technical Preview

At this time, the Docker image referred to in this documentation contains only Zowe server components. It is

possible to make a Docker image that contains the Zowe CLI, so additional Zowe content, such as the CLI, may have

Docker as a distribution option later.

If you are interested in improvements such as this one, please be sure to express that interest to the Zowe

community!

Does ZOWE support z/OS ZIIP processors?

Only the parts of Zowe that involve Java code are ZIIP enabled. The API Mediation Layer composed of the API

Gateway, Discovery and Catalog servers along with any Java-based services that work with them such as the Jobs

and Datasets servers are ZIIP enabled. Also, the CLI and VSCode Explorer make large use of z/OSMF, which is Java so

they are ZIIP enabled as well. More details on portions of Zowe which are Java (ZIIP) enabled can be found here.

Click to hide answer

Click to hide answer

Click to hide answer

https://docs.zowe.org/stable/user-guide/systemrequirements-zos
https://docs.zowe.org/stable/user-guide/systemrequirements-cli
https://docs.zowe.org/stable/getting-started/zowe-architecture#zowe-architecture

This leaves C and NodeJS code which are not ZIIP enabled, BUT, we have a tech preview available currently that

allows execution of Java as well as NodeJS code, on Linux or zLinux via Docker. With the tech preview, only the C

code remains on z/OS, which is not ZIIP enabled.

How is access security managed on z/OS?

Zowe components use typical z/OS System authorization facility (SAF) calls for security.

How is access to the Zowe open source managed?

The source code for Zowe is maintained on an Open Mainframe Project GitHub server. Everyone has read access.

"Committers" on the project have authority to alter the source code to make fixes or enhancements. A list of

Committers is documented in Committers to the Zowe project.

How do I get involved in the open source development?

The best way to get started is to join a Zowe Slack channel and/or email distribution list and begin learning about

the current capabilities, then contribute to future development.

For more information about emailing lists, community calendar, meeting minutes, and more, see the Zowe

Community GitHub repo.

For information and tutorials about extending Zowe with a new plug-in or application, see Extending on Zowe Docs.

Where can I submit an idea for a future enhancement to Zowe?

Go to the Zowe Community ReadMe file for information on requesting a bug fix or enhancement. Members of the

Zowe community can then review your issue to post feedback or vote their support. Issues are continuously

monitored by Zowe squads for improvement ideas.

When will Zowe be completed?

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

https://www.zowe.org/download.html
https://github.com/zowe/community/blob/master/COMMITTERS.md
https://slack.openmainframeproject.org/
https://github.com/zowe/community/blob/master/README.md
https://github.com/zowe/community/blob/master/README.md
https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://github.com/zowe/community#submit-an-issue

Zowe will continue to evolve in the coming years based on new ideas and new contributions from a growing

community.

Can I try Zowe without a z/OS instance?

IBM has contributed a free hands-on tutorial for Zowe. Visit the Zowe Tutorial page to learn about adding new

applications to the Zowe Desktop and and how to enable communication with other Zowe components.

The Zowe community is also currently working to provide a vendor-neutral site for an open z/OS build and sandbox

environment.

Zowe is also compatible with IBM z/OSMF Lite for non-production use. For more information, see Configuring z/OSMF

Lite on Zowe Docs.

Zowe CLI FAQ

Why might I use Zowe CLI versus a traditional ISPF interface to perform mainframe

tasks?

For developers new to the mainframe, command-line interfaces might be more familiar than an ISPF interface. Zowe

CLI lets developers be productive from day-one by using familiar tools. Zowe CLI also lets developers write scripts

that automate a sequence of mainframe actions. The scripts can then be executed from off-platform automation

tools such as Jenkins automation server, or manually during development.

With what tools is Zowe CLI compatible?

Zowe CLI is very flexible; developers can integrate with modern tools that work best for them. It can work in

conjunction with popular build and testing tools such as Gulp, Gradle, Mocha, and Junit. Zowe CLI runs on a variety

of operating systems, including Windows, macOS, and Linux. Zowe CLI scripts can be abstracted into automation

tools such as Jenkins and TravisCI.

Where can I use the CLI?

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

https://developer.ibm.com/tutorials/zowe-step-by-step-tutorial/
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-lite
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-lite

Usage Scenario Example

Interactive use, in a command

prompt or bash terminal.
Perform one-off tasks such as submitting a batch job.

Interactive use, in an IDE

terminal

Download a data set, make local changes in your editor, then upload the

changed dataset back to the mainframe.

Scripting, to simplify repetitive

tasks

Write a shell script that submits a job, waits for the job to complete, then

returns the output.

Scripting, for use in automated

pipelines

Add a script to your Jenkins (or other automation tool) pipeline to move

artifacts from a mainframe development system to a test system.

Which method should I use to install Zowe CLI?

You can install Zowe CLI using the following methods:

Local package installation: The local package method lets you install Zowe CLI from a zipped file that

contains the core application and all plug-ins. When you use the local package method, you can install Zowe CLI

in an offline environment. We recommend that you download the package and distribute it internally if your site

does not have internet access.

Online NPM registry: The online NPM (Node Package Manager) registry method unpacks all of the files that

are necessary to install Zowe CLI using the command line. When you use the online registry method, you need

an internet connection to install Zowe CLI

How can I get Zowe CLI to run faster?

Zowe CLI runs significantly faster when you run it in daemon mode. Daemon mode significantly improves the

performance of Zowe CLI commands by running Zowe CLI as a persistent background process. For more

information, see Using daemon mode.

How can I manage profiles for my projects and teams?

Click to hide answer

Click to hide answer

Click to hide answer

https://docs.zowe.org/stable/user-guide/cli-using-using-daemon-mode

Zowe CLI V2 introduces team profiles. Using team profiles helps to improve the initial setup of Zowe CLI by

making service connection details easier to share and easier to store within projects. For more information, see

Using team profiles.

Does Zowe CLI support multi-factor authentication (MFA)?

Yes, Zowe CLI supports MFA through the API Mediation Layer. Without API ML, an MFA code can be used in place of a

password for testing single requests, but storing the MFA code for future requests does not work because the code

expires rapidly.

When mainframe services are routed through API ML, users can log in to the API ML gateway with an MFA code to

obtain a long-lived API ML authentication token that can be stored for future requests.

How can I get help with using Zowe CLI?

You can get help for any command, action, or option in Zowe CLI by issuing the command 'zowe --help'.

For information about the available commands in Zowe CLI, see Command Groups.

If you have questions, the Zowe Slack space is the place to ask our community!

How can I use Zowe CLI to automate mainframe actions?

You can automate a sequence of Zowe CLI commands by writing bash scripts. You can then run your scripts in

an automation server such as Jenkins. For example, you might write a script that moves your Cobol code to a

mainframe test system before another script runs the automated tests.

Zowe CLI lets you manipulate data sets, submit jobs, provision test environments, and interact with mainframe

systems and source control management, all of which can help you develop robust continuous

integration/delivery.

How can I contribute to Zowe CLI?

As a developer, you can extend Zowe CLI in the following ways:

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles
https://docs.zowe.org/stable/user-guide/cli-using-understanding-core-command-groups
https://openmainframeproject.slack.com/

Build a plug-in for Zowe CLI

Contribute code to the core Zowe CLI

Fix bugs in Zowe CLI or plug-in code, submit enhancement requests via GitHub issues, and raise your ideas with

the community in Slack.

Note: For more information, see Developing for Zowe CLI.

Zowe Explorer FAQ

Why might I use Zowe Explorer versus a traditional ISPF interface to perform

mainframe tasks?

The Zowe Explorer VSCode extension provides developers new to the mainframe with a modern UI, allowing you to

access and work with the data set, USS, and job functionalities in a fast and streamlined manner. In addition, Zowe

Explorer enables you to work with Zowe CLI profiles and issue TSO/MVS commands.

How can I get started with Zowe Explorer?

First of all, make sure you fulfill the following Zowe Explorer software requirements:

Get access to z/OSMF.

Install VSCode.

Configure TSO/E address space services, z/OS data set, file REST interface, and z/OS jobs REST interface. For

more information, see z/OS Requirements.

For development, install Node.js v14.0 or later.

Once the software requirements are fulfilled, create a Zowe Explorer profile.

Follow these steps:

1. Navigate to the explorer tree.

2. Click the + button next to the DATA SETS, USS, or JOBS bar.

3. Select the Create a New Connection to z/OS option.

4. Follow the instructions, and enter all required information to complete the profile creation.

You can also watch Getting Started with Zowe Explorer to understand how to use the basic features of the extension.

Where can I use Zowe Explorer?

Click to hide answer

Click to hide answer

https://docs.zowe.org/stable/extend/extend-cli/cli-devTutorials#how-to-contribute
https://code.visualstudio.com/
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf#z-os-requirements
https://nodejs.org/en/download/
https://www.youtube.com/watch?v=G_WCsFZIWt4

You can use Zowe Explorer either in VSCode or in Theia. For more information about Zowe Explorer in Theia, see

Developing for Theia.

How do I get help with using Zowe Explorer?

Use the Zowe Explorer channel in Slack to ask the Zowe Explorer community for help.

Open a question or issue directly in the Zowe Explorer GitHub repository.

How can I use Secure Credential Storage for Zowe Explorer?

The Secure Credential Store Plug-in is no longer required for Zowe Explorer.

Secure credential storage functionality is now contained in the Zowe CLI core application, which stores credentials

securely by default.

What if Secure Credential Storage does not work in my environment?

When an environment does not support Secure Credential Storage, it is possible to disable it. See Disabling Secure

Credential Storage of credentials for more information.

What if I do not want Zowe Explorer to store my credentials?

Although not recommended in all cases, it is possible to disable Zowe Explorer's credential management

functionality. See Preventing Zowe Explorer from storing credentials for more information.

What types of profiles can I create for Zowe Explorer?

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

https://marketplace.visualstudio.com/items?itemName=Zowe.vscode-extension-for-zowe
https://github.com/zowe/zowe-explorer-vscode/wiki/Developing-for-Theia
https://openmainframeproject.slack.com/archives/CUVE37Z5F
https://github.com/zowe/zowe-explorer-vscode/issues
https://docs.zowe.org/stable/user-guide/ze-usage#disabling-secure-credential-storage-of-credentials
https://docs.zowe.org/stable/user-guide/ze-usage#disabling-secure-credential-storage-of-credentials
https://docs.zowe.org/stable/user-guide/ze-usage#preventing-zowe-explorer-from-storing-credentials

Zowe Explorer V2 supports using Service Profiles, Base Profiles, and Team Profiles. For more information, see Using

V1 profiles and Team configurations in the Using Zowe CLI section.

Does Zowe Explorer support multi-factor authentication (MFA)?

Yes, Zowe Explorer supports MFA through the API Mediation Layer. Without API ML, an MFA code can be used in place

of a password for testing single requests, but storing the MFA code for future requests does not work because the

code expires rapidly.

When mainframe services are routed through API ML, users can log in to the API ML gateway with an MFA code to

obtain a long-lived API ML authentication token that can be stored for future requests.

Is it possible to change the detected language of a file or data set opened in Zowe

Explorer?

Yes, you can configure Visual Studio Code to use a specific language for a particular file extension or data set

qualifier. To set file associations, see Add a file extension to a language.

How can I use FTP as my back-end service for Zowe Explorer?

See the Zowe FTP extension README in GitHub for information about how to install FTP from the Visual Studio Code

Marketplace and use it as your back-end service for working with UNIX files.

How can I contribute to Zowe Explorer?

As a developer, you may contribute to Zowe Explorer in the following ways:

Build a Zowe Explorer extension.

Contribute code to core Zowe Explorer.

Fix bugs in Zowe Explorer, submit enhancement requests via GitHub issues, and raise your ideas with the

community in Slack.

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

https://docs.zowe.org/stable/user-guide/cli-using-using-profiles-v1
https://docs.zowe.org/stable/user-guide/cli-using-using-profiles-v1
https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles
https://code.visualstudio.com/docs/languages/overview#_add-a-file-extension-to-a-language
https://github.com/zowe/zowe-explorer-ftp-extension/#readme

Note: For more information, see Extending Zowe Explorer.

Zowe Explorer plug-in for IntelliJ IDEA FAQ

Why would I use the plug-in versus a traditional ISPF interface to perform mainframe

tasks?

Zowe Explorer plug-in for IntelliJ IDEA allows you to access and work with data sets, members and jobs directly from

your IntelliJ-based IDE, such as IntelliJ IDEA, PyCharm, Android Studio, etc.

How can I get started with Zowe Explorer plug-in for IntelliJ IDEA?

Install the plug-in in your IntelliJ-based IDE directly from marketplace or download it from here.

Where can I use Zowe Explorer plug-in for IntelliJ IDEA?

You can use it in any IntelliJ-based IDE, such as IntelliJ IDEA, PyCharm, Android Studio, etc.

How do I get help with using Zowe Explorer plug-in for IntelliJ IDEA?

You can start with the Use cases section to learn about use cases and how to install and use the plug-in. Also, you

can ask any questions in our Zowe Slack channel (#zowe-explorer-intellij).

How can I contribute to Zowe Explorer plug-in for IntelliJ IDEA?

If you have ideas on how to improve the plug-in, or have an issue/bug fix in mind, visit the contribution guide. Also,

you can ask for help in our Zowe Slack channel (#zowe-explorer-intellij).

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

https://github.com/zowe/zowe-explorer-vscode/wiki/Extending-Zowe-Explorer
https://plugins.jetbrains.com/plugin/18688-zowe-explorer
https://docs.zowe.org/stable/user-guide/intellij-use-cases
https://openmainframeproject.slack.com/archives/C020BGPSU0M
https://github.com/zowe/zowe-explorer-intellij/blob/main/CONTRIBUTING.md
https://openmainframeproject.slack.com/archives/C020BGPSU0M

Version: v3.3.x LTS

Zowe glossary

This glossary is part of a growing list of terms and concepts used throughout the spectrum of Zowe projects, which

includes both technical as well as organizational terms that are specific to Zowe.

If there is a term you are looking for that is not included in this glossary that you think should be included, please send a

message to the Zowe Docs squad in the #zowe-doc Slack channel to discuss updating this glossary.

NOTE

Security is central to a wide range of functionalities in Zowe and includes numerous terms and concepts specific to

security. As such, a separate glossary of Zowe Security terminology is available in the Overview section under Zowe

security. For more information, see the Glossary of Zowe Security teminology.

For an overview of security in Zowe, see the Zowe Security policy on zowe.org.

All Core Zowe Projects

Zowe API Mediation Layer (API ML)

Provides a reverse proxy and enables REST APIs by providing a single point of access for mainframe service REST APIs

like MVS Data Sets, JES, as well as working with z/OSMF. API ML has dynamic discovery capability for these services and

Gateway is also responsible for generating the authentication token used to provide single sign-on (SSO) functionality.

API Catalog

Displays API services that have been discovered by the API Mediation Layer.

API Discovery Service

As the central repository of active services in the API Mediation Layer ecosystem, the API Discovery Service

continuously collects and aggregates service information to provide status updates. This enables the discoverability

of services.

API Gateway

A proxy server that routes requests from clients on its northbound edge (such as web browsers or Zowe CLI) to

servers on its southbound edge that are able to provide data to serve the request.

Also responsible for generating the authentication token used to provide single sign-on (SSO) functionality.

Caching Service

Designed for Zowe components in a high availability (HA) configuration. The caching service supports the HA of all

components within Zowe, allowing components to be stateless by providing a mechanism to offload their state to a

location accessible by all instances of the service, including those which just started.

Click here for descriptions of the various components that form the API Mediation Layer.

https://openmainframeproject.slack.com/archives/CC961JYMQ
https://docs.zowe.org/stable/appendix/zowe-security-glossary
https://www.zowe.org/security

Zowe Application Framework

Modernizes and simplifies working on the mainframe via a web visual interface. Functionality is provided through apps

and a desktop user experience called the Zowe Desktop. Base functionality includes apps to work with JES, MVS Data

Sets, Unix System Services, as well as a 3270 Terminal, Virtual Terminal, and an Editor.

Zowe CLI

Provides a command-line interface that lets you interact with the mainframe remotely and use common tools such as

Integrated Development Environments (IDEs), shell commands, bash scripts, and build tools for mainframe

development. The core set of commands includes working with data sets, USS, JES, as well as issuing TSO and console

commands. The Zowe CLI is incredibly popular in modern mainframe education.

Zowe client projects

Includes all the Zowe projects, or components, that are installed on the user's PC. Also known as Zowe client-side

projects or Zowe client-side components.

Examples include Zowe CLI, Zowe Explorer for Visual Studio Code, Zowe Explorer for IntelliJ IDEA, and Zowe Client SDKs.

Zowe Client SDKs

Allow extenders to build applications on top of existing programmatic APIs such as z/OSMF. Currently supported client

SDKs include Node.js (core), Kotlin, Python, Swift, and Java.

Zowe Explorer

A Visual Studio Code extension that modernizes the way developers and system administrators interact with z/OS

mainframes. Zowe Explorer lets you interact with data sets, USS files, and jobs that are stored on z/OS. Zowe Explorer is

incredibly popular in modern mainframe education.

Zowe server components

Includes all the Zowe components that are installed on z/OS. Also known as Zowe z/OS components or Zowe server-side

components.

Zowe Systems Services Server (ZSS)

Working closely with ZIS, ZSS serves as one of the primary, authenticated back-ends that communicates with z/OS and

provides Zowe with a number of APIs: z/OS Unix files and data sets, control of the plug-ins and services lifecycle, security

management, etc. The Zowe Desktop especially delegates a number of its services to ZSS which it accesses through the

default http port 7557 .

ZSS is written in C and uses native calls to z/OS to provide its services.

Architecture and other components

Configuration Manager

Works closely with the Zowe Launcher to manage the configuration of Zowe across its lifecycle. Interacted with primarily

via zwe command

Core component

The definition of a core component is governed by the Technical Steering Committee (TSC). Typically a core component

is a packaged, foundational piece that is part of base Zowe.

From the perspective of a conformant support provider, providing support for Zowe refers to providing support for each

core component of Zowe (although providers may place their own limitations on what they support).

A core component is usually actively maintained by one or more squads. A component has a component manifest file

that helps identify it with the rest of Zowe.

Explorer

When used by itself, Explorer often refers to the core Zowe component for Visual Studio Code, Zowe Explorer. However,

the term "Explorer" is often also a part of multiple titles across Zowe.

Extension

Generally used to describe additional, non-default Zowe plug-ins or components. See plug-in for additional context.

Imperative CLI Framework

Also known as Imperative, the code framework that is used to build plug-ins for Zowe CLI.

Plug-in

A more general term used to describe a modular piece of some component. Depending on the component or squad

context, a plug-in is sometimes referred to as an app, extension, plug-in, etc.

A component may have multiple plug-ins, sometimes working together to form a single purpose or user experience, but

an individual plug-in belongs to a single component. See extension for additional context.

Secure credential store

Secret storage functionality embedded in core Zowe CLI and Zowe Explorer starting from Zowe V2.

The secure credential store securely stores configured private credentials in the secure vault available on your client

operating system. Examples of such vaults include the Windows Credential Manager on Microsoft Windows, and

Passwords and Keys on Ubuntu Linux.

Secure credential store can also refer to a separate plug-in of the same name used in Zowe V1 CLI.

Service

A service provides one or more APIs, and is identified by a service ID. Note that sometimes the term service name can

be used to mean service ID.

The default service ID is provided by the service developer in the service configuration file. A system administrator can

replace the service ID with the specific name of a deployment environment through the use of additional configuration

that is external to the service deployment unit. Most often, this is configured in a JAR or WAR file.

https://docs.zowe.org/stable/appendix/server-component-manifest/

Services are deployed using one or more service instances, which share the same service ID and implementation.

Team configuration

This method saves team-specific profiles in the zowe.config.json configuration file and user-specific profiles in the

zowe.config.user.json configuration file. These profiles are stored locally in the user's client OS file system (for

example, when using Zowe Explorer for Visual Studio Code or IntelliJ IDEA) and determine whether they are applied

globally (to all projects) or per project. This configuration manages Zowe CLI and Explorer settings on the local client and

does not store or affect z/OS configurations.

Web Explorers

A suite of web apps on the Zowe Desktop that are part of the Zowe Application Framework and the core Zowe server

installation. They include JES, MVS, USS, and IP Explorers. Not related to Zowe Explorer.

Versions

Zowe is a collection of projects that, together, are released in iterative versions. While each Zowe project is developed

for a particular version of Zowe (e.g. API ML V1 or API ML V2), each project can also have its own particular version

series. For example, Zowe CLI v7.24.1 is part of Zowe v2.16.

The Zowe V1 suite of components is in maintenance state. The Zowe V2 suite of components is in active state, whereby

new features are being actively added in every minor V2 release. Zowe V3 is scheduled for release on Sept. 30, 2024, at

which time Zowe V1 reaches its End of Support phase.

To learn more about how versioning is applied in Zowe, see Understanding Zowe release versions.

ZIS (Zowe Interprocess Services)

An APF-authorized server application that provides privileged services to Zowe in a secure manner. For security reasons,

it is not an HTTP server. Instead, this server has a trust relationship with ZSS.

Other Zowe components can work through ZSS in order to handle z/OS data that would otherwise be unavailable or

insecure to access from higher-level languages and software.

zLUX (V1 only)

This is an older, no-longer-used name for the Zowe Application Framework. Note that unreasonable-to-change references

still exist (such as GitHub repository names). Other synonyms/similar names include MVD (Mainframe Virtual Desktop)

and zlux.

Zowe App Server

Refers to the Node.js-powered Application Server and is part of the Zowe Application Framework core project. The Zowe

App Server hosts the web content of the Application Framework and provides the Zowe Desktop, which is accessible

through a web browser.

Zowe Chat

An incubator focused on working with the mainframe from popular chat clients such as Mattermost®, Microsoft Teams®,

and Slack®.

Zowe Component

https://docs.zowe.org/stable/troubleshoot/troubleshoot-zowe-release

Zowe is a collection of both client and server code. You can install only some of Zowe, or all of it, depending on your

needs. Zowe splits the major sections of the code into components, with each serving an important purpose.

Server components are packaged in a standardized way to include all services and plug-ins in one deliverable.

Extensions to Zowe can also be delivered as third-party server components. For more information about how these

extensions can use a manifest file, see Zowe component manifest.

Zowe Desktop

Refers to the desktop UI that is part of the Zowe Application Framework core component. The Zowe Desktop includes a

number of apps that run inside the App Framework, such as JES, MVS, and USS Explorers, as well as a 3270 Terminal,

Virtual Terminal, and an Editor.

Zowe Embedded Browser for RMF/SMF and APIs (ZEBRA)

Provides re-usable and industry-compliant JSON-formatted RMF/SMF data records so that other ISV SW and users can

exploit them using open-source SW for many ways. For more information, see the ZEBRA documentation or visit Real

ZEBRA Use Cases in Large Production Systems in the Open Mainframe Project website.

Zowe install packaging

The set of programs (for example, zwe command) and utilities (for example, JCL, scripts) which manage the Zowe server

configuration and components. The infrastructure standardizes the packaging of components and controls how they are

started, stopped, and how configuration is provided to them.

Zowe Explorer plug-in for IntelliJ IDEA

Uses the IntelliJ IDEA platform IDEs to provide the ability to work with z/OS data sets, USS files, to explore and manage

JES jobs and to work with TSO Console.

Zowe Launcher

A server-side program necessary for high availability/fault tolerance (HA/FT). It starts the Zowe server components and

monitors their processes so that if a component fails to start or crashes, the launcher restarts the component.

Component restart has limits to prevent loops in the event that a component that has uncorrectable problems.

Community

Open Mainframe Project (OMP)

An organization which hosts and promotes development of open source software for the benefit of the IBM z mainframe

community, including but not limited to z/OS. Zowe(.org) is one of several programs in this project. See the Open

Mainframe Project website for more information.

Squad

A group of people contributing and participating in the Zowe project. Such a group owns one or more projects.

Every squad is required to have a representative on the Technical Steering Committee (TSC), and participate in relevant

working groups. For more information about active Zowe squads, see Current squads.

Technical Steering Committee (TSC)

https://docs.zowe.org/stable/extend/packaging-zos-extensions/#zowe-component-manifest
https://github.com/zowe/zebra/tree/main/Documentation
https://openmainframeproject.org/blog/real-zebra-use-cases-in-large-production-systems-video/
https://openmainframeproject.org/blog/real-zebra-use-cases-in-large-production-systems-video/
https://www.openmainframeproject.org/
https://www.openmainframeproject.org/
https://github.com/Zowe/community/blob/master/Technical-Steering-Committee/squads.md#current-squads

The governing body that is responsible for the overall planning, development, and technical feedback assessment of

Zowe. The TSC meets every Thursday to go over squad updates and discuss issues regarding the Zowe initiative. To

receive notifications of upcoming meetings and agendas, join the TSC Slack channel.

Zowe Conformance Program

The Zowe Support Provider Conformance Program gives vendors the ability to showcase their Zowe support

competencies via well-defined criteria. It is administered by the Linux Foundation and Open Mainframe Project.

Installation and configuration

Base profile

An object in a team configuration file that stores connection information for use with one or more services. Depending on

your configuration file type, the base profile can be either a global_base or project_base profile. Your service profiles

can pull information from base profiles as needed, to specify a common username and password only once, for example.

The base profile can optionally store tokens to connect to Zowe API Mediation Layer, which improves security by

enabling Multi-Factor Authentication (MFA) and Single Sign-on (SSO).

Convenience build

The Zowe installation file for Zowe z/OS components that is distributed as a PAX file in z/OS Unix and contains the

runtimes and scripts to install and launch the z/OS runtime. It is the most common method to install Zowe.

Extension directory

The standard z/OS Unix directory where Zowe extensions, or additional components, plug-ins, etc., outside the default

install are stored. It is specified in the Zowe configuration file via zowe.extensionDirectory .

Log directory

The standard z/OS Unix directory where Zowe logs are stored. It is specified in the Zowe configuration file via

zowe.logDirectory .

OMVS

Use of z/OS UNIX services requires a z/OS UNIX security context, referred to as an OMVS segment, for the user ID

associated with any unit of work requesting these services. To learn more consult IBM Documentation.

Parent profile

An object in a team configuration file that groups service profiles together that share the same properties and values (for

example, hostname or credentials). A parent profile makes it possible to define properties for its group of service profiles

in one place rather than duplicating values throughout a configuration.

Runtime directory

The z/OS Unix directory for the Zowe runtime, specified in the Zowe configuration file via zowe.runtimeDirectory . Also

the parent directory of the zwe command.

Service profile

https://openmainframeproject.slack.com/archives/C01H6CY0ZD1
https://www.ibm.com/docs/en/zos/2.5.0?topic=profiles-omvs-segment-in-user

An object in a team configuration file that stores connection information for a specific mainframe service, such as IBM

z/OSMF. Plug-ins can introduce other service profile types, such as the CICS profile to connect to IBM CICS.

SMP/E

The Zowe installation for Zowe z/OS components that is distributed as an SMP/E package, identified by FMID, and

contains the runtimes and the scripts to install and launch the z/OS runtime. First the initial package is installed, and

then a PTF is applied. SMP/E is the second most common method to install Zowe.

SMP/E with z/OSMF workflow

A similar process as SMP/E, except this installation method is performed through the z/OSMF web interface as a Zowe

SMP/E workflow. SMP/E with z/OSMF workflow is the third most common way to install Zowe.

Started task (STC)

A type of runnable/running program on z/OS and the primary way to run Zowe. For more information about when to use

started tasks, see Determining whether to use a started task.

Zowe V2 has two started tasks:

ZWESLSTC: The primary Zowe STC. In Zowe V1, it was just the HA/FT primary STC.

ZWESISTC: The STC for the Zowe cross memory server (referred to as ZIS, formally XMEM)

ZWESVSTC (outdated): V1 only

Workspace directory

The standard z/OS Unix directory where Zowe server component and extension configuration is stored. In V1, this

directory was located within the instance directory. In V2 it is specified in the Zowe configuration file via

zowe.workspaceDirectory .

Zowe configuration file

The Zowe V2 replacement for instance.env in V1. The Zowe configuration file is a YAML file that is required to configure

the Zowe runtime. The zowe YAML file is used across every step in Zowe, from configuration to install to start.

Sometimes this configuration file is referred to as the Zowe.yaml file. For more information on various attributes, see

Zowe YAML configuration file reference.

Zowe instance directory (V1 only)

Also known as <INSTANCE_DIR> , this directory contains information that is specific to a launch of Zowe. It contains

configuration settings that determine how an instance of the Zowe server is started, such as ports that are used or paths

to dependent Java and Node.js runtimes.

The instance directory also contains a log directory where different microservices write trace data for diagnosis, as well

as a workspace and shell scripts to start and stop Zowe.

Zowe runtime

Refers to the full, unarchived set of binaries, executable files, scripts, and other elements that are run when Zowe is

started.

https://docs.zowe.org/stable/appendix/zowe-glossary#smpe
https://www.ibm.com/docs/en/zos/2.1.0?topic=tasks-determining-whether-use-started-task
https://docs.zowe.org/stable/appendix/Zowe-yaml-configuration/

Sample library

The cross memory server runtime artifacts, the JCL for the started tasks, the parmlib, and members containing sample

configuration commands are found in the SZWESAMP PDS sample library. For more information, see PDS sample library

and PDSE load library.

ZWEADMIN

A user group on the system that ZWESVUSR and ZWESIUSR should belong to. This user group requires a valid OMVS

segment.

ZWESIUSR

A started task ID used to run the PROCLIB ZWESISTC that launches the cross memory server (also known as ZIS). It must

have a valid OMVS segment. For more information, see ZWESIUSR requirements.

ZWESVUSR

A started task ID used to run the PROCLIB ZWESLSTC. The task starts a USS environment using BPXBATSL that executes

server components such as the Application Framework, API ML, and ZSS. To work with USS, the user ID ZWESVUSR must

have a valid OMVS segment. For more information, see ZWESVUSR requirements.

Plug-ins and extensions

API Mediation Layer

API Catalog

Displays API services that have been discovered by the API Mediation Layer.

Zowe Application Framework

3270 Terminal

An application in the Zowe Desktop that provides a user interface that emulates the basic functions of IBM 3270 family

terminals.

File Tree

Formally known as the File Explorer, the FT refers to a re-usable widget existing in multiple apps across the Zowe

Desktop to display z/OS Unix files and data sets.

IP Explorer

An application in the Zowe Desktop you can use to monitor the TCP/IP stacks, and view active connections and reserved

ports.

JES Explorer

An application in the Zowe Desktop to interact with z/OS UNIX files.

MVS (Multiple Virtual Storage) Explorer

https://docs.zowe.org/stable/user-guide/configure-xmem-server/#pds-sample-library-and-pdse-load-library
https://docs.zowe.org/stable/user-guide/configure-xmem-server/#pds-sample-library-and-pdse-load-library
https://docs.zowe.org/stable/user-guide/assign-security-permissions-to-users
https://docs.zowe.org/stable/user-guide/assign-security-permissions-to-users

An application in the Zowe Desktop to interact with z/OS data sets. Though still supported, active development has been

moved to the Zowe Editor.

USS Explorer

An application in the Zowe Desktop to interact with z/OS UNIX files. Though still supported, active development has been

moved to the Zowe Editor.

Virtual (VT) Terminal

An application in the Zowe Desktop that provides a user interface that emulates the basic functions of DEC VT family

terminals.

Zowe Editor

An application in the Zowe Desktop to interact with z/OS data sets and Unix files. It uses the File Tree.

Zowe CLI Extensions

IBM® CICS® Plug-in for Zowe CLI

Extends the Zowe CLI to interact with CICS programs and transactions.

IBM® Db2® Plug-in for Zowe CLI

Enables interaction with Db2 for z/OS to perform tasks through Zowe CLI and integrate with modern development tools.

Use and development

API Mediation Layer

Micronaut Enabler

A guide which helps to simplify the process of onboarding a REST service with API ML, using Micronaut and Gradle.

Node.js Enabler

An NPM package which helps to simplify the process of onboarding a REST service written in Node.js with API ML.

Plain Java Enabler (PJE)

A library which helps to simplify the process of onboarding a REST service with API ML, serving the needs of Java

developers who are not using either Spring Boot, Spring Framework, or Spring Cloud Netflix.

Sprint Boot Enablers

A collection of enablers which help to simplify the process of onboarding a REST service with API ML using various

versions of Spring framework.

Zowe Application Framework

https://micronaut.io/
https://gradle.org/

Accessing the Desktop

The Zowe Desktop is accessed through the API ML. The Desktop URL uses the following format:

App2App

A feature of the Zowe environment where one application plug-in can communicate with another. The Zowe Application

Framework provides constructs that facilitate this ability. For more information, see Application-to-application

communication.

Config Service

A part of the Application Framework which allows plug-ins and the Framework itself to store user configuration as JSON

or binary formats. The configuration is stored in a hierarchy in which company-wide and system-wide defaults can exist

for all users. Users may override the defaults if policy allows it. What can be stored and what can be overridden depends

on plug-in definition and administrative configuration.

https://docs.zowe.org/stable/extend/extend-desktop/mvd-apptoappcommunication
https://docs.zowe.org/stable/extend/extend-desktop/mvd-apptoappcommunication

Version: v3.3.x LTS

Zowe learning resources

Learn more about Zowe from these blog posts, videos, and other resources.

Blogs

Zowe blogs on Medium

Zowe blogs on Open Mainframe Project website

Want to contribute a blog? Details for how to contribute to the Zowe blogs on Medium site are at Zowe Blog Guidelines.

Videos

Zowe VS Code ExtensionZowe VS Code Extension

As well as Zowe videos owned and managed by the community, there are a number of external YouTubers who host

Zowe related content.

Zowe Demos playlist from Bill Pereira

Mainframe Bytes channel from Jessielaine Punongbayan

Webinars

Find out what is happening with Zowe in the Zowe Quarterly Update Webinar Series.

Zowe Quarterly Update Webinar: May 2024

Zowe Quarterly Update Webinar: February 2024

Zowe Quarterly Update Webinar: October 2021

Zowe Quarterly Update Webinar: July 2021

https://medium.com/zowe
https://www.openmainframeproject.org/category/blog/zowe
https://medium.com/zowe
https://github.com/zowe/community/blob/master/blogging/blog_guidelines.md
https://www.youtube.com/watch?list=PL8REpLGaY9QE_9d57tw3KQdwSVLKuTpUZ&v=la1_Ss27fn8
https://www.youtube.com/embed?listType=playlist&list=PL8REpLGaY9QE_9d57tw3KQdwSVLKuTpUZ
https://www.youtube.com/playlist?list=PLM85SdWDWtebJ13Kww8rxKlDlWe72D7b3
https://www.youtube.com/channel/UCZrvxFwT1GpvJuFRyqc5uWg
https://youtu.be/57IKsRfM_F0
https://youtu.be/d9eA9eZRREI
https://youtu.be/b0Xo6WIy3vc
https://youtu.be/T3Z4hMwElII

Zowe Quarterly Update Webinar: April 2021

Zowe Quarterly Update Webinar: January 2021

Zowe Quarterly Update Webinar: October 2020

The OMP Youtube channel also offers other webinars about Zowe.

Treat Yourself to a Guided, Comprehensive Tour of Zowe Desktop Applications

Zowe Webinar Feb. 22, 2019

Open Mainframe Project Webinar: Zowe Virtual Hackathon

Community

Join us on Slack

Slack invite link

Introduction to Zowe Slack channels

Learn more about the community

Zowe community GitHub repo

Find out information about Zowe sub-projects, GitHub repos, mailing lists, community meeting minutes, contribution

guidelines, and so on.

Connect with the community through meetings

Zowe meeting calendar

You can join one of the Zowe meetings to get latest Zowe updates and get involved in different squads and

initiatives.

Training

Courses

Zowe Fundamentals

Interskill Learning offers a free training course that introduces the components that comprise Zowe and the benefits

of using Zowe and how its capabilities can be extended.

https://youtu.be/9rQCcZGVDzQ
https://youtu.be/ZEwd8wZvbIw
https://youtu.be/GbAFO5vzBhw
https://www.youtube.com/channel/UC-WTXQQtz2m5iTflJLK59aw/videos
https://youtu.be/cbEVbcsaGCs
https://youtu.be/XixEltbRmds
https://youtu.be/zIPzaQK2bfU
https://slack.openmainframeproject.org/
https://github.com/zowe/community/blob/master/README.md#slack
https://github.com/zowe/community/blob/master/README.md
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://interskill.com/course/zowe-foundations/

Version: v3.3.x LTS

Important updates in Zowe V3

Zowe 3.0 brings a range of major changes in Zowe functionality, including breaking changes, or modifications that

require updates to avoid disruptions in your applications.

Review this article for details about changes to various Zowe components that are introduced in Zowe V3, and any

required actions you need to take.

API Mediation Layer (API ML)

Breaking changes

Change in Zowe V3 Required action

Authentication

endpoints will not

support the route

/api/v1/gateway ,

and instead will

support only

/gateway/api/v1

If you use the endpoints directly, change the URLs to start with /gateway/api/v1 . If you

use ZAAS client to integrate with API Mediation Layer, no action is required as the change is

handled in the ZAAS client code.

Spring Enabler will be

updated to Spring

Boot 3 and Spring 6.

Spring Boot 2 and

Spring 5 versions will

no longer be

supported

Upgrade extending services based on the Spring Enabler to Spring Boot 3 and Spring 6.

Datasets API will be

archived

This service was disabled by default in Version 2. If you enable the service via

components.data-sets.enabled: true and use the APIs documented in Data sets Swagger,

it is necessary to move to the usage of the similar z/OSMF endpoints.

Jobs API will be

archived

The service was disabled by default in Version 2. If you enable the service via

components.jobs.enabled: true and use the APIs documented in Jobs Swagger, it is

necessary to move to the usage of the similar z/OSMF endpoints.

Metrics service will be

archived

The Metrics service was in Technical Preview. Currently, there is no replacement. In V3, the

Open Telemetry standard will be implemented, which will serve as a replacement.

IMS API will be

archived

The IMS API service was not fully supported. If you were using the API, please reach out to

the IBM team for follow-up steps.

Java 17 will be

required for the API

For V3, it is necessary to update z/OS to version 2.5 or later as this brings support of Java

17. It is necessary to install Java 17 and provide the path to Java 17 to Zowe Java

https://petstore.swagger.io/?url=https://raw.githubusercontent.com/zowe/docs-site/docs-staging/api_definitions/datasets.json
https://petstore.swagger.io/?url=https://raw.githubusercontent.com/zowe/docs-site/docs-staging/api_definitions/jobs.json

Change in Zowe V3 Required action

Mediation Layer to run configuration.

z/OSMF in version

V2R5 with APAR

PH12143 applied (JWT

setup)

If you are running a version of z/OS before 3.1, validate that the PH12143 APAR was applied

to the z/OSMF installation used by Zowe. The value auto is no longer supported. For v3R1,

validate that the JWT support is enabled. If you do not want to enable JWT support, make

sure that you set the value of

components.gateway.apiml.security.auth.zosmf.jwtAutoconfiguration to ltpa . The

ltpa option cannot be used with hardware accelerated ICSF Keyrings. See example-

zowe.yaml for new component values.

Configuration of

keyrings will require

transformation from

safkeyring://// to

safkeyring://

If your Zowe configuration contains safkeyring://// , change this part to safkeyring:// .

Support access to

z/OSMF only through

/ibmzosmf route. V3

will not support

access through the

/zosmf route

If you use z/OSMF via {apimlUrl}/zosmf/{zosmfEndpoint} it is necessary to move to

{apimlUrl}/ibmzosmf/{zosmfEndpoint}.

Important API ML updates

The current API Gateway contains the Authentication and Authorization Service. This service will be separated as a

standalone service. The Authentication and Authorization Service is the only API ML service that directly requires z/OS.

Application Framework

Breaking changes

Updated Angular to Version 18 from Version 12. Apps built upon Angular, excluding iframe apps, will need to be

updated to be compatible with the V3 Desktop.

CLI

Breaking changes

Change in Zowe V3 Required action

Introducing a new format for

error messages to improve

clarity

Adjust Zowe CLI scripts that parse error messages to handle the new error format

https://github.com/zowe/zowe-install-packaging/blob/v3.x/staging/example-zowe.yaml
https://github.com/zowe/zowe-install-packaging/blob/v3.x/staging/example-zowe.yaml

Change in Zowe V3 Required action

Removing V1 profile support
Implement a team configuration or use Zowe CLI's built-in V1 profile conversion

command: zowe config convert

Removing deprecated items -

CLI and Imperative

Zowe CLI extenders or users of the Zowe Client Node.js SDK will need to review the

breaking changes and adjust their code to account for removed/changed classes,

functions, and constants

Pre-release availability

V3 pre-release versions are available via npm under the 'next' tag

Application Framework

Breaking changes

Updating Angular to Version 16 from Version 12

Removing the core-js dependency

Updating Webpack to version 5

Updating Typescript to 4.9

Explorer for Intellij IDEA

Important updates

Explorer for IntelliJ IDEA will be part of the Zowe Core

Working with USS Files

Working with Data Sets

Working with JES Working Sets

Interactive TSO Console

Explorer for Visual Studio Code

Breaking changes

Change in Zowe V3 Required action

Removing V1 profile

support

Implement a team configuration or use Zowe Explorer's built-in V1 profile conversion

functionality

Removing deprecated

items - Explorer for

VSCode

Zowe Explorer extenders or users of the Zowe Explorer APIs will need to review the

breaking changes and adjust their code to account for removed/changed classes,

functions, and constants

https://github.com/zowe/zowe-cli/issues/1694
https://github.com/zowe/zowe-cli/issues/1873
https://www.npmjs.com/package/@zowe/cli?activeTab=readme
https://github.com/zowe/zowe-explorer-vscode/issues/2238
https://github.com/zowe/zowe-explorer-vscode/issues/2238

Change in Zowe V3 Required action

Storing extension settings

in local storage

Settings and history previously stored in the .vscode settings folder will no longer be

available. Users will have to adjust their Zowe Explorer settings after updating to V3

Important updates

Storing persistent settings in local storage

Comparing files in MVS view, the USS view, and across the two views

Pre-release availability

V3 pre-release versions are available via GitHub releases or via the Open VSX Registry.

Installation and Packaging

Breaking changes

Dropping the original V2 configuration management, zowe.useConfigmgr=false . (The Configuration Manager

remains as the only supported method for configuring Zowe)

Important updates

Removing the dependency on Node.js for configuration

Introducing ZEN, a wizard to simplify configuration via the UI

ZSS

Breaking changes

Run by default in 64 bit mode, components.zss.agent.64bit=true . 31-bit plugins cannot run in 64-bit ZSS, so you

need to compile your plugins for the version of ZSS to be used. Note that only one version of ZSS can run at a time.

https://github.com/zowe/zowe-explorer-vscode/releases
https://open-vsx.org/extension/Zowe/vscode-extension-for-zowe

Version: v3.3.x LTS

Zowe V3 FAQs

Extender questions

API Mediation Layer

1. Do we need to move away from PassTickets as the method of authentication to the API Mediation Layer?

No, we will continue to support PassTickets. However, PassTickets are deprecated in Zowe V3, and are no longer

recommended due to the inefficiency of configuration wherein users must configure a PassTicket for every service

that uses them.

2. With the introduction of the new cloud gateway, how is the configuration going to change?

The cloud gateway configuration for V3 has moved to the currently used gateway configuration space (For example,

components.gateway). The configuration that was Zuul specific has been removed and replaced with the Spring

Cloud Gateway configuration.

3. How does client certificate authentication work in Zowe V3?

Northbound authentication accepts client certificates. The API Mediation Layer then transforms the client certificate

to another method of authentication (such as a JWT token, SAF IDT, or PassTicket). This new method is then

accepted by southbound services. Currently, we do not plan to support authentication with client certificates to

z/OSMF.

4. Will you identify deprecated functionality such as PassTickets?

PassTickets will be deprecated in V3, but PassTickets will still be supported, possibly even through to Zowe V4.

We plan to identify all deprecated functionality. We will announce how this functionality will be identified in the near

future.

5. How do you intend to work with the the bypass scheme?

The bypass scheme will remain. You can still claim conformance for services that only provide public endpoints that

do not require authentication.

6. Do the dependency changes mean that I need Java 17 to run Zowe V3?

Yes, Java 17 is required to run the API Mediation Layer in Zowe V3.

Zowe Explorer for Visual Studio Code

1. Will the functionality to convert Zowe V1 profiles to team configuration remain available for Zowe V3?

Yes. However, users will not be able to use Zowe V1 profiles to connect to services on the mainframe.

2. Will the APIs that Zowe CLI provides for extenders remain the same?

In broad terms, yes. However, some of the functionality that was available in Zowe V2 has been changed (or

removed). The changes are included in the Zowe CLI and Imperative lists of breaking changes.

Zowe Application Framework, ZSS

1. Is it possible to run 31-bit plug-ins at the same time as 64-bit plug-ins with ZSS?

No. ZSS runs in either 31-bit or 64-bit mode, which means it can accommodate only one type of plug-in.

2. Have the versions of libraries used in the Desktop changed?

In Zowe V3, the Application Framework uses Angular 18 with associated libraries such as webpack 5.

3. What React versions are supported by Zowe Desktop?

Zowe v3's React compatibility has not changed. It is possible for Desktop extensions to use different versions of

React. While the Desktop is not built on React, it is still compatible with extensions that import React.

Zowe System Installation and Configuration

1. Does Zowe provide a Software Bill of Materials (SBOM)?

SBOMs are available in the SPDX format from the Bill of Materials page on Zowe Docs.

2. Is the Zowe Server Install Wizard application running on Zowe Desktop or on z/OS?

The Zowe Server Install Wizard runs on a laptop/desktop and connects to z/OS via standard methods.

3. Is it possible to validate and change the zowe.yaml file and job definition within the Zowe Server Install Wizard?

Yes.

User questions

Zowe API Mediation Layer

1. Does Zowe V3 API ML support clients with the V2 onboarding enabler?

API ML in Zowe V3 supports clients with onboarding enablers from Zowe V2. It also works the other way around: The

onboarding enablers from Zowe V3 continue to work with Zowe V2 API ML.

2. The jump to Java 17 means that we have to maintain two separate versions of our application, one with apiml-

enabler V2 and one with V3, to support customers who want to stay with Java 8. Do you have a recommendation or

a workaround for supporting both Java versions?

The plain Java Enabler from Zowe V2 works in Zowe V3. You can keep this until Zowe V4.

Zowe V4 will only support Spring Boot, which requires Java 17. We recommend building applications for Java 17 to

ensure that applications continue to be compatible with API ML.

3. Can you speak about the migration from Zuul to Spring Cloud Gateway? Today there are two separate gateway

services in API ML with separate configurations.

https://drive.google.com/file/d/1wbxR-vuXT98XQ4mDb1DyDzQRcCDt5HlU/view?usp=sharing
https://github.com/zowe/imperative/issues/970
https://docs.zowe.org/stable/appendix/bill-of-materials/

Spring Cloud Gateway is replacing Zuul as the technology to provide the API Gateway. The configuration for the API

Gateway remains in the components.gateway namespace. If you were using Spring Cloud Gateway in V2 for the

multi-tenancy scenario, you need to update the configuration for the Central Gateway (referred as Gateway from v3

onwards) and move this configuration from components.cloud-gateway to components.gateway .

4. If I have a legacy gateway deployed, how will I migrate to the new gateway? Will the old gateway be removed?

The old gateway is removed in Zowe V3, but nothing should change from the point of view of the user. However, we

may deliver a configuration utility to help with this transition if required.

5. How would a client-side end user find and obtain the correct API ML service instance ID for the desired instance of

the user's service?

In Zowe V2, clients can use the header instance ID to route communications to a specific instance. Clients can get

instance IDs for specific services via an API on the Discovery service. We are planning to improve the method for

finding service IDs in Zowe V3.

6. Will the LPAR ID be available for the clients to obtain?

It is not currently available, but we are scheduled to work on this functionality in 2024.

7. API ML static onboarding locates templates that are then used to set variables in the api-defs directory. No manual

user action is required. Will this automated process still be available in Zowe V3?

Static onboarding will continue to be available. The recommendation for Zowe V3 is to move the api-defs directory

out of the Zowe workspace. The zowe.yaml file contains a parameter called

components.discovery.alternativeStaticApiDefinitionsDirectories that specifies where the directories for

static definitions reside.

https://docs.zowe.org/stable/appendix/zowe-glossary#workspace-directory

Version: v3.3.x LTS

Zowe V3 Office Hours

Zowe Office Hours are a chance for users and extenders to hear directly from Zowe developers about what to expect

from the next major Zowe release.

Zowe squads go over their upcoming projects and answer your questions about Zowe V3.

Missed a session? Catch up here. Office hours are recorded and made available with videos posted to the Open

Mainframe Project YouTube channel.

Date Topic Link to the recording Links to the materials

10/18/2024 8AM - 9AM ET Open Office Hours Recording Presentation

10/11/2024 8AM - 9AM ET Systems, Install & Packaging Recording Presentation

10/04/2024 8AM - 9AM ET Explorer (Intellij) Recording Presentation

09/27/2024 8AM - 9AM ET Explorer (VS Code) Recording Presentation

09/20/2024 8AM - 9AM ET Web UI Recording Presentation

09/13/2024 8AM - 9AM ET Zowe CLI & Client Node SDK Recording
CLI Presentation

Node.js SDK Presentation

09/06/2024 8AM - 9AM ET API Mediation Layer Recording Presentation

https://www.youtube.com/@OpenMainframeProject
https://www.youtube.com/@OpenMainframeProject
https://zoom.us/rec/share/-lM9a87dxXEKQwTLSsJEBkMtjbKuAO1Et_SdGCD_ibm3q0t_u6qFVsCjrLDiddNA.pY8AysnjrYBNX8hh
https://docs.google.com/presentation/d/1Tjh8HMQMz8C_QZYCEMTaQ_sJxKw9n7pa/edit?usp=sharing&ouid=104093359579552381608&rtpof=true&sd=true
https://zoom.us/rec/share/ogO4Ecuefp9QwLqQVg2_zqyJ1fOO2385arJ1Ug5pQNfsL4rW-743kJBt4eneqs-m.UA9GjLdNNIaZkIDU
https://docs.google.com/presentation/d/1dw6aTEl4a7GMWhezinR1rW85yMTyl_Ic/edit?usp=sharing&ouid=104093359579552381608&rtpof=true&sd=true
https://zoom.us/rec/share/O7Da70rz1tpqyacu_haEVKiW2H-5z7KGIVMTA8s54M8oYstUsPTfUAmYKAT_7KLL.M4vBDpCmWHNfpiwn
https://docs.google.com/presentation/d/1HHNjZBxKQjSJx2dSp4pWTMguZMOBn4bo/edit?usp=sharing&ouid=104093359579552381608&rtpof=true&sd=true
https://zoom.us/rec/share/WSrYe_G-bg3_RejWg3TMzBeckSp0X4rjGyKoWQw6b9uPCBeVBrdZ4_44V9FSYCVH.HrqajES-VpB-9e9n
https://docs.google.com/presentation/d/1NstejDPb_nmlYbpGNTs5izG4qg3GHmbL/edit?usp=sharing&ouid=104093359579552381608&rtpof=true&sd=true
https://zoom.us/rec/share/25HTI5RzmBBbWrLbItbpWX0406Tt2kImbaJpDPAnPAObW4BLrrYmJi6X9X09VHkv.RRo1DPH9h_GFJDxC
https://docs.google.com/presentation/d/1z4cICq0Hycp9NSEOlX6wzTwlbeWCPdrU/edit?usp=drive_link&ouid=104093359579552381608&rtpof=true&sd=true
https://zoom.us/rec/share/ltCulqh3-PXUlUaJNYswd1Nk06l6h_pU24daQOM2RipHO-LzkyNvzaP275ze-B8.Nz3738DT-alh57jg
https://docs.google.com/presentation/d/1SCBJWWJ_o890hmSOx0znPZQG9MTjWORw/edit?usp=sharing&ouid=104093359579552381608&rtpof=true&sd=true
https://docs.google.com/presentation/d/1DuDqSAulkHDLlTnhapWo5Vv_7hKZd_Zb/edit?usp=sharing&ouid=104093359579552381608&rtpof=true&sd=true
https://zoom.us/rec/share/QOOVXWfuqf8IjCuAZgyR0O1yCEDbgLV-pZP7gU7q7RRJXuyF7h4dc3OxYBhIGc9z.7OJnf6iq55XHzP-m
https://docs.google.com/presentation/d/1AL5mcwUAueBqdvhuUhsVWufkei7xqAUh/edit?usp=sharing&ouid=104093359579552381608&rtpof=true&sd=true

Version: v3.3.x LTS

Zowe V3 conformance criteria

The final version of Zowe V3 Conformance Criteria is published here.

See the link in each section for a PDF with the specific criteria for the corresponding project.

Zowe API Mediation Layer

Review the API Mediation Layer related conformance criteria.

Zowe CLI

Review the CLI related conformance criteria.

Zowe Explorer

Review the Explorer related conformance criteria.

Zowe Application Framework

Review the Application Framework related conformance criteria.

Support providers

Review the support providers related conformance criteria.

https://drive.google.com/file/d/16y3A6MJ2qLSoxm6RVkATDmnoc1k9ng-V/view?usp=sharing
https://drive.google.com/file/d/1FPzZEzLmCogU6_21nr0E1qZNlv6AVItJ/view?usp=sharing
https://drive.google.com/file/d/1CHAgL3IjsRIztz4WeqMddSfMV6JWVTT0/view?usp=sharing
https://drive.google.com/file/d/12Vl1mR8o0MGElMbYKF_aZnMbnwTBpLt9/view?usp=sharing
https://drive.google.com/file/d/1Irh78mxkXM1ace30D-eoI5eZlDiFVzzC/view?usp=sharing

Version: v3.3.x LTS

Migrating from Zowe Vx to Zowe V3

Follow the procedure outlined in this article to migrate from Zowe v2 to Zowe v3, or Zowe v1 to Zowe v3. While the

migration process is similar to a Zowe v2 minor release upgrade, there are several new and updated configuration

parameters to consider. The workspace directory should be re-created only if you are using the app-server component.

Follow the steps described in this article to ensure a smooth migration.

Upgrading to the latest version of Zowe v2 (v2.18)

Before upgrading to Zowe v3.0.0, first upgrade to Zowe v2.18, as the rest of the migration instructions are based upon

Zowe v2.18. Please follow the instructions from the version of Zowe you have and newer in order to prepare to upgrade

from Zowe v2 to v3.0.0.

Migrating from Zowe v2.16.0 or Lower

To migrate from Zowe v2.16.0 or a lower version, perform the following tasks.

1. Ensure the following zowe.network section is added to your configuration:

2. Update your PROCLIB entries for Zowe, as enhancements and default parameters have changed throughout

Zowe v2. This can be performed with the unix command zwe init stc , by running the job ZWEISTC, or by

copying the SZWESAMP members ZWESLSTC, ZWESISTC, and ZWESASTC into your desired PROCLIB.

3. If you use keyrings, verify that Zowe YAML references to safkeyring . Use two forward slashes (safkeyring://).

Do not use four forward slashes (safkeyring:////).

Migrating from Zowe v2.15.0 or Lower

To migrate from Zowe v2.15.0 or a lower version, perform the following tasks.

If you are migrating from Zowe v2.15.0 or a lower version, ensure that Zowe configurations using keyrings do not

have the section zowe.certificate.pem . This section is no longer needed and can cause startup error in newer

versions of Zowe.

Migrating from Zowe v2.10.0 or Lower

To migrate from Zowe v2.10.0 or a lower version, perform the following tasks.

Click here for configuration details.

Click here for configuration details.

Click here for configuration details.

If you are migrating from Zowe v2.10.0 or a lower version, consider taking advantage of the new sysMessages

feature.

The zowe.sysMessages is a new array that allows you to select messages that, when found by the launcher, will be

duplicated into the system's log.

Migrating from Zowe v2.9.0 or Lower

To migrate from Zowe v2.9.0 or a lower version, perform the following tasks.

If you are migrating from Zowe v2.9.0 or a lower version, it is recommended to delete the

<zowe.workspaceDirectory>/app-server/plugins directory so that it can be regenerated on the next run of Zowe.

In this version and prior there were old and no longer used Application Framework plugins and references to them

will complicate logs with harmless errors.

Migrating from Zowe v2.3.0 or Lower

To migrate from Zowe v2.3.0 or a lower version, perform the following tasks.

If you are running Zowe v2.3.0 or a lower version, a clean install of Zowe v3 is highly recommended to avoid

potential issues during the migration process.

Migrating from Zowe v1

To migrate from Zowe v1 perform the following tasks.

If you are using v1, you must perform a clean install of Zowe rather than upgrading it as there is not a clear upgrade

path from v1 to v2 or v3. Any extensions or products built upon Zowe v1 are unlikely to work in v2 or v3 without

upgrading them. Refer to any product documentation on actions to take. More details

If you are using v1.27 or newer, you can retain your keyring or keystore with Zowe v2 and v3. During v2 or v3

installation, once your Zowe YAML configuration file is created, you can define a section zowe.certificate as

follows to re-use your certificates.

V3 Prerequisite Changes

Before starting the migration, ensure the following system requirements are met:

Click here for configuration details.

Click here for configuration details.

Click here for configuration details.

https://docs.zowe.org/stable/extend/migrate-extensions

z/OSMF

Version V2R5 or V3R1 is required. JWT support for z/OSMF is highly recommended. For more information, see

Enabling JSON Web Token support in the IBM documentation. If you do not have JWT support in z/OSMF, make sure to

set components.gateway.apiml.security.auth.zosmf.jwtAutoconfiguration to ltpa .

Java

Java 17 is required. The Zowe YAML parameter java.home value should be a Java 17 home location. If an

administrator uses zwe init to set up Zowe, ensure the java for that user is v17 by including it in the PATH

environment variable.

Node.js

Ensure that the Zowe YAML parameter node.home value is Node.js 18 or 20 home location. Node 16 and earlier

versions are no longer supported.

System and Security Changes

Existing SAF settings for Zowe do not need to be changed for v3. Install steps such as zwe init security , the job or

workflow ZWESECUR, and the jobs ZWEIRAC, ZWEITSS, and ZWEIACF are not required to be re-run.

Existing keyrings and keystores do not need to be changed for v3. Install steps such as zwe init certificate , the

job or workflow ZWEKRING, or jobs starting with ZWEIKR* are not required to be re-run.

The following network changes are needed for added or removed servers:

Component

name
Change

Default

Port

Default

Jobname
Details

zaas Added 7558 ZWE1AZ
This component is responsible for authentication and is

now required when using the API Mediation Layer

metrics-

service
Removed 7551 ZWE1MS

This service has been deprecated and removed. Currently,

no replacement is available. The Open Telemetry standard

will be implemented later, which will serve as a

replacement

jobs-api Removed 7558 ZWE1EJ

This component was deprecated in Zowe v2 and is now

removed. Ensure that you switch to using equivalent

z/OSMF endpoints

files-api Removed 7559 ZWE1EF

This component was deprecated in Zowe v2 and is now

removed. Ensure that you switch to using equivalent

z/OSMF endpoints

cloud-gateway Removed 7563 ZWE1CG
The cloud-gateway has been removed as a standalone

component and merged into the gateway

Configuration changes

Review the following changes to configuration and updated configuration parameters.

https://www.ibm.com/docs/en/zos/3.1.0?topic=configurations-enabling-json-web-token-support

New Configuration

components.zaas

Previously part of the components.gateway component, zaas in Zowe v3 is a separate component responsible for

authentication.

If you do not explicitly configure this section, zaas will still be enabled by default and will use port 7558.

Updated Configuration Parameters

Keyrings

If you use keyrings, verify that Zowe YAML references to safkeyring . Use two forward slashes (safkeyring://). Do not

use four forward slashes (safkeyring:////).

Gateway z/OSMF service configuration

The service ID for gateway zosmf has changed to ibmzosmf.

Set jwtAutoconfiguration to jwt (default) or ltpa. Note that auto is no longer supported.

If you are using zosmf as your auth service, ensure that you update this z/OSMF service configuration.

Caching Service

The Caching service now defaults to Infinispan mode instead of VSAM. While VSAM is still supported, this storage

method is being deprecated and is not recommended. A new parameter for the key exchange port has been added to

the default configuraion.

ZSS Server

The ZSS server now runs in 64-bit mode by default.

Deprecated Settings

The following configuration parameters have been deprecated in Zowe v3. Ensure that these parameters are removed

from your configuration.

zowe.useConfigmgr

The parameter zowe.useConfigmgr=false is no longer supported.

components.gateway.server.internal

The internal gateway server has been removed due to limited usage.

Version: v3.3.x LTS

Upgrade from Convenience Build to PSWI or

SMP/E installation

Review the recommended procedure for upgrading an existing Zowe installation from a convenience build to a PSWI

(Portable Software Instance) or SMP/E-based installation. The steps in this article outline the best practices for

upgrading, and include all necessary tasks for reusing or updating configuration, managing runtime datasets, and

maintaining service continuity.

Prerequisites before upgrade

Ensure you meet the following conditions before you start the upgrade process:

Determine the current installed version of Zowe (e.g. v3.0).

Determine if the upgrade target is the same version or a newer version (e.g. v3.1).

Backup the following elements:

The existing zowe.yaml configuration file

Zowe runtime datasets

STC JCLs and PARMLIB members

Installing Zowe via PSWI or SMP/E

Choose your installation method, either PSWI or SMP/E, based on your preferences.

PSWI Installation (Portable Software Instance)

1. Download the Zowe PSWI package at zowe.org.

2. Install using z/OSMF workflows or standalone jobs provided.

3. Ensure the runtime libraries are correctly installed without errors by submitting jobs and reviewing the return codes

from the JCL output for PSWI.

For more information about PSWI installation, see Installing Zowe from a Portable Software Instance.

SMP/E Installation

1. Acquire the Zowe SMP/E package at zowe.org

2. Execute SMP/E RECEIVE, APPLY, and ACCEPT jobs according to instructions in the documentation shipped with the

PTF. For more information, see Installing Zowe via SMP/E instructions

3. Validate successful deployment of Zowe into target libraries. The following target libraries are created: SZWEAUTH ,

SZWEEXEC , SZWESAMP .

4. Utilize Zowe SAMPLIB for post-install configuration.

For more information about SMP/E installation, see Installing Zowe SMP/E overview.

Configuring to the same or newer version

https://www.zowe.org/download
https://docs.zowe.org/stable/user-guide/install-zowe-pswi
https://www.zowe.org/download
https://docs.zowe.org/stable/user-guide/install-zowe-smpe
https://docs.zowe.org/stable/user-guide/install-zowe-smpe-overview

When upgrading from the convenience build, you can either use PSWI or SMP/E to upgrade to the same version or to a

higher version.

Upgrade to the same version

If the target PSWI or SMP/E version matches the currently installed convenience build, use the following outline of steps:

1. Reuse the existing zowe.yaml file.

2. Continue using the current runtime datasets, or for SMP/E, from the target library.

3. Update ZOWE STC (ZWESISTC and ZWESLSTC) and YAML to point to the new Zowe libraries from PROCLIB and YAML.

Upgrade to a newer version

To migrate to a newer version of Zowe, for example from v3.0 to v3.1, you can either use PSWI workflows, or

alternatively, by configuring the SMP/E SAMPLIB.

Using PSWI Workflows

You can use z/OSMF workflows provided in the PSWI package to perform the following tasks:

Generate a new zowe.yaml configuration file

Allocate new runtime datasets

Configure system definitions (e.g. APF, PROCLIB)

For more information, see Installing Zowe SMP/E build with z/OSMF workflow.

Using SMP/E SAMPLIB

Use members from ZOWE SAMPLIB to perform the following tasks:

Allocate and define new runtime datasets

Create or customize a new zowe.yaml file

Configure system definitions (e.g. APF, PROCLIB)

TIP

Ensure all new configurations are validated for compatibility and correctness.

Switching between Zowe versions

Use the following step outline to switch between Zowe versions (e.g. v3.0 and v3.1):

1. Update STEPLIB in Zowe Started Task (STC) JCLs to reflect correct target libraries. Ensure that versions or HLQ are

updated.

2. Modify PARMLIB member references accordingly in the PROCLIB STC job.

3. Restart all affected Zowe STCs. For more information, see Starting and stopping Zowe.

Validating after upgrade

Follow these steps to validate that you successfully upgraded your Zowe installation.

https://docs.zowe.org/stable/user-guide/install-zowe-smpe-zosmf-workflow
https://docs.zowe.org/stable/user-guide/start-zowe-zos

1. Start the following Zowe Started Tasks (STCs):

ZWESISTC

The Zowe cross memory server that runs as a started task to enable cross-memory communication between Zowe

components on z/OS

ZWESLSTC

The Zowe launcher started task that initializes and manages the lifecycle of Zowe's core runtime services on z/OS

2. Monitor logs for any anomalies or errors.

3. Validate the following functionalities:

Access to Zowe Desktop

Confirm API services.

4. Review system and application logs for configuration or version mismatches.

For more information about performing these steps, see Verifying Zowe installation on z/OS

TIP

Use the following guidelines to maintain rollback readiness in the event of unexpected issues during your Zowe

upgrade:

Retain previous runtime datasets

Keep backup copies of all JCLs and configuration members

Be prepared to reassign STEPLIB/PARMLIB back to convenience build settings

https://docs.zowe.org/stable/user-guide/verify-zowe-runtime-install

Version: v3.3.x LTS

Important updates in Zowe V2

Zowe V2 is now in maintenance state. Only patch releases are planned until the Zowe V2 End of Service scheduled for

early 2027.

Review enhancements introduced in previous releases:

Zowe v2.18.0 (August 2024)

Zowe v2.17.0 (July 2024)

Zowe v2.16.0 (May 2024)

Zowe v2.15.0 (March 2024)

Zowe v2.14.0 (January 2024)

Zowe v2.13.0 (December 2023)

Zowe v2.12.0 (October 2023)

Zowe v2.11.0 (September 2023)

Zowe v2.10.0 (July 2023)

Zowe v2.9.0 (June 2023)

Zowe v2.8.0 (April 2023)

Zowe v2.7.0 (March 2023)

Zowe v2.6.1 (February 2023)

Zowe v2.6.0 (January 2023)

Zowe v2.5.0 (December 2022)

Zowe v2.4.0 (October 2022)

Zowe v2.3.1 (September 2022)

Zowe v2.3.0 (September 2022)

Zowe v2.2.0 (July 2022)

Zowe v2.1.0 (June 2022)

Zowe v2.0.0 (April 2022)

https://github.com/zowe/community/blob/master/Project%20Management/Schedule/Zowe%20PI%20%26%20Sprint%20Cadence.md#v2
https://docs.zowe.org/stable/whats-new/release-notes/v2_18_0
https://docs.zowe.org/stable/whats-new/release-notes/v2_17_0
https://docs.zowe.org/stable/whats-new/release-notes/v2_16_0
https://docs.zowe.org/stable/whats-new/release-notes/v2_15_0
https://docs.zowe.org/stable/whats-new/release-notes/v2_14_0
https://docs.zowe.org/stable/whats-new/release-notes/v2_13_0
https://docs.zowe.org/stable/whats-new/release-notes/v2_12_0
https://docs.zowe.org/stable/whats-new/release-notes/v2_11_0
https://docs.zowe.org/stable/whats-new/release-notes/v2_10_0
https://docs.zowe.org/stable/whats-new/release-notes/v2_9_0
https://docs.zowe.org/stable/whats-new/release-notes/v2_8_0
https://docs.zowe.org/stable/whats-new/release-notes/v2_7_0
https://docs.zowe.org/stable/whats-new/release-notes/v2_6_1
https://docs.zowe.org/stable/whats-new/release-notes/v2_6_0
https://docs.zowe.org/stable/whats-new/release-notes/v2_5_0
https://docs.zowe.org/stable/whats-new/release-notes/v2_4_0
https://docs.zowe.org/stable/whats-new/release-notes/v2_3_1
https://docs.zowe.org/stable/whats-new/release-notes/v2_3_0
https://docs.zowe.org/stable/whats-new/release-notes/v2_2_0
https://docs.zowe.org/stable/whats-new/release-notes/v2_1_0
https://docs.zowe.org/stable/whats-new/release-notes/v2_0_0

Version: v3.3.x LTS

Zowe V2 FAQs

Where can I find the V1 and V2 LTS conformance criteria?

The Zowe Squads have prepared XLS spreadsheets with conformance criteria for all Zowe extensions including: CLI,

APIs, App Framework, and Explorer for VS Code. The spreadsheets clearly show the prior / V1 criteria alongside the new /

V2 criteria. Please be aware, there are additions, deletions, and CHANGES to the criteria. In some cases, the change is

simply that a BEST PRACTICE has been deemed REQUIRED. Use the included fill color key to identify new changes for V2,

reworded changes, or changes from V1 removed in V2. See the Changes to the Conformance Criteria section at

Zowe.org/vNext.

Whats the difference between "server.json" and "example-

zowe.yaml"?

The previous Zowe V1.x config, "server.json", has been removed from V2 and has been replaced with a new yaml

configuration file. The app server will no longer support instances/workspaces which only contain a "server.json" config

file and will fallback to a default configuration. In addition to the app server, ZSS will no longer support "server.json".

The yaml Zowe configuration file contains configurations for the setup, install, and initialization of Zowe as well as for

individual components. This file allows users to customize dataset names, security related configs, certificate

setup/config, job name & job prefix, various runtime configs, high availability config, as well as individual component

configurations.

For more information on Zowe setup and the yaml configuration, run the following command in the command line:

zwe init --help

What are the new default ports?

Four of the default Zowe ports have changed for the app server, and ZSS. The new default app server port is 7556

(previously 8544) and the new ZSS port is 7557 (previously 8542). The JES/USS/MVS Explorer UI servers have been

removed, and thus no longer require port configurations.

How do I access Zowe through the API Mediation Layer in V2?

In previous V1.X versions of Zowe, the desktop could be accessed via the API Mediation Layer by navigating to

https://${zowe.externalDomains[0]}:{zowe.externalPort}//ui/v1/zlux . In Zowe V2, the route to access the desktop

has changed to https://${zowe.externalDomains[0]}:{zowe.externalPort}/zlux/ui/v1 . Such routing structure is

applicable to other clients connected to the API Gateway. For example, the API Catalog may be accessed via

https://${zowe.externalDomains[0]}:{zowe.externalPort}/apicatalog/ui/v1 .

What new frameworks are supported in V2?

https://www.zowe.org/vnext#conformance-changes

The Zowe app framework now supports the more modern Angular 12, Corejs 3 and Typescript 4.

Why aren't the explorers appearing on my desktop anymore?

By default, the explorers will not longer appear on the desktop if the instance is not configured to use the API Mediation

Layer.

Version: v3.3.x LTS

Zowe V2 Office Hours

Watch the series of Zowe office hours videos to learn more about the new features and enhancements in Zowe Version 2

release.

Office hours for Zowe extenders

The following videos walk you through Zowe V2 updates from an extender's perspective. You can start with general

information and dive deeper in other sections for more details.

General information

Zowe V2 Office HouZowe V2 Office Hou……

General information

Zowe V2 Office HouZowe V2 Office Hou……

Updates for extenders

Zowe V2 Office HouZowe V2 Office Hou……

Wrap-up session

Zowe component updates

Zowe V2 OfficZowe V2 Offic……

Zowe CLI

Zowe V2 OfficZowe V2 Offic……

Zowe API Mediation Layer

Zowe V2 OfficZowe V2 Offic……

Zowe Application Framework

Zowe Zowe

Zowe Ex

Installation and V2 conformance

https://www.youtube.com/watch?v=sd634LJtKIk
https://www.youtube.com/watch?v=kIfRwjFaa60
https://www.youtube.com/watch?v=0POzncbTmx4
https://www.youtube.com/watch?v=kI9JpTP6IUg
https://www.youtube.com/watch?v=0POzncbTmx4
https://www.youtube.com/watch?v=wKAhkGQ2HOQ
https://www.youtube.com/watch?v=Q3cd1cOD2Qw

Zowe V2 Office Hours (Zowe Extenders) - SSZowe V2 Office Hours (Zowe Extenders) - SS……

SSO and APIML SSO Conformance

Zowe V2 Office Hours (Zowe EZowe V2 Office Hours (Zowe E

Systems and installation

Office hours for Zowe consumers

The following office hours walk you through Zowe V2 updates from a consumer's perspective. Watch these videos to

learn more about the enhancements that are introduced to each core component.

Zowe component updates

Zowe V2 OfficZowe V2 Offic……

Zowe CLI

Zowe V2 OfficZowe V2 Offic……

Zowe API Mediation Layer

Zowe V2 OfficZowe V2 Offic……

Zowe Application Framework

Zowe Zowe

Zowe Ex

https://www.youtube.com/watch?v=6bYhh1RQuAo
https://www.youtube.com/watch?v=LjufWJDYcjg
https://www.youtube.com/watch?v=ih52PzPncrw
https://www.youtube.com/watch?v=cH9SpWknHsY
https://www.youtube.com/watch?v=1BFGtv95eC0
https://www.youtube.com/watch?v=44klrbtNd-8

Version: v3.3.x LTS

Migrating from Zowe V1 to Zowe V2

This doc guides you through migrating an existing Zowe server component from version 1 to version 2.

To make Zowe server component compatible with Zowe version 2, you must update the following configurations.

Component manifest

Lifecycle scripts

Environment variables

Packaging one component deliverable for both Zowe v1 and v2

Component manifest

In Zowe v2, the component must define a manifest file and package it into the extension's root directory. This manifest

file is used by Zowe to understand how this component should be installed, configured, and started. For detailed

information of this file, see Server Component Manifest File Reference.

Lifecycle scripts

In Zowe v2, lifecycle scripts can be located anywhere in your component directory. However, you must explicitly define

them in the commands section of the component manifest file.

Environment variables

Zowe v1 and v2 environment variables are not exact match. There are the following differences:

Some variables in Zowe v1 are removed in v2.

Some are separated into two or more variables.

Zowe v2 defines more configuration options than v1.

Review the following table for a detailed mapping of Zowe v1 and v2 variables.

Zowe v1 Variable Zowe v2 YAML Configuration

APIML_ALLOW_ENCODED_SLASHES components.gateway.apiml.service.allowEncodedSlashes

APIML_CORS_ENABLED components.gateway.apiml.service.corsEnabled

APIML_DEBUG_MODE_ENABLED components.gateway.debug , etc

APIML_ENABLE_SSO Removed in v2

https://docs.zowe.org/stable/appendix/server-component-manifest

Zowe v1 Variable Zowe v2 YAML Configuration

APIML_GATEWAY_EXTERNAL_MAPPER components.gateway.apiml.security.x509.externalMapperUrl

APIML_GATEWAY_INTERNAL_HOST Not configurable in v2

APIML_GATEWAY_INTERNAL_PORT components.gateway.server.internal.port

APIML_GATEWAY_TIMEOUT_MILLIS components.gateway.apiml.gateway.timeoutMillis

APIML_MAX_CONNECTIONS_PER_ROUTE components.gateway.server.maxConnectionsPerRoute

APIML_MAX_TOTAL_CONNECTIONS components.gateway.server.maxTotalConnections

APIML_PREFER_IP_ADDRESS Removed in v2

APIML_SECURITY_AUTH_PROVIDER components.gateway.apiml.security.auth.provider

APIML_SECURITY_AUTHORIZATION_ENDPOINT_URL components.gateway.apiml.security.authorization.endpoint.url

APIML_SECURITY_X509_ENABLED components.gateway.apiml.security.x509.enabled

APIML_SECURITY_ZOSMF_APPLID zOSMF.applId

CATALOG_PORT components.api-catalog.port

DISCOVERY_PORT components.discovery.port

EXTERNAL_CERTIFICATE_AUTHORITIES zowe.certificate.pem.certificateAuthorities

EXTERNAL_COMPONENTS Removed in v2

GATEWAY_PORT components.gateway.port

INSTANCE_DIR Removed in v2

JAVA_HOME java.home

JES_EXPLORER_UI_PORT Removed in v2

KEY_ALIAS zowe.certificate.keystore.alias

Zowe v1 Variable Zowe v2 YAML Configuration

KEYSTORE_CERTIFICATE_AUTHORITY zowe.certificate.pem.certificateAuthorities

KEYSTORE_CERTIFICATE zowe.certificate.pem.certificate

KEYSTORE_DIRECTORY zowe.setup.certificate.pkcs12.directory

KEYSTORE_KEY zowe.certificate.pem.key

KEYSTORE_PASSWORD
zowe.certificate.keystore.password and

zowe.certificate.truststore.password

KEYSTORE_TYPE
zowe.certificate.keystore.type and

zowe.certificate.truststore.type

KEYSTORE zowe.certificate.keystore.file

LAUNCH_COMPONENT_GROUPS Removed in v2

MVS_EXPLORER_UI_PORT Removed in v2

PKCS11_TOKEN_LABEL Removed in v2

PKCS11_TOKEN_NAME Removed in v2

ROOT_DIR zowe.runtimeDirectory

SKIP_NODE Removed in v2

STATIC_DEF_CONFIG_DIR -

TRUSTSTORE zowe.certificate.truststore.file

USS_EXPLORER_UI_PORT Removed in v2

Zowe v1 Variable Zowe v2 YAML Configuration

ZOSMF_HOST zOSMF.host

ZOSMF_PORT zOSMF.port

ZOWE_APIM_NONSTRICT_VERIFY_CERTIFICATES zowe.verifyCertificates

ZOWE_APIM_VERIFY_CERTIFICATES zowe.verifyCertificates

ZOWE_EXPLORER_FRAME_ANCESTORS Removed in v2

ZOWE_EXPLORER_HOST zowe.externalDomains or haInstances.<ha-instance>.hostname

ZOWE_INSTANCE Removed in v2

ZOWE_IP_ADDRESS Removed in v2

ZOWE_PREFIX zowe.job.prefix

ZOWE_ZLUX_SECURITY_TYPE -

ZOWE_ZLUX_SERVER_HTTPS_PORT -

ZOWE_ZLUX_SSH_PORT -

ZOWE_ZLUX_TELNET_PORT -

ZOWE_ZSS_SERVER_PORT -

Zowe v1 Variable Zowe v2 YAML Configuration

ZOWE_ZSS_SERVER_TLS -

ZOWE_ZSS_XMEM_SERVER_NAME -

ZWE_CACHING_EVICTION_STRATEGY components.caching-service.storage.evictionStrategy

ZWE_CACHING_SERVICE_PERSISTENT components.caching-service.storage.mode

ZWE_CACHING_SERVICE_PORT components.caching-service.port

ZWE_CACHING_SERVICE_VSAM_DATASET components.caching-service.storage.vsam.name

ZWE_CACHING_STORAGE_SIZE components.caching-service.storage.size

ZWE_DISCOVERY_SERVICES_LIST -

ZWE_DISCOVERY_SERVICES_REPLICAS components.discovery.replicas

ZWE_EXTENSION_DIR zowe.extensionDirectory

ZWE_EXTERNAL_HOSTS zowe.externalDomains

ZWE_EXTERNAL_PORT zowe.externalPort

ZWE_LAUNCH_COMPONENTS
Combined information of components.<component>.enabled with

value of true

ZWE_LOG_LEVEL_ZWELS zowe.launchScript.logLevel

ZWEAD_EXTERNAL_STATIC_DEF_DIRECTORIES Removed in v2

ZWES_ZIS_LOADLIB zowe.setup.dataset.authLoadlib

ZWES_ZIS_PARMLIB_MEMBER -

ZWES_ZIS_PARMLIB zowe.setup.dataset.parmlib

ZWES_ZIS_PLUGINLIB zowe.setup.dataset.authPluginLib

Packaging one component deliverable for both Zowe v1 and v2

It is recommended that you create a dedicated package of extensions for Zowe v2, which is the most straight-forward

way to address all of the breaking changes introduced in v2. We understand that this method presents the challenge of

maintaining two sets of packages. If you prefer not to maintain two sets of packages, it's still possible to maintain one

version of an extension which works for both Zowe v1 and v2. However, the lifecycle code will be complicated and in this

case, comprehensive testing should be performed.

CAUTION

The Zowe v2 App Framework desktop is upgraded from Angular version 6 to angular version 12 for support and

security - websites have a "1 version of a library" limitation. This means that plug-ins dependent upon Angular must

be coded for either v6 or v12 [not both] thus the single version approach is not applicable.

If the lifecycle scripts are the main concern, the following steps outline requirements and recommendations for the

single version approach:

Packaging manifest.yaml is required. This is a hard requirement for Zowe v2. If you define lifecycle scripts with

default names, for example, use bin/start.sh as commands.start , it should work for v1.

Revisit all environment variables used in the lifecycle scripts and apply fallback variables. For example, if you use

$ROOT_DIR in Zowe v1, this should be changed to ${ZWE_zowe_runtimeDirectory:-${ROOT_DIR}} to make it

compatible with both versions. Other variables like $EXPLORER_HOST should be changed to

${ZWE_haInstance_hostname:-${EXPLORER_HOST}} or ${ZWE_externalDomains_0:-${EXPLORER_HOST}} based on

purpose.

In Zowe v2, we recommend you to define extension configurations in the manifest.yaml configs section and use

${ZWE_configs_*} variables to access them. This feature does not exist in Zowe v1. So if you use ${ZWE_configs_*}

variables, it should fall back to the matching environment variable used in v1.

In Zowe v2, we recommend you to define a commands.install lifecycle script to handle extension installation. This

lifecycle script will be executed by zwe components install . In v1, this also exists if you use the zowe-install-

components.sh utility to install a Zowe extension. So if you want one extension package to work for both Zowe v1

and v2, this install lifecycle script should also be compatible with both v1 and v2.

A new v2 variable ${ZWE_VERSION} may help you determine the Zowe version number. This variable does not exist

in Zowe v1. By knowing the Zowe version, the lifecycle scripts can implement logic to source v1 or v2 dedicated

scripts to avoid handling fallbacks in the same script. This could help avoid complicated compatibility version

checks, and it could be easier in the future if you decide to drop Zowe v1.

Version: v3.3.x LTS

Zowe conformance and release compatibility

Backward compatibility

Zowe V2 conformant extensions/plug-ins are not guaranteed to be compatible with Zowe V3 and therefore may not be

operable. In general, plug-ins/extensions which leverage V3 APIs that have known breaking changes are at high risk of

incompatibility and unpredictable results.

RECOMMENDATION

All V2 extenders test with Zowe V3, identify any issues, and disclose results to consumers to clearly indicate

backward compatibility status in the extension documentation. Testing limitations should be clearly documented.

Forward compatibility

Zowe V3 conformant (planning to earn conformance) extensions/plug-ins are not guaranteed to be compatible with Zowe

V2 LTS. In general, plug-ins/extensions with no known dependency on any newly introduced Zowe V2 functions are at

minimum risk.

RECOMMENDATION

All V3 extenders test with Zowe V2 LTS, identify any issues, and disclose results to consumers to clearly indicate

forward compatibility status in the extension documentation. Any testing limitations should be clearly documented.

Conformance compatibility

Zowe V2 conformant extensions/plug-ins are likely to require changes to meet Zowe V3 conformance criteria. All

extensions (regardless of V2 conformance status) must apply for V3 conformance and satisfy all required V3 testing

criteria. For more information about V3 Conformance Criteria, see the Zowe Support Provider Conformance Guide.

RECOMMENDATION

Extenders interested in earning V3 conformance should review the V3 conformance criteria, determine if technical

changes are necessary, make appropriate modifications, and then prepare to apply for V3 conformance.

Need help?

For assistance with reviewing or completing the Zowe Conformance Zowe V3 application, reach out to members of the

Zowe Onboarding Squad on Slack at https://slack.openmainframeproject.org in the #zowe-onboarding channel.

https://github.com/openmainframeproject/foundation/releases/download/zowe_conformant_zowe_v3_20240910/Zowe.Support.Provider.-.Test.Evaluation.Guide.Table.pdf
https://slack.openmainframeproject.org/

Version: v3.3.x LTS

Zowe CLI quick start

The content from this page has been removed while Zowe Docs gathers feedback from the Zowe community.

Please let us know your thoughts.

Do you regularly refer to the quick start content and would like to see it displayed again here? Do you find the quick start

documentation unnecessary? Do you prefer the Installing Zowe CLI documentation?

Please let us know with a message in the Zowe Doc Slack or by filing an issue in our GitHub repository.

To read the content that was previously here, please see the Zowe 3.1 version of Zowe CLI quick start.

https://docs.zowe.org/stable/user-guide/user-roadmap-zowe-cli
https://openmainframeproject.slack.com/archives/CC961JYMQ
https://github.com/zowe/docs-site/issues/new
https://docs.zowe.org/v3.1.x/getting-started/cli-getting-started

Version: v3.3.x LTS

Installing Zowe

The installation of Zowe™ consists of the following processes:

Installation of the Zowe server-side components.

You can install the components either on z/OS only or you can install the components both on z/OS and on Docker.

Installation of Zowe client-side components.

You can install Zowe CLI or Zowe Explorer, a Visual Studio Code extension powered by Zowe CLI.

The Zowe server components provide a web desktop that runs a number of applications such as API Mediation Layer that

includes the Single Sign-on (SSO) capability, organization of the multiple Zowe servers under a single website, and other

useful features for z/OS developers.

Because Zowe is a set of components, before installing Zowe, use this guide to determine which components you want

to install and where you want to install them.

Consider the following scenarios:

If you plan to use Zowe CLI on PC only, you may not need to install the Zowe server components.

Note: Some CLI plug-ins require the installation of components on z/OS. If you plan to use core Zowe CLI groups

from your PC, the z/OS you connect to does not require any components of Zowe to be installed on z/OS, unless you

want to take advantage of advanced authentication methods such as single sign-on or multi-factor authentication.

If you use the Docker technical preview to run the Linux parts of Zowe in a container, you only need to configure the

Zowe z/OS component to start the ZSS server.

Version: v3.3.x LTS

Zowe server-side installation overview

Installation of Zowe™ server-side components on z/OS, consists of the following two parts:

Zowe runtime

Zowe Cross Memory Server (ZIS)

Zowe runtime

The Zowe runtime consists of the following three components:

Zowe Application Framework

Zowe Application Framework modernizes and simplifies working on the mainframe via a web visual interface.

Functionality is provided through apps and a desktop user experience, which is referred to as the Zowe Desktop.

Base functionality includes apps to work with JES, MVS Data Sets, Unix System Services, as well as a 3270 Terminal,

Virtual Terminal, and an Editor.

Zowe API Mediation Layer (API ML)

Zowe API ML provides a reverse proxy and enables REST APIs by providing a single point of access for mainframe

service REST APIs like MVS Data Sets, JES, as well as working with z/OSMF. Zowe API ML has dynamic discovery

capability for these services and Gateway is also responsible for generating the authentication token used to provide

single sign-on (SSO) functionality.

Z System Services Server (ZSS)

ZSS serves as one of the primary, authenticated backends that communicates with z/OS and works closely with the

Zowe Cross Memory Server (ZIS). ZSS provides Zowe with a number of APIs including z/OS Unix files and data sets,

control of the plug-ins and services lifecycle, security management, and other APIs. The Zowe Desktop delegates a

number of services to ZSS which can then be accessed through the default http port 7557 . ZSS is written in C and

uses native calls to z/OS to provide its services.

The Zowe Cross Memory Server (ZIS)

The Zowe Cross Memory Server, also referred to as Zowe Interprocess Services (ZIS) is an APF authorized server

application that provides privileged services to Zowe in a secure manner. For security reasons, ZIS is not an HTTP server.

Instead, this server has a trust relationship with ZSS.

Other Zowe components can work through ZSS to handle z/OS data that would otherwise be unavailable or where access

to these data could be vulnerable to security breaches.

Roles and responsibilities for server-side component

installation

To avoid interuptions in the installation of Zowe™ server-side components, it is useful to be aware of the roles required

to perform various tasks in the installation and configuration process.

Security administrator

To configure Zowe security for production environments, it is likely that your organization's security administrator will be

required to perform specific tasks. For more information, see Addressing security requirements.

Storage administrator

Before starting installation, notify your storage administrator to reserve the required space for USS, directory storage

space, and any other storage requrements to install Zowe. For more information, see Addressing storage requirements.

Network administrator

Notify your organization's network administrator to assign port numbers, reserve these port numbers, and arrange them

for you. For more information about network setup, see Addressing network requirements.

System programmer

In most cases, the system programmer performs the Zowe installation and configuration, and starts Zowe. Ensure that

your system programmers have general knowledge about SMP/E, z/OSMF workflows, and regular maintanance

procedures. In many cases, the system programmer also prepares jobs for other administrators.

End-to-end installation

The following diagram illustrates the full ecosystem for installing Zowe server-side components for z/OS.

https://docs.zowe.org/stable/user-guide/address-security-requirements#tasks-performed-by-your-security-administrator
https://docs.zowe.org/stable/user-guide/address-storage-requirements
https://docs.zowe.org/stable/user-guide/address-network-requirements

Stage 1: Prepare for installation

Begin the installation process by familiarizing yourself with the following topics which are covered in the section

Preparing for installation:

Zowe's hardware and software requirements

The zwe utility used for installing, configuring, and managing Zowe

The configuration file used for Zowe, zowe.yaml

Stage 2: Installing the Zowe z/OS runtime

https://docs.zowe.org/stable/user-guide/installandconfig

1. Ensure that the software requirements described in Preparing for installation are met.

2. Choose your method for installing Zowe on z/OS.

Each method to perform Zowe server-side component installation contains the same contents. Choose the method

based on your needs. The Zowe z/OS binaries are distributed in the following formats:

Convenience build

The Zowe z/OS binaries are packaged as a PAX file which is a full product install. Transfer these binaries to a USS

directory and expand the contents. Use the zwe command zwe install to extract a number of PDS members

which contain load modules, JCL scripts, and PARMLIB entries.

SMP/E build

Zowe z/OS binaries are packaged as the following files that you can download. You install this build through

SMP/E.

A pax.Z file, which contains an archive (compressed copy) of the FMIDs to be installed.

A readme file, which contains a sample job to decompress the pax.Z file, transform this file into a format that

SMP/E can process, and invoke SMP/E to extract and expand the compressed SMP/E input data sets.

Portable Software Instance (PSWI)

You can acquire and install the Zowe z/OS PAX file as a portable software instance (PSWI) using z/OSMF.

NOTE

While the procedures to obtain and install the convenience build, SMP/E build or PSWI are different, the procedure to

configure a Zowe runtime is the same, and does not depend on how the build is obtained and installed.

1. Obtain and install the Zowe build.

For more information about how to obtain and install the convenience build, see Installing Zowe runtime from a

convenience build.

For more information about how to obtain and install the SMP/E build, see Installing Zowe SMP/E overview.

https://docs.zowe.org/stable/user-guide/systemrequirements-zos
https://docs.zowe.org/stable/user-guide/installandconfig#zwe-command
https://docs.zowe.org/stable/user-guide/install-zowe-zos-convenience-build
https://docs.zowe.org/stable/user-guide/install-zowe-zos-convenience-build
https://docs.zowe.org/stable/user-guide/install-zowe-smpe-overview

For more information about how to obtain and install the PSWI, see Installing Zowe from a Portable Software

Instance.

Successful installation of either a convenience build or an SMP/E build creates a zFS folder that contains the following

artifacts:

The unconfigured Zowe runtime directory

The utility library SZWEEXEC that contains utilities

The SAMPLIB library SZWESAMP that contains sample members

The load library SZWEAUTH that contains load modules

The steps to prepare the z/OS environment to launch Zowe are the same for all installation methods.

Stage 3: Configuring the Zowe z/OS runtime

Choose from the following methods to configure the Zowe runtime:

Use a combination of JCL and the zwe command zwe init

Use Zowe z/OSMF Workflows

Use API ML optimized z/OSMF Workflows

TIP

We recommend you open the links to this configuration procedure in new tabs.

The steps to initialize the system are the same independent of whether you obtained Zowe from a .pax convenience

build, or an SMP/E distribution.

https://docs.zowe.org/stable/user-guide/install-zowe-pswi
https://docs.zowe.org/stable/user-guide/install-zowe-pswi
https://docs.zowe.org/stable/user-guide/initialize-zos-system
https://docs.zowe.org/stable/user-guide/configure-zowe-zosmf-workflow
https://docs.zowe.org/stable/user-guide/configure-apiml-zosmf-workflow

NOTE

The zwe init command runs the subcommands in sequence automatically. You can choose to run the

subcommands one by one to define each step based on your need. If you encounter any failures with zwe init

command, you can pick up the failed subcommands step specifically and rerun this subcommand.

The following procedure outlines the steps to configure the Zowe z/OS runtime, and the corresponding zwe init

subcommands.

1. Prepare the zowe.yaml configuration file if the file does not already exist.

2. Prepare the custom MVS data sets. Copy the data sets provided with Zowe to custom data sets.

(Uses the command zwe init mvs)

3. Initialize Zowe security configurations. Create the user IDs and security manager settings.

(Uses the command zwe init security)

NOTE

If Zowe has already been launched on a z/OS system from a previous release of Zowe v2, you can skip this security

configuration step unless told otherwise in the release documentation.

4. Perform APF authorization of load libraries. These load libraries contain the modules required to perform z/OS

priviledged security calls.

(Uses the command zwe init apfauth)

5. Configure Zowe to use TLS certificates

(Uses the command zwe init certificate)

6. Create the VSAM data sets used by the Zowe API Mediation Layer caching service. Note that this step is only

required if you are configuring Zowe for cross LPAR sysplex high availability.

(Uses the command zwe init vsam)

7. Install Zowe main started tasks.

(Uses command zwe init stc)

Once you complete the Zowe z/OS runtime, you can verify the installation to determine that Zowe is installed correctly

on z/OS.

TIP

For testing purposes, it is not necessary to set up certificates when configuring the API Mediation Layer. You can

configure Zowe without certificate setup and run Zowe with verifyCertificates: DISABLED .

For production environments, certificates are required. Ensure that certificates for each of the following services

are issued by the Certificate Authority (CA) and that all keyrings contain the public part of the certificate for the

relevant CA.

z/OSMF

Zowe

The service that is onboarded to Zowe

Stage 4: (Optional) Customizing the configuration

https://docs.zowe.org/stable/appendix/zowe-yaml-configuration
https://docs.zowe.org/stable/user-guide/initialize-mvs-datasets
https://docs.zowe.org/stable/user-guide/initialize-security-configuration
https://docs.zowe.org/stable/user-guide/apf-authorize-load-library
https://docs.zowe.org/stable/user-guide/configure-certificates
https://docs.zowe.org/stable/user-guide/initialize-vsam-dataset
https://docs.zowe.org/stable/user-guide/zwe-init-subcommand-overview#installing-zowe-main-started-tasks-zwe-init-stc
https://docs.zowe.org/stable/user-guide/verify-zowe-runtime-install

Now that you have the permissions, certificates, files, and datasets necessary to run Zowe, you may wish to customize

your Zowe configuration. Customization can be performed to change various attributes including the following:

Enabling or disabling components so you only run what you need

Changing the network ports Zowe runs on to suit your environment

Customizing the behavior of a component, such as turning on optional features or logging

Splitting, templating, and placing your configuration into PARMLIBs with the Zowe Configuration Manager

TIP

See the Zowe YAML configuration file reference for other customization options.

Stage 5: (Optional) Installing and managing extensions

Before installing extensions, we recommend you start zowe.

After Zowe is customized according to your needs, you can leverage more Zowe functionalities by installing extensions.

These extensions can be optional components from the Zowe project or from other vendors.

For more information about installing and managing extensions, see Zowe server component and extension

management.

How to troubleshoot problems with the installation

If you encounter unexpected behavior when installing or verifying the Zowe runtime on z/OS, see the Troubleshooting

section for tips.

For more information on zwe , refer to the zwe appendix.

For more information on the server configuration file, see the Zowe YAML configuration file reference.

Next step

Before starting the installation process, first review the article Preparing for installation and the address the

requirements outlined in the sub-articles in this section.

https://docs.zowe.org/stable/user-guide/configmgr-using
https://docs.zowe.org/stable/appendix/zowe-yaml-configuration
https://docs.zowe.org/stable/user-guide/start-zowe-zos
https://docs.zowe.org/stable/user-guide/install-configure-zos-extensions
https://docs.zowe.org/stable/user-guide/install-configure-zos-extensions
https://docs.zowe.org/stable/troubleshoot/troubleshooting
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zowe-yaml-configuration
https://docs.zowe.org/stable/user-guide/installandconfig

Version: v3.3.x LTS

Preparing for installation

Review this overview article to familiarize yourself with key concepts used in the Zowe server-side installation process.

After you get familiar with these key concepts, review the articles in this section to prepare your system for installation.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR, STORAGE ADMINISTRATOR

To prepare for Zowe server-side installation, we recommend that your installation team review the installation and

configuration tasks and the indicated required roles to perform specific procedures. Doing so can help you complete the

process without encountering delays waiting for tasks to be completed at the last minute.

Key concepts in Zowe server-side installation

Before you begin the installation process, it is useful to understand the following key concepts and features used to

perform the installation.

z/OS UNIX System Services (USS)

zFS is a UNIX file system where Zowe runtime files and folders are installed. Zowe uses a zFS directory to contain its

northbound certificate keys as well as a truststore for its southbound keys if the administrator chooses to use PKCS#12

keystore for certificate storage.

For more information about USS, see Addressing UNIX System Servies (USS) Requirements.

TIP

Zowe runs in USS and makes heavy use of shell scripts and TCP/IP sockets, which creates temporary files and

ENQUEUES within the /tmp directory. It is not likely that the increased volume of temporary files and ENQUEUES will

impact your system, as this volume is on the scale of a few thousand temporary files and ENQUEUES, which are

subsequently freed after configuration and startup.

If, in your specific case, this increase in the /tmp directory results in impacts to your system, or you are concerned

about the possible impact of this increased volume in the /tmp directory, we recommend you update the following

property in the zowe.yaml to move the created files and ENQUEUES to different directory:

Runtime directory

The runtime directory contains the binaries, executable files, scripts, and other elements that are run when Zowe is

started. Creating a Zowe runtime directory involves setting up the necessary environment for Zowe to run on your

system.

You can create a runtime directory in one of the following ways:

Create a directory and extract Zowe convenience build into this directory.

Install the Zowe SMP/E FMID AZWE002 using the JCL members in the REL4 member.

https://docs.zowe.org/stable/user-guide/configure-uss

Execute the z/OSMF workflow script ZWERF01 contained in the SMP/E FMID AZWE002.

During execution of Zowe, the runtime directory contents are not modified. Maintenance or Zowe APAR releases replaces

the contents of the runtime directory.

NOTE

Multiple instances of Zowe can be started from the same Zowe z/OS runtime. Each launch of Zowe has its own

configuration, usually mentioned as Zowe YAML configuration file or zowe.yaml, and zFS directory that is known

as a workspace directory.

Example of a runtime directory:

For Zowe in a high availability configuration, there will be only one workspace directory which must be created on a

shared file system (zFS directory) where all LPARs in a Sysplex can access.

(If not using containerization) Zowe optionally uses a zFS directory to contain its northbound certificate keys as well

as a truststore for its southbound keys if the administrator chooses to use PKCS#12 keystore for certificate storage.

Northbound keys are one presented to clients of the Zowe desktop or Zowe API Gateway, and southbound keys are

for servers that the Zowe API gateway connects to. The certificate directory is not part of the Zowe runtime so that it

can be shared between multiple Zowe runtimes and have its permissions secured independently.

Zowe has the following started tasks:

ZWESISTC is a cross memory server that the Zowe desktop uses to perform APF-authorized code. More details on

the cross memory server are described in Configuring the Zowe cross memory server.

ZWESASTC is a cross memory Auxiliary server that is used under some situations in support of a Zowe extension.

Auxiliary server is started, controlled, and stopped by the cross memory server, so no need to start it manually.

More details are described in Zowe auxiliary service

ZWESLSTC brings up other parts of the Zowe runtime on z/OS as requested. This may include Desktop, API

mediation layer, ZSS, and more, but when using containerization likely only ZSS will be used here. It can be used

for a single Zowe instance deployment and can also be used for Zowe high availability deployment in Sysplex. It

brings up and stops Zowe instances, or specific Zowe components without restarting the entire Zowe instances.

In order for above started tasks to run correctly, security manager configuration needs to be performed. This is

documented in Configuring the z/OS system for Zowe and a sample JCL member ZWESECUR is shipped with Zowe

that contains commands for RACF, TopSecret, and ACF2 security managers.

Notes:

To start the API Mediation Layer as a standalone component, see API Mediation Layer as a standalone

component.

If you plan to use only API ML components and you will not be using x509 client-side certificate authentication,

you do not need to run or set up ZWESISTC and ZWESASTC. Only ZWESLSTC will be used.

Topology of the Zowe z/OS launch process

https://docs.zowe.org/stable/user-guide/configure-xmem-server
https://docs.zowe.org/stable/user-guide/configure-xmem-server
https://docs.zowe.org/stable/user-guide/configure-zos-system
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-api-mediation-standalone
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-api-mediation-standalone

Runtime directory

The runtime directory contains the binaries and executable files. You can create a runtime directory in one of the

following ways:

Create a directory and extract Zowe convenience build into it.

Installing the Zowe SMP/E FMID AZWE002 using the JCL members in the REL4 member.

Executing the z/OSMF worklow script ZWERF01 contained in the SMP/E FMID AZWE002.

During execution of Zowe, the runtime directory contents are not modified. Maintenance or APAR release for Zowe

replaces the contents of the runtime directory and are rollup PTFs.

A typical Zowe runtime directory looks like this:

zwe command

The zwe command is provided in the <RUNTIME_DIR>/bin directory.

The zwe init command is a combination of the following subcommands. Each subcommand defines a configuration.

mvs

Copies the data sets provided with Zowe to custom data sets.

security

Creates the user IDs and security manager settings.

apfauth

APF authorizes the LOADLIB containing the modules that need to perform z/OS privileged security calls.

certificate

Configures Zowe to use TLS certificates.

vsam

Configures the VSAM files needed to run the Zowe caching service used for high availability (HA)

stc

Configures the system to launch the Zowe started task.

In combination, these commands initialize Zowe, manage Zowe instances, and perform common tasks.

TIPS:

The zwe command has built in help that can be retrieved with the -h suffix. Use zwe -h to see all supported

zwe commands.

For more information about zwe see zwe in the appendix.

If you expect to have only one copy of the Zowe runtime on your system, it is convenient to be able to access a

copy of zwe from your user at any location within USS. Add this Zowe bin directory to your PATH environment

variable to execute the zwe command without having to fully qualify its location. To update your PATH, run the

following command:

This command updates the PATH for the current shell. To make this update persistent, you can add the line to

your ~/.profile file, or the ~/.bash_profile file if you are using a bash shell. To make this update system

wide, update the /etc/.profile file. Once the PATH is updated, you can execute the zwe command from any

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/

USS directory. For the remainder of the documentation when zwe command is referenced, it is assumed that it

has been added to your PATH .

You may not want to add zwe to your PATH if you have multiple copies of the Zowe runtime, as this can confuse

which one you are utilizing.

Zowe started tasks

Zowe has the following started tasks:

ZWESISTC

This started task corresponds to a cross memory server that the Zowe desktop uses to perform APF-authorized code.

For more information about the cross memory server, and the cross memory auxiliary server ZWESASTC see

Configuring the Zowe cross memory server.

ZWESASTC

This started task corresponds to a cross memory auxiliary server that is used under some situations in support of a

Zowe extension. The auxiliary server is started, controlled, and stopped by the cross memory server, and does not

need to be started manually.

ZWESLSTC

This started task brings up other features of the Zowe runtime on z/OS upon request. Features may include Desktop,

API Mediation Layer, ZSS, and more. When using containerization, it is likely that the only feature will be ZSS. This

task can be used for a single Zowe instance deployment, and can also be used for Zowe high availability deployment

in Sysplex. This task brings up and stops Zowe instances, or specific Zowe components without restarting the entire

Zowe instances.

IMPORTANT

In order for the above started tasks to run correctly, the security administrator permissions are required. For

more information, see Configuring the z/OS system for Zowe.

Note that the sample JCL member ZWESECUR is shipped with Zowe and contains commands for RACF, TopSecret,

and ACF2 security managers.

z/OS Data sets used by Zowe

After Zowe is properly installed, the following data sets are created on z/OS under the prefix you defined:

<prefix>.SZWEAUTH

This data set contains authorized binaries used by Zowe components. In particular, ZIS needs this data set to run.

<prefix>.SZWELOAD

This data set contains binaries that do not need authorization. In particular, this data set contains a version of

configuration manager that can be accessed within REXX.

<prefix>.SZWEEXEC

This data set contains few utility executables will be used by Zowe.

<prefix>.SZWESAMP

This data set contains sample JCLs to help you configure or start Zowe.

If you install Zowe with the convenience build, these data sets are created by zwe install command. If you install

Zowe with SMP/E or equivalent methods, these data sets are created during installation and you are not required to run

https://docs.zowe.org/stable/user-guide/configure-xmem-server
https://docs.zowe.org/stable/user-guide/configure-zos-system
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-install

the zwe install command. Note that the aforementioned data sets are overwritten during the upgrade process.

Zowe configuration and runtime also use other data sets to store customization. These data sets are not overwritten

during upgrade.

zowe.setup.datasets.parmlib

This data set defined in Zowe configuration contains user customized PARMLIB members.

zowe.setup.datasets.jcllib

This data set defined in Zowe configuration contains user customized JCLs or JCLs generated by zwe init command.

zowe.setup.datasets.authLoadlib

This data set defined in Zowe configuration is optional. If the user chooses to copy out load libraries from

<prefix>.SZWEAUTH , these libraries are placed here. With this option, you have better control on what will be APF

authorized other than authorize whole <prefix>.SZWEAUTH .

zowe.setup.datasets.authPluginLib

This data set defined in Zowe configuration contains extra load libraries used by ZIS plugins.

zowe.setup.datasets.loadlib

This data set defined in Zowe configuration contains load libraries that do not need authorization, such as a version

of the configuration manager that can be used within REXX.

Zowe configuration file (zowe.yaml)

Zowe uses a YAML format configuration. If you store the configuration on USS, this file is usually referred as zowe.yaml .

This configuration file has the following requirements:

The Zowe runtime user, usually referred as ZWESVUSR , must have read permission to this file.

If you plan to run Zowe in Sysplex, all Zowe high availability instances must share the same configuration file. As

such, this configuration file should be placed in a shared file system (zFS directory) where all LPARs in a Sysplex can

access.

The Zowe configuration file may contain sensitive configuration information so it should be protected against

malicious access.

To create this configuration, you can copy from example-zowe.yaml located in Zowe runtime directory. Note that the

zowe.runtimeDirectory definition in the configuration file should match the Zowe runtime directory mentioned

previously.

To learn more about this Zowe configuration file, see the Zowe YAML configuration file reference.

ZOWE.YAML CONFIGURATION TIPS:

When you execute the zwe command, the --config or -c argument is used to pass the location of a zowe.yaml

file.

To avoid passing --config or -c to every zwe command, you can define ZWE_CLI_PARAMETER_CONFIG

environment variable points to the location of zowe.yaml.

For example, after defining export ZWE_CLI_PARAMETER_CONFIG=/path/to/my/zowe.yaml , you can simply type

zwe start instead of the full command zwe start -c /path/to/my/zowe.yaml .

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init
https://docs.zowe.org/stable/appendix/zowe-yaml-configuration

If you are new to the example-zowe.yaml configuration file, you can start with entries that are marked with

COMMONLY_CUSTOMIZED . It highlights most of the common configurations, such as directories, host and domain

name, service ports, certificate setup, and z/OSMF, which are critical for standing a new Zowe instance.

Workspace directory

The workspace directory is required to launch Zowe. It is automatically created when you start Zowe. More than one

workspace directory can be created and used to launch multiple instances of Zowe sharing the same runtime directory. It

is not recommended to create workspace directory manually in order to avoid permission conflicts.

Zowe instances are started by running the server command zwe start . This creates a started task with the PROCLIB

member ZWESLSTC that is provided with the samplib SZWESAMP created during the installation of Zowe. The JCL member

ZWESLSTC starts Zowe launcher under which it launches Zowe components address spaces.

Zowe enables read and write permission to both Zowe runtime user (ZWESVUSR by default) and Zowe admin group

(ZWEADMIN by default) for Zowe workspace directory.

If you plan to run Zowe in Sysplex, all Zowe high availability instances must share the same workspace directory, which

means it should be placed in a shared file system (zFS directory) where all LPARs in a Sysplex can access.

The workspace directory should be defined in your Zowe configuration file as zowe.workspaceDirectory .

Log directory

Some Zowe components write logs to a file system. The directory is created automatically when you start Zowe and the

content is automatically managed by Zowe components. It is not recommended to create a log directory manually in

order to avoid permission conflicts.

Multiple Zowe instances can define different log directories. It is not necessary that these log directories be shared in

Sysplex deployment like the workspace directory.

The log directory should be defined in your Zowe configuration file as zowe.logDirectory .

Keystore directory

Zowe uses certificates to enable transport layer security. The system administrator can choose to use z/OS Keyring or

PKCS#12 keystore for certificate storage. A keystore directory is created and used if PKCS#12 keystore is chosen.

Example of a PKCS#12 keystore directory:

To generate a keystore directory, you need proper zowe.setup.certificate configuration defined in the Zowe

configuration file. Execute the server command zwe init certificate . To learn more about this command, see the

Reference of zwe init certificate in the appendix.

Extension directory

Zowe allows server extensions to expand Zowe core functionalities. The extensions are required to be installed in a

central location so Zowe runtime can find and recognize them.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-certificate

Similar to Zowe runtime directory, this extension directory should be created by the administrators perform Zowe

installation and configuration task. Zowe runtime user, typically ZWESVUSR requires read-only permission to this

directory.

The extension directory should be created by system administrator and defined in your Zowe configuration file as

zowe.extensionDirectory .

Zowe uses zwe components install command to install Zowe server extensions. This command creates sub-directories

or symbolic links under the extension directory.

Next step

Review and address the specific requirements in the Prepare for Installation section before beginning installation of Zowe

server-side components for z/OS.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install

Version: v3.3.x LTS

Zowe z/OS components installation checklist

Use this checklist to guide you through the installation and configuration of Zowe server-side components for z/OS.

Preparing for installation

Task Results
Time

Estimate

Review the Zowe server-side

installation overview

Knowledge about the basic installation stages and the roles and

responsibilities to perform the installation
25 minutes

Prepare for installation Knowledge about the key-concepts in server-side installation 25 minutes

Address pre-installation

requirements

The following pre-installation requirements are addressed:

 * z/OS

 * Node.js

 * security

 * USS

 * storage

 * network

 * z/OSMF

 (recommended for full functionality)

 * z/OSMF HA

 (required for production)

1 day

Installing the Zowe z/OS runtime

Choose from the following installation options to install Zowe server-side components for z/OS.

Task Results
Time

Estimate

Option 1: Install Zowe with SMP/E

(Optionally install via Server Install Wizard)

Option 2: Install Zowe with z/OSMF from a

portable software instance

Option 3: Install Zowe SMP/E build with z/OSMF

workflow

Option 4: Install Zowe via a convenience build

Executables and binaries are unpaxed on

the mainframe

1 hour

https://docs.zowe.org/stable/user-guide/install-zos
https://docs.zowe.org/stable/user-guide/install-zos
https://docs.zowe.org/stable/user-guide/installandconfig
https://docs.zowe.org/stable/user-guide/systemrequirements-zos
https://docs.zowe.org/stable/user-guide/install-nodejs-zos
https://docs.zowe.org/stable/user-guide/address-security-requirements
https://docs.zowe.org/stable/user-guide/configure-uss
https://docs.zowe.org/stable/user-guide/address-storage-requirements
https://docs.zowe.org/stable/user-guide/address-network-requirements
https://docs.zowe.org/stable/user-guide/systemrequirements-zos#zosmf-optional
https://docs.zowe.org/stable/user-guide/zowe-ha-overview
https://docs.zowe.org/stable/user-guide/install-zowe-smpe
https://docs.zowe.org/stable/user-guide/install-zowe-server-install-wizard
https://docs.zowe.org/stable/user-guide/install-zowe-pswi
https://docs.zowe.org/stable/user-guide/install-zowe-pswi
https://docs.zowe.org/stable/user-guide/install-zowe-smpe-zosmf-workflow
https://docs.zowe.org/stable/user-guide/install-zowe-smpe-zosmf-workflow
https://docs.zowe.org/stable/user-guide/install-zowe-zos-convenience-build

Task Results
Time

Estimate

(PAX file)

(Optionally install via Server Install Wizard)

Configuring Zowe z/OS Components

Choose the following options to initialize Zowe z/OS runtime:

Task Results
Time

Estimate

Option 1: Configure Zowe with

zwe init

Option 2: Configure Zowe with

z/OSMF workflows

Option 3: Configure Zowe with

JCL

* All datasets are created and populated.

* Started tasks are copied to system libraries.

Important: Security administrator permissions are required

for some zwe init sub-commands to pass.

1 hour

Configuring security

Configure Zowe and your z/OS system to run Zowe with z/OS.

Task Results
Time

Estimate

Review Configuring security
Knowledge about which tasks need to be performed by the

security administrator.
10 minutes

Initialize Zowe security

configurations
The JCL member to configure the z/OS system is created. 10 minutes

Perform APF authorization of load

libraries
APF authorization is granted to load libraries. 10 minutes

Customize z/OS system security Your z/OS and security product are configured. 2 hours

Assign security permissions to

users
Zowe user is created and is assigned all required permissions. 30 minutes

Configuring certificates

https://docs.zowe.org/stable/user-guide/install-zowe-zos-convenience-build
https://docs.zowe.org/stable/user-guide/initialize-zos-system
https://docs.zowe.org/stable/user-guide/initialize-zos-system
https://docs.zowe.org/stable/user-guide/configure-zowe-zosmf-workflow
https://docs.zowe.org/stable/user-guide/configure-zowe-zosmf-workflow
https://docs.zowe.org/stable/user-guide/configuring-zowe-via-jcl
https://docs.zowe.org/stable/user-guide/configuring-zowe-via-jcl
https://docs.zowe.org/stable/user-guide/configuring-security
https://docs.zowe.org/stable/user-guide/configuring-security#initialize-zowe-security-configurations
https://docs.zowe.org/stable/user-guide/configuring-security#initialize-zowe-security-configurations
https://docs.zowe.org/stable/user-guide/apf-authorize-load-library
https://docs.zowe.org/stable/user-guide/apf-authorize-load-library
https://docs.zowe.org/stable/user-guide/configure-zos-system
https://docs.zowe.org/stable/user-guide/assign-security-permissions-to-users
https://docs.zowe.org/stable/user-guide/assign-security-permissions-to-users

Zowe is able to use PKCS12 certificates or certificates held in a z/OS Keyring.

Task Results
Time

Estimate

Read the article Zowe certificate configuration overview. Then use one

of the following options:

Option 1: Choose the certificate configuration scenario that best

applies to your use case, and follow the configuration procedure and

scenario template.

Option 2: Set up Zowe certificates using workflows

Your certificates are

configured and stored

securely.

2 hours

Configuring the Zowe cross memory server (ZIS)

The Zowe cross memory server (ZIS) provides privileged cross-memory services to the Zowe Desktop and runs as an

APF-authorized program.

NOTE

To start Zowe without the desktop (for example to launch just the API Mediation Layer), you do not need to install

and configure the cross memory server and can skip this step.

Task Results
Time

Estimate

Configure the Zowe cross

memory server (ZIS)

* JCL member ZWESISTC is copied from SZWESAMP installation PDS to a

PDS on the JES concatenation path.

* The PDSE Load Library SZWEAUTH is APF-authorized, or the load

module ZWESIS01 is copied to an existing APF Auth LoadLib.

* The JCL member ZWESISTC DD statements are updated to point to

the location of ZWESIS01 and ZWESIP00 .

30 minutes

Configuring High Availability (optional)

You can configure your system to enable HA. This configuration is not required to run a single instance of Zowe.

Task Results
Time

Estimate

Configure Sysplex for high availability The Parallel Sysplex environment is set up. 30 minutes

Configure z/OSMF for high availability

in Sysplex

The z/OSMF server is set up to provide continuous

availability of REST services.
30 minutes

https://docs.zowe.org/stable/user-guide/configure-certificates
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios
https://docs.zowe.org/stable/user-guide/certificates-setup
https://docs.zowe.org/stable/user-guide/configure-xmem-server
https://docs.zowe.org/stable/user-guide/configure-xmem-server
https://docs.zowe.org/stable/user-guide/configure-sysplex
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-ha
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-ha

Task Results
Time

Estimate

Configure the Caching Service for HA State data persistent in HA mode is centralized. 30 minutes

Define the haInstances section in

your zowe.yaml

A dedicated section for haInstances is created in your

zowe.yaml file.
30 minutes

Starting and Stopping Zowe

Start/Stop Step Task Results
Time

Estimate

Start and stop the cross

memory server ZWESISTC

on z/OS

The ZWESISTC task starts and

stops the ZWESASTC task as

needed

The cross memory server is run as a

started task from the JCL in the

PROCLIB member ZWESISTC

5 minutes

Start and stop the Zowe

main server ZWESLSTC on

z/OS

Option 1: Use zwe to start

and stop the main Zowe

server

Option 2: Manually start

and stop the Zowe main

server ZWESLSTC

You started or stopped Zowe main

server ZWESLSTC on z/OS with zwe or

manually

20 minutes

Verifying Zowe installation on z/OS

Verification Step Task Results
Time

Estimate

Verify Zowe

Application Framework

installation

Open the Zowe Desktop from a supported

browser

You should be able to open

the Zowe Desktop from a

supported browser.

20 minutes

Verify API Mediation

installation

Use a REST API client to review the value of

the status variable of the API Catalog

service routed through the API Gateway

See the example presented

in Verify API Mediation

installation

15 minutes

Verify z/OS Services

installation

Zowe z/OS services usually are registered

with Zowe APIML Discovery

You should see JSON format

data of all jobs running on

the system

15 minutes

https://docs.zowe.org/stable/user-guide/configure-caching-service-ha
https://docs.zowe.org/stable/appendix/zowe-yaml-configuration#yaml-configurations---hainstances
https://docs.zowe.org/stable/appendix/zowe-yaml-configuration#yaml-configurations---hainstances
https://docs.zowe.org/stable/user-guide/start-zowe-zos#starting-and-stopping-the-cross-memory-server-zwesistc-on-zos
https://docs.zowe.org/stable/user-guide/start-zowe-zos#starting-and-stopping-the-cross-memory-server-zwesistc-on-zos
https://docs.zowe.org/stable/user-guide/start-zowe-zos#starting-and-stopping-the-cross-memory-server-zwesistc-on-zos
https://docs.zowe.org/stable/user-guide/start-zowe-zos#starting-and-stopping-zowe-main-server-zweslstc-on-zos-with-zwe-server-command
https://docs.zowe.org/stable/user-guide/start-zowe-zos#starting-and-stopping-zowe-main-server-zweslstc-on-zos-with-zwe-server-command
https://docs.zowe.org/stable/user-guide/start-zowe-zos#starting-and-stopping-zowe-main-server-zweslstc-on-zos-with-zwe-server-command
https://docs.zowe.org/stable/user-guide/start-zowe-zos#starting-and-stopping-zowe-main-server-zweslstc-on-zos-manually
https://docs.zowe.org/stable/user-guide/start-zowe-zos#starting-and-stopping-zowe-main-server-zweslstc-on-zos-manually
https://docs.zowe.org/stable/user-guide/start-zowe-zos#starting-and-stopping-zowe-main-server-zweslstc-on-zos-manually
https://docs.zowe.org/stable/user-guide/verify-zowe-runtime-install#verifying-zowe-application-framework-installation
https://docs.zowe.org/stable/user-guide/verify-zowe-runtime-install#verifying-zowe-application-framework-installation
https://docs.zowe.org/stable/user-guide/verify-zowe-runtime-install#verifying-zowe-application-framework-installation
https://docs.zowe.org/stable/user-guide/verify-zowe-runtime-install#verifying-api-mediation-layer-installation
https://docs.zowe.org/stable/user-guide/verify-zowe-runtime-install#verifying-api-mediation-layer-installation
https://docs.zowe.org/stable/user-guide/verify-zowe-runtime-install#verifying-zos-services-installation
https://docs.zowe.org/stable/user-guide/verify-zowe-runtime-install#verifying-zos-services-installation

Version: v3.3.x LTS

Addressing z/OS requirements

Before installing Zowe™ z/OS components, ensure that your z/OS environment meets the prerequisites. The

prerequisites you need to install depend on what Zowe z/OS components you want to use and how you want to install

and configure Zowe on z/OS. Assess your installation scenario and install the prerequisites that meet your needs.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

All Zowe server components can be installed on a z/OS environment, while some can alternatively be installed on Linux

or zLinux via Docker. The components provide a number of services that are accessed through a web browser such as an

API catalog and a web desktop.

z/OS system requirements

Be sure your z/OS system meets the following prerequisites:

z/OS

z/OS version is in active support, such as Version 2.5, and 3.1

NOTES:

z/OS V2.4 reached end of support on 30 September, 2024.

z/OS V2.3 reached end of support on 30 September, 2022. For more information, see the z/OS v2.3 lifecycle

details.

zFS volume has at least 1200 MB of free space for Zowe server components, the corresponding keystore, instance

configuration files and logs, and third-party plug-ins.

(Optional, recommended) System Display and Search Facility (SDSF)

SDSF is used for a few management tasks of Zowe, though there are alternative ways to accomplish the same tasks.

Task
Command

utilizing SDSF
Alternatives

Security

setup

zwe init

security
Submit ZWESECUR or ZWENOSEC manually or use zwe init security --jcl

Certificate

setup

zwe init

certificate

z/OSMF workflow "ZWEKRING", or the JCL samples "ZWEKRING" and those

that begin with "ZWEIKR" can be used to create keyrings.

Authorize

library

zwe init apfauth
Products that can issue the MVS SETPROG APF command or update

SYS1.PARMLIB(PROGxx) . See examples in SZWESAMP(ZWESIPRG) .

https://www.ibm.com/support/pages/zos23x-withdrawal-notification
https://www.ibm.com/support/pages/zos23x-withdrawal-notification
https://docs.zowe.org/stable/user-guide/configuring-security
https://docs.zowe.org/stable/user-guide/configuring-security
https://docs.zowe.org/stable/user-guide/configure-certificates
https://docs.zowe.org/stable/user-guide/configure-certificates
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-apfauth
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-apfauth
https://github.com/zowe/zowe-install-packaging/blob/v3.x/staging/files/SZWESAMP/ZWESIPRG

Task
Command

utilizing SDSF
Alternatives

VSAM setup zwe init vsam Submit ZWECSRVS or ZWECSVSM manually or use zwe init vsam --jcl

Starting

Zowe

zwe start
Products that can issue the MVS START command upon Zowe's STC such

as Sysview or EJES can be used instead.

Stopping

Zowe
zwe stop

Products that can issue the MVS STOP command upon Zowe's STC such as

Sysview or EJES can be used instead.

Not having SDSF installed may result in the following error message:

IRX0043I Error running /Zowe/bin/utils/opercmd.rex, line 130: Routine not found

For more information about SDSF, see the Abstract for z/OS SDSF Operation and Customization in the IBM

documentation.

(Optional, recommended) z/OS OpenSSH

Some features of Zowe require SSH, such as the SSH terminal of the Desktop. Install and manage Zowe via SSH, as

an alternative to OMVS over TN3270.

(Optional) Parallel Sysplex.

To deploy Zowe for high availability, a Parallel Sysplex environment is recommended. For more information, see

Configuring Sysplex for high availability.

Mainframe Resources Consumption

During Zowe startup, there is high resource consumption in order for Zowe to be operational as soon as possible.

Subsequent resource consumption depends on the processing load of Zowe services. When Zowe is idle, resource

consumption is relatively lower.

Resource consumption during Zowe startup

CPU consumption

Zowe consumes approximately 300 CPU seconds on the z15 T01 processor during startup. Approximately 50 percent

of CPU consumption is zIIP eligible.

I/O

Zowe performs approximately 5,000,000 I/O operations during startup.

Resource consumption when Zowe is idling

CPU consumption

Zowe consumes approximately 90 CPU seconds on the z15 T01 processor during 1 hour of operation when no

external load is processed. Approximately 60 percent of CPU consumption is zIIP eligible.

I/O

Zowe performs approximately 17,000 I/O operations during 1 hour of operation when no external load is processed.

https://docs.zowe.org/stable/user-guide/initialize-vsam-dataset
https://docs.zowe.org/stable/user-guide/start-zowe-zos
https://docs.zowe.org/stable/user-guide/start-zowe-zos
https://docs.zowe.org/stable/user-guide/start-zowe-zos
https://docs.zowe.org/stable/user-guide/start-zowe-zos
https://docs.zowe.org/stable/user-guide/configure-sysplex

NOTE

Zowe consumption reference data were measured with the default Zowe configuration. The following components

were enabled:

Gateway

Discovery Service

API Catalog

Caching Service

ZSS

Zowe Desktop

Node.js

The app-server component requires one of the following Node.js versions:

v18.x

v20.x

v22.x

Node is not included with z/OS so must be installed separately. To install Node.js on z/OS, follow the instructions in

Addressing Node.js requirements.

TIP

If you are a software vendor building extensions for Zowe, we recommend you tag your plug-ins. For more

information, see Tagging on z/OS.

Java

IBM® Semeru Runtime Certified Edition for z/OS® version 17

z/OSMF (Optional)

(Optional, recommended) IBM z/OS Management Facility (z/OSMF) Version 2.5, or Version 3.1.

z/OSMF is included with z/OS so does not need to be separately installed. If z/OSMF is present, Zowe detects z/OSMF

during configuration and uses z/OSMF for the following purposes:

Authenticating TSO users and generating a single sign-on JSON Web Token (JWT). Ensure that the z/OSMF JWT

Support is available via APAR and associated PTFs and that JWT generation is enabled. For more information see

Enabling JSON Web Token support in the IBM documentation.

REST API services for Files (Data Sets and USS), JES, and z/OSMF workflows. These are used by some Zowe

applications such as the Zowe Explorers in the Zowe Desktop. If z/OSMF REST APIs are not present, other Zowe

desktop application, such as the File Editor that provides access to USS directories and files as well as MVS data

sets and members, will work through the Zowe Z Secure Services (ZSS) component to access z/OS resources.

https://docs.zowe.org/stable/user-guide/install-nodejs-zos
https://docs.zowe.org/stable/extend/extend-desktop/mvd-buildingplugins#tagging-plugin-files-on-zos
https://www.ibm.com/support/pages/apar/PH12143
https://www.ibm.com/support/pages/apar/PH12143
https://www.ibm.com/docs/en/zos/3.1.0?topic=configurations-enabling-json-web-token-support

RECOMMENDATIONS

For production use of Zowe, we recommend configuring z/OSMF to leverage Zowe functionalities that

require z/OSMF. For more information, see Configuring z/OSMF.

For non-production use of Zowe (such as development, proof-of-concept, demo), you can customize the

configuration of z/OSMF to create z/OS MF Lite to simplify your setup of z/OSMF. z/OS MF Lite only supports

selected REST services (JES, DataSet/File, TSO and Workflow), resulting in considerable improvements in

startup time as well as a reduction in steps to set up z/OSMF. For information about how to set up z/OSMF

Lite, see Configuring z/OSMF Lite (non-production environment).

NOTE

For specific z/OS security configuration options that apply to the specific Zowe server-side components in your

configuration, see Security customization of your z/OS system.

https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-lite
https://docs.zowe.org/stable/user-guide/configure-zos-system

Version: v3.3.x LTS

Addressing Node.js requirements

Before you install Zowe™ on z/OS, you must install IBM SDK for Node.js on the same z/OS server that hosts the Zowe

Application Server and z/OS Explorer Services. Review the information in this topic to obtain and install Node.js.

REQUIRED ROLE: SYSTEM PROGRAMMER

NOTE

Node.js is required when installing the Zowe servers on z/OS. Node.js is not required if using Docker instead of z/OS,

or if running Zowe without the app-server enabled.

Supported Node.js versions

The following Node.js versions are supported to run Zowe. See the Hardware and software prerequisites section for the

prerequisites that are required by Zowe.

The corresponding IBM SDK for Node.js - z/OS documentation lists all the prerequisites for Node.js. Some software

packages, which might be listed as prerequisites there, are NOT required by Zowe. Specifically, you do NOT need to

install Python, Make, Perl, or C/C++ runtime or compiler. If you can run node --version successfully, you have installed

the prerequisites required by Zowe.

NOTE

IBM SDK for Node.js withdrew v16 from marketing on September 4, 2023. The v14 service ended on September 30,

2022.

v18.x

z/OS V2R4: PTFs UI78913, UI81096, UI78103, UI80155, UI83490

z/OS V2R5: PTFs UI78912, UI81095, UI80156, UI83424

V20.x

z/OS V2R4: PTFs UI80106, UI81096, UI78103, UI80155, UI83490

z/OS V2R5: PTFs UI78912, UI81095, UI80156, UI83424

z/OS V3R1: No PTFs needed.

V22.x

z/OS V2R5: PTFs UI78912, UI81095, UI80156, UI83424

z/OS V3R1: No PTFs needed.

How to obtain IBM SDK for Node.js - z/OS

You can obtain IBM SDK for Node.js - z/OS for free in one of the following ways:

https://www.ibm.com/docs/en/sdk-nodejs-zos

Order the SMP/E edition through your IBM representative if that is your standard way to order IBM software.

Order the SMP/E edition through IBM Shopz with optional paid support available.

Download PAX file format at ibm.com/products/sdk-nodejs-compiler-zos. IBM defect Support is not available for this

format.

For more information, see the blog "Options on how to obtain IBM Open Enterprise SDK for Node.js".

Hardware and software prerequisites

To install Node.js for Zowe, the following requirements must be met.

The corresponding IBM SDK for Node.js - z/OS documentation lists all the prerequisites for Node.js. Some software

packages, which might be listed as prerequisites there, are NOT required by Zowe. Specifically, you do NOT need to

install Python, Make, Perl, or C/C++ runtime or compiler.

If you run node --version successfully, you installed the Node.js prerequisites required by Zowe.

Hardware:

IBM zEnterprise® 196 (z196) or newer

Software:

z/OS UNIX System Services enabled

Integrated Cryptographic Service Facility (ICSF) configured and started

ICSF is required for Node.js to operate successfully on z/OS. If you have not configured your z/OS environment for

ICSF, see Cryptographic Services ICSF: System Programmer's Guide. To verify that ICSF started, check that the

started task ICSF or CSF is active.

Installing the PAX edition of Node.js - z/OS

Follow these steps to install the PAX edition of Node.js - z/OS to run Zowe.

1. Download the pax.Z file to a z/OS machine.

2. Extract the pax.Z file inside an installation directory of your choice.

For example:

pax -rf <path_to_pax.Z_file> -x pax

3. Add the full path of your installation directory to your PATH environment variable:

4. Run the following command from the command line to verify the installation.

If Node.js is installed correctly, the version of Node.js is displayed. If it is intalled correctly, you will see the version

information on your device.

5. After you install Node.js, set the NODE_HOME environment variable to the directory where Node.js is installed. For

example, NODE_HOME=/proj/mvd/node/installs/node-v18.18.2-os390-s390x .

https://www.ibm.com/products/sdk-nodejs-compiler-zos
https://community.ibm.com/community/user/ibmz-and-linuxone/blogs/bruce-armstrong/2022/07/27/options-on-how-to-obtain-ibm-open-enterprise-sdk-f
https://www.ibm.com/docs/en/sdk-nodejs-zos
https://www.ibm.com/docs/en/zos/2.5.0?topic=services-zos-cryptographic-icsf-system-programmers-guide

Installing the SMP/E edition of Node.js - z/OS

To install the SMP/E edition of Node.js, see the documentation for IBM SDK for Node.js - z/OS. Remember that the

software packages Perl, Python, Make, or C/C++ runtime or compiler that the Node.js documentation might mention are

NOT needed by Zowe.

https://www.ibm.com/docs/en/sdk-nodejs-zos

Version: v3.3.x LTS

Addressing security requirements

ROLES REQUIRED: SECURITY ADMINISTRATOR

During configuration of server-side components, it is necessary to configure various system security settings. Your

organization may require your security administrator to complete steps to configure Zowe security. As a system

administrator/programmer, first consult with your security administrator before you start the installation process.

NOTE

This article addresses configuring Zowe security during the Zowe z/OS components installation process, and does

not address security configuration to extend Zowe. For more information about security configuration to extend

Zowe, see the following articles:

Digital certificates

User Authentication

Access Authorization

Tasks performed by your security administrator

To configure Zowe security, your organization's security administrator is required to perform various tasks. Some of the

tasks apply to general Zowe configuration, while other tasks are required during installation if you plan to use specific

Zowe components or features.

The following required configuration tasks are performed by your organization's security administrator during the post-

installation configuration:

Initialize Zowe security configurations

Perform APF authorization of load libraries

Configure the z/OS system for Zowe

Configure address space job naming

Assign security permissions to users

If your Zowe server-side installation includes the features listed in the following table, consult your security administrator

to perform the associated security tasks after installation:

Feature of a Zowe server-side component Configuration Task

If using Top Secret as your security manager

Note: No specific configuration is necessary for security

managers other than Top Secret.

Configuring multi-user address space (for TSS only)

High Availability
Configuring ZWESLSTC to run Zowe high availability

instances under ZWESVUSR user ID

https://docs.zowe.org/stable/getting-started/zowe-security-overview#digital-certificates
https://docs.zowe.org/stable/getting-started/zowe-security-overview#user-authentication
https://docs.zowe.org/stable/getting-started/zowe-security-overview#access-authorization
https://docs.zowe.org/stable/user-guide/initialize-security-configuration
https://docs.zowe.org/stable/user-guide/apf-authorize-load-library
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-user-ids-and-groups-for-the-zowe-started-tasks
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-address-space-job-naming
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-multi-user-address-space-for-tss-only
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-zweslstc-to-run-zowe-high-availability-instances-under-zwesvusr-user-acid
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-zweslstc-to-run-zowe-high-availability-instances-under-zwesvusr-user-acid

Feature of a Zowe server-side component Configuration Task

z/OSMF authentication or onboarding of z/OSMF service Granting users permission to access z/OSMF

ZSS component enabled (required for API ML certificate

and identity mapping)

Configuring an ICSF cryptographic services environment

and

Configuring security environment switching

API Mediation Layer certificate mapping
Configuring main Zowe server to use client certificate

identity mapping

API Mediation Layer identity mapping
Configuring main Zowe server to use distributed identity

mapping

API Mediation Layer Identity Tokens (IDT) Configuring signed SAF Identity tokens (IDT)

Cross memory server (ZIS)

Configuring the cross memory server for SAF

and

Configuring cross memory server load module

and

Configuring cross-memory server SAF configuration

Assign security permissions to users

As a security administrator, assign users (ZWESVUSR and ZWESIUSR) and the ZWEADMIN security group permissions

required to perform specific tasks.

For more information about assigning these permissions, see Assigning security permissions to users.

https://docs.zowe.org/stable/user-guide/assign-security-permissions-to-users#granting-users-permission-to-access-zosmf
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-an-icsf-cryptographic-services-environment
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-security-environment-switching
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-client-certificate-identity-mapping
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-client-certificate-identity-mapping
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-distributed-identity-mapping
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-distributed-identity-mapping
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-signed-saf-identity-tokens-idt
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-the-cross-memory-server-for-saf
https://docs.zowe.org/stable/user-guide/configure-xmem-server#load-module
https://docs.zowe.org/stable/user-guide/configure-xmem-server#saf-configuration
https://docs.zowe.org/stable/user-guide/assign-security-permissions-to-users

Version: v3.3.x LTS

(Recommended) Addressing authentication

requirements

The following features are not required, but are recommended with additional prerequisites.

ROLES REQUIRED: SECURITY ADMINISTRATOR

Multi-Factor Authentication (MFA)

Multi-factor authentication (MFA) is supported for several Zowe components, including the Zowe Desktop, API Mediation

Layer, and Zowe Application Framework. Multi-factor authentication is provided by third-party products with which Zowe

is compatible. The following MFA products are known to work with Zowe:

Advanced Authentication Mainframe 2.0

IBM Z Multi-Factor Authentication.

To support the multi-factor authentication, it is necessary to apply z/OSMF APAR PH39582.

IMPORTANT

Multi-factor authentication requires configuration with Single-Sign-On (SSO). Ensure that SSO is configured before

you use MFA in Zowe.

Single Sign On (SSO)

Zowe has an SSO scheme with the goal that each time you use multiple Zowe components you should only be prompted

to login once.

Requirements:

IBM z/OS Management Facility (z/OSMF)

NOTES:

For more information about single sign on (SSO) for users, see Zowe API Mediation Layer Single Sign On

Overview.

For more information about single sign on (SSO) for extenders, see Single Sign On Integration for Extenders.

API Mediation Layer OIDC Authentication

Zowe requires ACF2 APAR LU01316 to be applied when using the ACF2 security manager.

https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-advanced-authentication-mainframe/2-0.html
https://www.ibm.com/products/ibm-multifactor-authentication-for-zos
https://www.ibm.com/support/pages/apar/PH39582
https://docs.zowe.org/stable/user-guide/api-mediation-sso
https://docs.zowe.org/stable/user-guide/api-mediation-sso
https://docs.zowe.org/stable/extend/extend-apiml/api-medation-sso-integration-extenders

For more information about OIDC authentication, see Zowe API Mediation Layer OIDC Authentication.

https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-oidc-authentication

Version: v3.3.x LTS

Addressing UNIX System Services (USS)

Requirements

The Zowe z/OS component runtime requires UNIX System Services (USS) to be configured. As shown in the Zowe

architecture, a number of servers run under UNIX System Services (USS) on z/OS. Review this topic for knowledge and

considerations about USS when you install and configure Zowe.

REQUIRED ROLE: SECURITY ADMINISTRATOR

What is USS?

The UNIX System Services element of z/OS® is a UNIX operating environment, which is implemented within the z/OS

operating system. It is also known as z/OS UNIX. z/OS UNIX files are organized in a hierarchy, as in a UNIX system. All

files are members of a directory, and each directory in turn is a member of another directory at a higher level in the

hierarchy. The highest level of the hierarchy is the root directory. The z/OS UNIX files system is also known as zFS. This

zFS directory is the location where the Zowe runtime files and folders are installed.

For more information on USS, see the Introduction to z/OS UNIX

Setting up USS for the first time

If you have not enabled USS for your z/OS environment before, the SMP/E distribution of Zowe provides a number of JCL

jobs to assist with this purpose. You can consult with your USS administrator if you need more information such as the

USS file system.

Language environment

The following Language Environment options should be set for Zowe.

Name Value Description

HEAP64 HEAP64(4M,4M,KEEP,1M,1M,KEEP,0K,0K,FREE)
You need to have HEAP64 large enough that Zowe

has enough memory allocated to run.

HEAPPOOLS HEAPPOOLS(OFF)
Some parts of Zowe cannot run when HEAPPOOLS

is enabled.

HEAPPOOLS64 HEAPPOOLS64(OFF)
Some parts of Zowe cannot run when

HEAPPOOLS64 is enabled.

OMVS segment

https://docs.zowe.org/stable/getting-started/zowe-architecture
https://docs.zowe.org/stable/getting-started/zowe-architecture
https://www.ibm.com/support/knowledgecenter/SSLTBW_3.1.0/com.ibm.zos.v3r1.bpxb200/int.htm

An OMVS segment is required for users (ZWESVUSR or ZWESIUSR) who install Zowe to run Zowe scripts.

TIP

For information about OMVS segments, see the article The OMVS segment in user profiles in the IBM

documentation.

If the user profile does not have an OMVS segment, the following messages can occur:

When you access USS through TSO OMVS, the following message is thrown:

When you access USS through SSH, the following message is thrown:

Address space region size

Java as a prerequisite for Zowe requires a suitable z/OS region size to operate successfully while you install and

configure Zowe. It is suggested that you do not restrict the region size, but allow Java to use what is necessary.

Restricting the region size might cause failures with storage-related error messages such as the following one:

You can fix the storage-related issue by making one of the following changes:

ASSIZEMAX parameter

The ASSIZEMAX parameter is the maximum size of the process's virtual memory (address space) in bytes.

To specify the JVM maximum address space size on a per-user basis, set the ASSIZEMAX configuration parameter to

the value 2147483647 .

NOTE

Running a shell script via TSO OMVS will run the shell in the TSO address space, unless you specify

_BPX_SHAREAS=NO when invoking OMVS. If you are using TSO OMVS to install Zowe, you will need export

_BPX_SHAREAS=NO to make the ASSIZEMAX change effective.

SIZE parameter of TSO segment

Set SIZE operand of TSO segment to the value 2096128 .

NOTE

If you set export _BPX_SHAREAS=YES in your shell setup as recommended, Java will run in the TSO address

space and the SIZE change will work.

ulimit -A

The maximum address space size for the process should be at least 250 M, in units of 1024 bytes. For example,

ulimit -A 250000 .

NOTE

Running ulimit -a displays the current process limits.

Temporary files management

Zowe server components require the use of temporary files. By default, these temporary files are written to the global

/tmp directory in the USS file system. This section describes options to customize the destination directory for all Zowe

server components.

How to customize temporary files

Three environment variables control the directory used to place these temporary files:

TMPDIR

This is the main environment variable, it controls the directory used for most USS operations.

TEMP_DIR

This variable controls some installation specific files, such as the location to perform transformations on zowe.yaml.

CATALINA_TMPDIR

This variable controls the destination directory of Tomcat java servers used in some core components.

Customizing temporary files in STC

Global environment variables can be customized directly in the Zowe STC, zowe.setup.security.stcs.zowe in the

zowe.yaml . The default started task name value is ZWESLSTC .

To add environment variables, follow these steps:

1. Open the STC.

2. Find STDENV DD inline statements.

3. Add a new line for each environment variable.

Example:

Customizing temporary files in zowe.yaml

Edit your installation zowe.yaml file and add values under property zowe.environments .

Example:

NOTE

If the variable is defined in both the zowe.yaml and the STC member, the definition from zowe.yaml has priority.

Version: v3.3.x LTS

Addressing storage requirements

ROLES REQUIRED: STORAGE ADMINISTRATOR, SYSTEM PROGRAMMER

Ensure that you have sufficient storage depending on the installation method. Review the storage requirements

according to your installation method as presented in this article.

Installing Zowe Server Runtime

Before installing Zowe, review the reference for Zowe's server datasets

Installing with SMP/E

Additionally, when installing Zowe with SMP/E, review the DASD storage requirements.

Memory requirements for API Mediation Layer

Before placing limits on available system memory to Zowe API ML, it is necessary to consider resource consumption. The

memory consumption depends on specific use cases and network traffic.

The main type of memory used by Java applications, including Zowe API ML components, is heap memory. Heap memory

is defined by the initial and maximum memory size. Each Zowe API ML service uses a default minimum of 32 MB and a

maximum of 512 MB. When a service requires more memory, the service allocates additional memory in increments of

the same size as the initial memory. When the system has limited resources, it is a good practice to set a fixed minimum

and maximum memory size. Memory is then allocated during startup, preventing the memory from exceeding the

specified limit.

The following table shows the expected heap memory requirements for core Zowe API ML services:

Component name Memory usage

Gateway Service 512MB

ZAAS 128MB

Discovery Service 128MB

API Catalog 128MB

Caching Service 256MB

JVM Memory

Different memory types are used by JVM services: native, threads, direct memory buffers, and JIT (just-in-time

compilation).

https://docs.zowe.org/stable/appendix/server-datasets
https://docs.zowe.org/stable/user-guide/install-zowe-smpe-overview#dasd-storage-requirements

Direct memory buffers are limited to the same size as heap memory. By default, in the case of large network traffic, the

JVM can allocate up to the same memory allocation as applied to heap memory.

Similarly, threads responsible for processing incoming requests are prepared during JVM start-up. By default, 20 threads

are available to process incoming requests. Additional threads can be created on demand (up to 200 threads by default).

When the system has limited address space, it is recommended to use fixed-size thread pools, initializing all threads at

the beginning.

As a general rule, total memory consumption should be 150% of the heap size.

Customizing memory limits in Zowe API Mediation Layer

Setting memory limits strictly depends on the use case, such as the kind and volume of data that is typically transferred,

how many users can be active simultaneously, and the number and type of onboarded services.

If limits need to be set, it is recommended to verify your environment with the following procedure:

1. Run the API ML without a memory limit.

2. Start the services you wish to start and wait approximately an hour or until you have the expected level of traffic to

the service.

3. Assess the memory usage during a typical workload.

Setting a direct memory buffer limit

To set a direct memory buffer limit, set the following property: zowe.environments.JAVA_OPTS : -

XX:MaxDirectMemorySize=<value><k|K|m|M|g|G>

<value><k|K|m|M|g|G>

Specifies the limit size and unit.

Example: 64M is a 64 Megabyte limit.

Establishing a fixed thread pool

To establish a fixed thread pool, set the following properties to the same value:

zowe.environments.SERVER_TOMCAT_THREADS_MIN_SPARE

The initial number of threads

Default: 20 threads to process incoming requests.

zowe.environments.SERVER_TOMCAT_THREADS_MAX

The maximum number of threads

Default: Up to 200 threads

Note: Updating these environment values impacts all Java-based services running as part of the Zowe Server.

The following example shows the configuration of all applicable parameters:

Example:

TIP

It is recommended to set REGION=0M in the STC, which is the default setting. Setting a MEMLIMIT is not

recommended as doing so prevents issues caused by insufficient memory.

For more details about specifying the region size, see the following links:

Specifying Region Size in the IBM documenation

Address space region size in Zowe Docs

Resources in the article Installing Product Software Using z/OSMF Deployments in Zowe Docs

When setting a memory limit, consider all running Zowe services, the typical workload, and a buffer to the memory

requirement.

https://www.ibm.com/docs/en/zos/3.1.0?topic=limit-specifying-region-size
https://docs.zowe.org/stable/user-guide/configure-uss#address-space-region-size
https://docs.zowe.org/stable/user-guide/install-zowe-pswi-deployment#resources-

Version: v3.3.x LTS

Addressing network requirements

Review the following table during installation of Zowe server-side components to determine which TCP ports are

required. Values presented in the table are default values. You can change the values by updating variable values in the

zowe.yaml file.

REQUIRED ROLES: NETWORK ADMINISTRATOR, SYSTEM PROGRAMMER

For more information about variable names in the following table, see the Zowe YAML configuration file reference in the

References section.

Component Ports

Most Components of Zowe are HTTPS servers. The ports of each and their default jobnames are listed below. The ports

can be customized for each component by editing the value of components.<component-name>.port within the Zowe

YAML file. Each Jobname has a default prefix of ZWE1, but that can be customized via the zowe.job.prefix value in the

Zowe YAML file.

Port

number
Category Component

Default

Jobname

Log

Suffix
Purpose

7552

API

Mediation

Layer

api-catalog ZWE1AC AAC

Used to view API swagger / openAPI

specifications for registered API services in the

API Catalog.

7553

API

Mediation

Layer

discovery ZWE1AD ADS

Discovery server port which dynamic API

services can issue APIs to register or unregister

themselves.

7554

API

Mediation

Layer

gateway ZWE1AG AGW

The northbound edge of the API Gateway used

to accept client requests before routing them to

registered API services. This port must be

exposed outside the z/OS network so clients

(web browsers, VS Code, processes running the

Zowe CLI) can reach the gateway.

7555

API

Mediation

Layer

Caching

Service
ZWE1CS ACS

Port of the Caching Service that is used to share

state between different Zowe instances in a high

availability topology.

7558

API

Mediation

Layer

zaas ZWE1AZ AZ

Used for the Zowe Authentication and

Authorization Service. This port receives internal

connections only.

https://docs.zowe.org/stable/appendix/zowe-yaml-configuration

Port

number
Category Component

Default

Jobname

Log

Suffix
Purpose

7556
App

Framework
app-server

ZWE1DS &

ZWE1SV
D

The Zowe Desktop (also known as ZLUX) port

used to log in through web browsers.

7557
App

Framework
zss ZWE1SZ SZ

Z Secure Services (ZSS) provides REST API

services to ZLUX, used by the File Editor

application and other ZLUX applications in the

Zowe Desktop.

Application Server Jobname for Port

The jobnames associated with the component "app-server" varies depending on whether cluster mode is enabled or not

(default: enabled).

Cluster mode Jobname for listener port Jobname for worker processes

Enabled (Default) Name of STC (default: ZWE1SV) zowe.job.prefix + DS (default: ZWE1DS)

Disabled zowe.job.prefix + DS (default: ZWE1DS) Not Applicable

To enable or disable cluster mode, see the Advanced Application Framework Configuration Guide.

Caching Service Infinispan ports

The Caching Service will use these additional ports if enabled (components.caching-service.enabled: true) and set to

use infinispan (the default, components.caching-service.storage.mode: infinispan).

Port

number
zowe.yaml variable name Purpose

7601
zowe.components.caching-

service.storage.infinispan.jgroups.keyExchange.port

The port at which the key server in Infinispan

is listening. If the port is not available, the

next port is probed, up to port+5. Used by the

key server (server) to create an

SSLServerSocket and by clients to connect to

the key server.

7600
zowe.components.caching-

service.storage.infinispan.jgroups.port

Bind port for the socket that is used to form

an Infinispan cluster.

IP Addresses

https://docs.zowe.org/stable/user-guide/mvd-configuration

Zowe's servers by default use the TCP IP address 0.0.0.0 which assigns the servers to be available on all network

interfaces available to the jobs.

If this default is not desired, it is recommended to use TCPIP port assignment statements to restrict the IP & ports of

each server by their jobnames. The jobnames of each Zowe component is derived from the property zowe.job.prefix

and <component-suffix> as shown in the table prior.

When zowe.job.prefix is ZWE1 , an example of port reservations with a fixed IP of 10.11.12.13 could be:

THIS TCP IP SETTING IS VALID FOR THE ZOWE SERVER STARTED WITH JOBNAME=ZWE1SV OPTION, FOR EXAMPLE S

ZWESLSTC,JOBNAME=ZWE1SV . :::

https://www.ibm.com/docs/en/zos/2.5.0?topic=assignments-profiletcpip-port

Version: v3.3.x LTS

Addressing browser requirements

Review the following browser requirements to avoid browser-specific issues when running particular server-side

components.

REQUIRED ROLE: SYSTEM PROGRAMMER

Zowe Desktop requirements (client PC)

The Zowe Desktop is powered by the Application Framework which has server prereqs depending on where it is installed.

The Zowe Desktop runs inside of a browser. No browser extensions or plugins are required. The Zowe Desktop supports

Google Chrome, Mozilla Firefox, Apple Safari, and Microsoft Edge releases that are at most 1 year old, except when the

newest release is older. For Firefox, both the regular and Extended Support Release (ESR) versions are supported under

this rule.

If you do not see your browser listed here, please contact the Zowe community so that it can be validated and included.

Browser limitations in API Catalog

It is recommended to use Google Chrome when accessing the API Catalog of API Mediation Layer. Errors might occur if

you access API Catalog with Firefox.

https://github.com/zowe/community/blob/master/README.md#slack

Version: v3.3.x LTS

Installing Zowe via Zowe Server Install Wizard

The Zowe Server Install Wizard version 1.1.0 is an installation wizard for Zowe server-side components available on

Microsoft Windows, macOS, and Linux systems. Performing Zowe installation via the Wizard streamlines the installation

process and is an alternative to performing manual Zowe server-side component installation. Review this article for

details about installing Zowe server-side components via the Wizard, setting up the Wizard connection to z/OS, and

details including sample JCLs for the Install Wizard initialization steps. There is also a troubleshooting section in case you

encounter issues when installing Zowe via the Install Wizard.

NOTES

To use Zowe v2.18 and later versions, ensure that you use the latest version of the Zowe Server Install Wizard.

The Zowe Server Install Wizard is currently available only as a technical preview. This preview includes some of

the installation options. Future releases will include more options including validation and discovery properties

that can assist with Zowe server installation.

This technical preview includes the following features:

Install a PAX or SMP/E edition of Zowe (including offline PAX upload)

Apply zwe init to perform configuration. JCL preview and z/OSMF Workflows support is currently not

available in this technical preview.

Use of certificates (PKCS12 or Keyring formats) generated by Zowe. The use of your organizations certificate

without requiring manual edits to the zowe.yaml file is currently not supported.

Future Wizard releases will include post-install configuration tasks including customizing the behavior of individual

Zowe components, and the enablement of tracing. Currently, these tasks must be performed manually in the

zowe.yaml file.

TIP

To review open issues, ask questions, find solutions, and report bugs, see Issues in the Zowe Server Install Wizard

GitHub repository.

Installing Zowe via Zowe Server Install Wizard

Benefits of Wizard installation

Prerequisites of the Wizard

Downloading the Wizard

Installing Zowe server-side components

Connecting the Wizard to z/OS

Setting z/OSMF Attributes

Choosing the Server Installation Type

Configuring the Zowe Server

Final Review

https://github.com/zowe/zen/issues

NOTE

If you encounter problems during installation of the Zowe Server Install Wizard, see Troubleshooting Zowe Server

Install Wizard.

Benefits of Wizard installation

Reduces the need for YAML editing in z/OS Unix by handling these operations for you based on inputs to the prompts

presented in the Wizard UI.

Inputs to the prompts are validated, so that invalid input or typos entered in most commands are prevented.

The separation of duties for steps to be performed by a security administrator is made easier, whereby a system

programmer or system administrator can skip particular steps where elevated user permissions are required,

whereupon security administrators can perform such steps outside of the Wizard.

Results for each step and the YAML configuration output can be reviewed for reference alongside activities

performed outside of the Wizard, or for future use.

Prerequisites of the Wizard

Zowe version 2.16.0 or above for SMP/E as well as .PAX

Microsoft Windows, Apple macOS, or a Linux with an X11 or Wayland server display, which can install programs from

.rpm or .deb formats

An FTP or FTPS connection to z/OS for Zowe installation

An account on z/OS that has access to z/OS UNIX for Zowe installation

A security administrator to configure required permissions in z/OS and z/OSMF

A security administrator to generate certificates for Zowe

A network administrator to open ports used by Zowe

Downloading the Wizard

To download the latest version of the Wizard, visit Zowe.org. Ensure that you download the appropriate file extension

type according to your operating system:

Operating System File Extension Type

Microsoft Windows .exe

Apple macOS .dmg

Linux (debian-based) .deb

Linux (RedHat or SuSE-based) .rpm

https://docs.zowe.org/stable/user-guide/troubleshooting-zowe-server-install-wizard
https://docs.zowe.org/stable/user-guide/troubleshooting-zowe-server-install-wizard
https://www.zowe.org/download.html

NOTE

If you are using macOS you might encounter the following error message:

To resolve this error, open the terminal and run the following command:

This command enables you to use the .dmg file on macOS.

Installing Zowe server-side components

Once the Wizard is installed, use the procedure as presented in the Wizard. The following steps outline the procedure

and provide additional details.

1. On the landing page of the Zowe Server Installation Wizard, select from the two presented options:

New Zowe Installation

This option directs you to the Connection window. Provide details as presented in the following table: Connecting

the Wizard to z/OS.

Zowe Installation Dry Run

This option allows you to follow the installation steps without running the installation.

Connecting the Wizard to z/OS

2. Set the following fields according to your environment:

Field

name
Description

Host Value for the target z/OS system for Zowe Installation. For example, mainframe.yourcompany.com

FTP Port
The FTP Port number for internal use. The default port is 21. If not specified, the Wizard uses the

default port.

User Name Your z/OS username.

Password Your z/OS password.

3. Select Use FTP with TLS. This is the recommended option. Provide details as described in the following table:

Field name Description

Min TLS Select the minimum TLS version to accept the certificate from the server.

Max TLS Select the maximum TLS version to accept the certificate from the server.

4. (Optional) You can select Accept all certificates. Note that selecting all certificates disables certificate verification.

Checking this option is not recommended.

5. Click VALIDATE CREDENTIALS.

6. Click Continue.

7. In the Before you start window, review the instructions. Customize the job statement, or use the default.

8. In the Job statement field, customize the job statement as necessary and click SAVE AND VALIDATE.

9. Further down the Planning page, provide details for z/OS Unix locations (including Node and Java), identifiers, and

z/OSMF details.

Setting z/OSMF Attributes

Provide details for z/OSMF.

1. After specifying all the mandatory details, click VALIDATE LOCATIONS.

You will see green check marks next to the Java Home Directory and Node.js Home Directory fields as confirmation

that the locations are validated successfully.

2. Click Continue to Installation Options.

Choosing the Server Installation Type

1. In the Installation Type window, select one of the following three installation types in the Wizard:

Download the latest Zowe convenience build in .PAX format from zowe.org using the Wizard without visiting the

website.

i. Click License Agreement.

ii. On the End User License Agreement for Zowe page, click AGREE.

iii. In Download Zowe Pax, click UNPAX and BEGIN DOWNLOAD. Ensure that all statuses finish before

continuing to the next step.

Use this option to upload a local (already downloaded) Zowe .PAX file.

i. Click UPLOAD PAX.

ii. Select downloaded PAX file, and click Open.

Use this option to install Zowe through a SMP/E build outside the wizard.

i. Provide the location of the Runtime Directory.

Download Zowe convenience build PAX from internet

Upload Zowe PAX for offline install

SMP/E

https://zowe.org/

ii. Click VALIDATE LOCATION.

Note: When using SMP/E installation, in the Initialization window, under the Installation tab, confirm the

data set names used during installation.

iii. Click Save.

2. Click Continue to Component Installation.

Configuring the Zowe Server

Perform Zowe server configuration in the Wizard by providing inputs to the prompts for configuration values. Some steps

may require an administrator with sufficient privileges to complete the step.

The following actions can be performed during Wizard configuration:

View/Edit Yaml

This option lets you preview or adjust the YAML configuration that is used by Zowe. The prompts of the Wizard are

used to automatically generate the YAML contents, but you also have the options to review, edit, or import and

export contents of the YAML file. This option also allows you to copy the YAML in its current state, which can than be

sent to an administrator that is authorized to perform the task. Copying the YAML also includes a relevant JCL sample

and explanation for the particular step.

View Job Output

This option presents the results of the jobs that were submitted. Details are provided if a job fails or returns a

warning. This option allows you to collect the job content which can be provide to an administrator without

submitting it. Each value entered is validated against the schema.

Skip

This option makes it possible to skip an installation step that you cannot perform such as an administrative security

action that you cannot perform yourself. This option makes it possible to complete an action external to the Wizard.

The following table presents the steps in the installation, detailed descriptions of the steps, and corresponding sample

JCLs:

Install Wizard

Initalization

Step

Description Sample JCL

Installation Purpose:

Create data sets for Zowe's PARMLIB content and non-ZFS extension

content for a given Zowe Instance

Action:

1. Allocate the PDSE FB80 data set with at least 15 tracks named

from Zowe parameter zowe.setup.dataset.parmlib

2. Allocate the PDSE FB80 data set with at least 30 tracks named

from Zowe parameter zowe.setup.dataset.authPluginLib

3. Copy the ZWESIP00 member from

ZWEIMVS

https://github.com/zowe/zowe-install-packaging/blob/v3.x/master/files/SZWESAMP/ZWEIMVS

Install Wizard

Initalization

Step

Description Sample JCL

zowe.setup.dataset.prefix .SZWESAMP into

zowe.setup.dataset.parmlib

APF Auth

Purpose:

Zowe contains one privileged component, ZIS, which enables the

security model. The majority of Zowe is unprivileged and in key 8.

The load library for the ZIS component and its extension library

must be set as APF authorized and run in key 4. This enables ZIS

and components that depend on ZIS.

Action:

1. APF authorize the data sets defined at

zowe.setup.dataset.authLoadlib and

zowe.setup.dataset.authPluginLib .

2. Define PPT entries for the members ZWESIS01 and ZWESAUX as

Key 4, NOSWAP in the SCHEDxx member of the system PARMLIB.

ZWEIAPF2

Security

Purpose:

The STC accounts for Zowe need permissions for operating servers,

and users need permissions for interacting with the servers.

Action:

Set SAF permissions for accounts

RACF: ZWEIRAC

TSS: ZWEITSS

ACF2: ZWEIACF

Security (z/OS v2.4 ONLY) Create Zowe SAF Resource Class

This is not needed on z/OS

v2.5+. On z/OS v2.4, the

SAF resource class for

Zowe is not included, and

must be created. See

these samples for

examples:

RACF: ZWEIRACZ

TSS: ZWEITSSZ

ACF2: ZWEIACFZ

Certificates

Option 1

Zowe creates a keyring and populates it with a newly generated

certificate and certificate authority. The certificate would be seen as

"self-signed" by clients unless import of the CA to clients is

performed.

RACF: ZWEIKRR1

TSS: ZWEIKRT1

ACF2: ZWEIKRA1

https://github.com/zowe/zowe-install-packaging/blob/v3.x/master/files/SZWESAMP/ZWEIAPF2
https://docs.zowe.org/stable/user-guide/assign-security-permissions-to-users#security-permissions-reference-table
https://github.com/zowe/zowe-install-packaging/blob/v3.x/master/files/SZWESAMP/ZWEIRAC
https://github.com/zowe/zowe-install-packaging/blob/v3.x/master/files/SZWESAMP/ZWEITSS
https://github.com/zowe/zowe-install-packaging/blob/v3.x/master/files/SZWESAMP/ZWEIACF
https://github.com/zowe/zowe-install-packaging/blob/v3.x/master/files/SZWESAMP/ZWEIRACZ
https://github.com/zowe/zowe-install-packaging/blob/v3.x/master/files/SZWESAMP/ZWEITSSZ
https://github.com/zowe/zowe-install-packaging/blob/v3.x/master/files/SZWESAMP/ZWEIACFZ
https://github.com/zowe/zowe-install-packaging/blob/v3.x/master/files/SZWESAMP/ZWEIKRR1
https://github.com/zowe/zowe-install-packaging/blob/v3.x/master/files/SZWESAMP/ZWEIKRT1
https://github.com/zowe/zowe-install-packaging/blob/v3.x/master/files/SZWESAMP/ZWEIKRA1

Install Wizard

Initalization

Step

Description Sample JCL

Certificates

Option 2

Zowe creates a keyring and populates the keyring by connecting

pre-existing certificates and CAs that you specify.

RACF: ZWEIKRR2

TSS: ZWEIKRT2

ACF2: ZWEIKRA2

Certificates

Option 3

Zowe creates a keyring and populates the keyring by importing

PKCS12 content from a data set that you specify.

RACF: ZWEIKRR3

TSS: ZWEIKRT3

ACF2: ZWEIKRA3

STC

Purpose:

ZWESLSTC is the job for running Zowe's webservers. ZWESISTC runs

the APF authorized cross-memory server. The ZWESASTC job is

started by ZWESISTC on an as-needed basis.

Action:

Copy the members ZWESLSTC, ZWESISTC, and ZWESASTC into your

desired PROCLIB. If the job names are customized, modify the job

name YAML values in zowe.setup.security.stcs

ZWEISTC

(Optional)

VSAM for

Caching

Service

Purpose:

To use VSAM as your storage method for the Caching Service. Note

that Infinispan is the recommended storage method. For more

information, see Using VSAM as a storage solution through the

Caching service.

Action:

Create a RLM or NONRLM data set for the Caching service, and set

the name as the value for components.caching-

service.storage.vsam.name

ZWECSVSM

Final Review

After completing the steps presented in the Wizard, a summary is provided indicating which steps were completed,

skipped, or have errors. Errors are stored and can be reviewed in View Job Output. You can revisit any step to retry

performing the step. You also have the option to export the final generated YAML file.

https://github.com/zowe/zowe-install-packaging/blob/v3.x/master/files/SZWESAMP/ZWEIKRR2
https://github.com/zowe/zowe-install-packaging/blob/v3.x/master/files/SZWESAMP/ZWEIKRT2
https://github.com/zowe/zowe-install-packaging/blob/v3.x/master/files/SZWESAMP/ZWEIKRA2
https://github.com/zowe/zowe-install-packaging/blob/v3.x/master/files/SZWESAMP/ZWEIKRR3
https://github.com/zowe/zowe-install-packaging/blob/v3.x/master/files/SZWESAMP/ZWEIKRT3
https://github.com/zowe/zowe-install-packaging/blob/v3.x/master/files/SZWESAMP/ZWEIKRA3
https://github.com/zowe/zowe-install-packaging/blob/v3.x/master/files/SZWESAMP/ZWEISTC
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-vsam
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-vsam
https://github.com/zowe/zowe-install-packaging/blob/v3.x/master/files/SZWESAMP/ZWECSVSM

Version: v3.3.x LTS

Troubleshooting Zowe Server Install Wizard

As a user of the Zowe Server Install Wizard, you may encounter problems during installation of the Wizard. This article

presents known Zowe Server Install Wizard issues and their solutions.

Failure to establish a TLS connection

When attempting to establish a TLS connection, you may encounter the following message:

If you receive this message, go back to the Connection page and attempt to re-establish the connection. If the

connection cannot be established, restart the Wizard.

Unable to continue with Wizard installation

If you encounter strange behavior that prohibits you from continuing with Wizard installation, we recommend you follow

this procedure:

1. View the Job output within the Wizard.

2. If the error is not clear from the Job output, view the output of the log file according to your platform:

%USERPROFILE%\AppData\Roaming{app name}\logs\main.log

~/Library/Logs/{app name}/main.log

~/.config/{app name}/logs/main.log

If you are still unsure how to proceed, you can optionally make a backup of these log files, and then use the following

procedure to remove the Wizard's cache.

1. Close the Wizard.

2. Follow the steps according to your operating system:

For Windows

For macOS

For Linux

For Windows

i. Open File Explorer. In the address bar type %APPDATA% . This takes you to the directory where your app data

is stored. The typical directory path is C:\Users[Your User Name]\AppData\Roaming .

ii. Locate the folder corresponding to zowe-install-wizard .

i. Open Finder. In the menu bar select Go > Go to Folder.

ii. Type ~/Library/Application Support/ and press Enter.

iii. Locate the folder corresponding to zowe-install-wizard

i. Open a terminal or file manager.

ii. Navigate to ~/.config/ , which is where most apps store their configuration data.

iii. In the terminal, enter the following command: cd ~/.config/ .

iv. Locate the folder corresponding to zowe-install-wizard .

3. Delete this folder to remove all stored data.

4. Restart the Wizard.

Unable to save setting to zowe.yaml via the Wizard's UI or

editor

The accurate updating & saving to YAML in the UI may not always work as intended. If you have issues saving a specific

setting to the Zowe configuration YAML via the Wizard's UI or editor (or an advanced setting is not available to be

edited), it is recommended to make a manual edit to the configuration YAML file in z/OS Unix & then proceed with the

Wizard as intended.

For macOS

For Linux

Version: v3.3.x LTS

Installing Zowe SMP/E overview

This program directory is intended for system programmers who are responsible for program installation and

maintenance. It contains information about the material and procedures associated with the installation of Zowe Open

Source Project (Base). This publication refers to Zowe Open Source Project (Base) as Zowe.

End-to-end installation diagram

Zowe FMIDs

Zowe consists of the following FMIDs:

AZWE003

Program materials

Basic Machine-Readable Materials are materials that are supplied under the base license and are required for the use of

the product.

Basic machine-readable material

The distribution medium for this program is via downloadable files. This program is in SMP/E RELFILE format and is

installed using SMP/E. See Installation instructions for more information about how to install the program.

Program source materials

No program source materials or viewable program listings are provided for Zowe in the SMP/E installation package.

However, program source materials can be downloaded from the Zowe GitHub repositories at https://github.com/zowe/.

Publications useful during installation

Publications listed below are helpful during the installation of Zowe.

Publication Title Form Number

IBM SMP/E for z/OS User's Guide SA23-2277

IBM SMP/E for z/OS Commands SA23-2275

IBM SMP/E for z/OS Reference SA23-2276

IBM SMP/E for z/OS Messages, Codes, and Diagnosis GA32-0883

These and other publications can be obtained from IBM Publications Center.

Program support

This section describes the support available for Zowe.

Support is available through the Zowe community and Zowe Conformant Support Providers. See Zowe Support Overview

for details. Slack is the preferred interaction channel.

Additional support may be available through other entities outside of the Open Mainframe Project and Linux Foundation

which offers no warranty and provides the package under the terms of the EPL v2.0 license.

https://docs.zowe.org/stable/user-guide/install-zowe-smpe
https://github.com/zowe/
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sa232277/$file/gim3000_v2r3.pdf
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sa232275/$file/gim1000_v2r3.pdf
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sa232276/$file/gim2000_v2r3.pdf
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3ga320883/$file/gim0000_v2r3.pdf
https://www.ibm.com/docs/en/products
https://medium.com/zowe/zowe-support-overview-9a3273ae902e

Statement of support procedures

Report any problems which you feel might be an error in the product materials to the Zowe community via the Zowe

GitHub community repo at https://github.com/zowe/community/issues/new/choose. You may be asked to gather and

submit additional diagnostics to assist the Zowe Community for analysis and resolution.

Program and service level information

This section identifies the program and relevant service levels of Zowe. The program level refers to the APAR fixes that

have been incorporated into the program. The service level refers to the PTFs that have been incorporated into the

program.

Program level information

All issues of previous releases of Zowe that were resolved before October 2024 have been incorporated into this

packaging of Zowe.

Service level information

The Zowe SMP/E package is a distribution of Zowe version 3.0.0 with an FMID of AZWE003.

Subsequent releases of the Zowe z/OS components are delivered as rollup PTFs on zowe.org.

Installation requirements and considerations

The following sections identify the system requirements for installing and activating Zowe. The following terminology is

used:

Driving System: the system on which SMP/E is executed to install the program.

Target system: the system on which the program is configured and run.

Use separate driving and target systems in the following situations:

When you install a new level of a product that is already installed, the new level of the product will replace the old

one. By installing the new level onto a separate target system, you can test the new level and keep the old one in

production at the same time.

When you install a product that shares libraries or load modules with other products, the installation can disrupt the

other products. By installing the product onto a separate target system, you can assess these impacts without

disrupting your production system.

Driving system requirements

This section describes the environment of the driving system required to install Zowe.

Driving system machine requirements

The driving system can be run in any hardware environment that supports the required software.

Driving system programming requirements

https://github.com/zowe/community/issues/new/choose
https://www.zowe.org/download.html

Program

Number

Product

Name

Minimum

VRM

Minimum Service Level will

satisfy these APARs

Included in the shipped

product?

5650-ZOS z/OS
V2.5.0 or

later
N/A No

NOTES:

SMP/E is a requirement for Installation and is an element of z/OS but can also be ordered as a separate product,

5655-G44, minimally V03.06.00.

Installation might require migration to a new z/OS release to be service supported. See

https://www.ibm.com/support/pages/lifecycle/.

Zowe is installed into a file system, either HFS or zFS. Before installing Zowe, you must ensure that the target system file

system data sets are available for processing on the driving system. OMVS must be active on the driving system and the

target system file data sets must be mounted on the driving system.

Zowe is installed into a zFS file system. Before installing Zowe, you must ensure that the target system file system data

sets are available for processing on the driving system. OMVS must be active on the driving system and the target

system file data sets must be mounted on the driving system.

Target system requirements

This section describes the environment of the target system required to install and use Zowe.

Zowe installs in the z/OS (Z038) SREL.

Target system machine requirements

The target system can run in any hardware environment that supports the required software.

Target system programming requirements

Installation requisites

Installation requisites identify products that are required and must be present on the system or products that are not

required but should be present on the system for the successful installation of Zowe.

Mandatory installation requisites identify products that are required on the system for the successful installation of

Zowe. These products are specified as PREs or REQs.

Zowe has no mandatory installation requisites.

Conditional installation requisites identify products that are not required for successful installation of Zowe but can

resolve such things as certain warning messages at installation time. These products are specified as IF REQs.

Zowe has no conditional installation requisites.

Operational requisites

https://www.ibm.com/support/pages/lifecycle/

Operational requisites are products that are required and must be present on the system, or, products that are not

required but should be present on the system for Zowe to operate all or part of its functions.

Mandatory operational requisites identify products that are required for this product to operate its basic functions. The

following table lists the target system mandatory operational requisites for Zowe.

Program Number Product Name and Minimum VRM/Service Level

5650-ZOS IBM z/OS Management Facility V2.5.0 or higher

5655-NOS IBM Open Enterprise SDK for Node.js 20.0

5655-UA1 IBM Semeru Runtime Certified Edition for z/OS 17.0.0

NOTES:

The minimum product version is either what is listed in the table, or the currently minimum supported version,

whichever is the most recent.

The pre-requistes for Node.js itself are not required, nor is any configuration of Node.js required. The only

requirement is the presence of the Node.js executable code.

Conditional operational requisites identify products that are not required for Zowe to operate its basic functions but are

required at run time for Zowe to operate specific functions. These products are specified as IF REQs. Zowe has no

conditional operational requisites.

Toleration/coexistence requisites

Toleration/coexistence requisites identify products that must be present on sharing systems. These systems can be other

systems in a multi-system environment (not necessarily Parallel Sysplex
TM

), a shared DASD environment (such as test

and production), or systems that reuse the same DASD environment at different time intervals.

Zowe has no toleration/coexistence requisites.

Incompatibility (negative) requisites

Negative requisites identify products that must not be installed on the same system as Zowe.

Zowe has no negative requisites.

DASD storage requirements

Zowe libraries can reside on all supported DASD types.

Total DASD space required by Zowe

Library Type
Total Space Required in

3390 Trks
Description

Target 300 Tracks /

Library Type
Total Space Required in

3390 Trks
Description

Distribution 13165 Tracks /

File System(s) 27900 Tracks /

Web

Download
45810 Tracks

These are temporary data sets, which can be removed after the

SMP/E install.

Notes:

1. For non-RECFM U data sets, we recommend using system-determined block sizes for efficient DASD utilization. For

RECFM U data sets, we recommend using a block size of 32760, which is most efficient from the performance and

DASD utilization perspective.

2. Abbreviations used for data set types are shown as follows.

U - Unique data set, allocated by this product and used by only this product. This table provides all the required

information to determine the correct storage for this data set. You do not need to refer to other tables or

program directories for the data set size.

S - Shared data set, allocated by this product and used by this product and other products. To determine the

correct storage needed for this data set, add the storage size given in this table to those given in other tables

(perhaps in other program directories). If the data set already exists, it must have enough free space to

accommodate the storage size given in this table.

E - Existing shared data set, used by this product and other products. This data set is not allocated by this

product. To determine the correct storage for this data set, add the storage size given in this table to those given

in other tables (perhaps in other program directories). If the data set already exists, it must have enough free

space to accommodate the storage size given in this table.

If you currently have a previous release of Zowe installed in these libraries, the installation of this release will delete

the old release and reclaim the space that was used by the old release and any service that had been installed. You

can determine whether these libraries have enough space by deleting the old release with a dummy function,

compressing the libraries, and comparing the space requirements with the free space in the libraries.

For more information about the names and sizes of the required data sets, see Allocate SMP/E target and distribution

libraries.

3. Abbreviations used for the file system path type are as follows.

N - New path, created by this product.

X - Path created by this product, but might already exist from a previous release.

P - Previously existing path, created by another product.

4. All target and distribution libraries listed have the following attributes:

The default name of the data set can be changed.

The default block size of the data set can be changed.

The data set can be merged with another data set that has equivalent characteristics.

https://docs.zowe.org/stable/user-guide/install-zowe-smpe#allocate-smpe-target-and-distributions-libraries
https://docs.zowe.org/stable/user-guide/install-zowe-smpe#allocate-smpe-target-and-distributions-libraries

The data set can be either a PDS or a PDSE, with some exceptions. If the value in the "ORG" column specifies

"PDS", the data set must be a PDS. If the value in "DIR Blks" column specifies "N/A", the data set must be a

PDSE.

5. All target libraries listed have the following attributes:

These data sets can be SMS-managed, but they are not required to be SMS-managed.

These data sets are not required to reside on the IPL volume.

The values in the "Member Type" column are not necessarily the actual SMP/E element types that are identified

in the SMPMCS.

6. All target libraries that are listed and contain load modules have the following attributes:

These data sets cannot be in the LPA, with some exceptions. If the value in the "Member Type" column specifies

"LPA", it is advised to place the data set in the LPA.

These data sets can be in the LNKLST.

These data sets are not required to be APF-authorized, with some exceptions. If the value in the "Member Type"

column specifies "APF", the data set must be APF-authorized.

Storage requirements for SMP/E work data sets

Library DDNAME TYPE ORG RECFM LRECL No. of 3390 Trks No. of DIR Blks

SMPWRK6 S PDS FB 80 (5250,525) 50

SYSUT1 U SEQ -- -- (5250,525) 0

In the table above, (20,200) specifies a primary allocation of 20 tracks, and a secondary allocation of 200 tracks.

Storage requirements for SMP/E data sets

Library DDNAME TYPE ORG RECFM LRECL No. of 3390 Trks No. of DIR Blks

SMPPTS S PDSE FB 80 (12000,3000) 50

The following figures describe the target and distribution libraries and file system paths required to install Zowe. The

storage requirements of Zowe must be added to the storage required by other programs that have data in the same

library or path.

NOTE

Use the data in these tables to determine which libraries can be merged into common data sets. In addition, since

some ALIAS names may not be unique, ensure that no naming conflicts will be introduced before merging libraries.

Storage requirements for Zowe target libraries

Review the list of Zowe's runtime datasets in the Server Dataset Appendix.

Zowe file system paths

https://docs.zowe.org/stable/appendix/server-datasets#runtime-data-sets

DDNAME TYPE Path Name

SZWEZFS X /usr/lpp/zowe/SMPE

Storage requirements for Zowe distribution libraries

Library DDNAME TYPE ORG RECFM LRECL No. of 3390 Trks No. of DIR Blks

AZWEAUTH U PDSE U 0 240 N/A

AZWESAMP U PDSE FB 80 25 5

AZWEZFS U PDSE VB 6995 12900 30

Storage requirements for Zowe SMP/E input libraries

The following figures list data sets that are not used by Zowe, but are required as input for SMP/E.

Data Set Name TYPE ORG RECFM LRECL No. of 3390 Trks No. of DIR Blks

hlq.ZOWE.AZWE003.F1 U PDSE FB 80 9 N/A

hlq.ZOWE.AZWE003.F2 U PDSE FB 80 28 N/A

hlq.ZOWE.AZWE003.F3 U PDSE U 0 275 N/A

hlq.ZOWE.AZWE003.F4 U PDSE VB 6995 14100 N/A

hlq.ZOWE.AZWE003.SMPMCS U SEQ FB 80 3 N/A

z/OS UNIX file system U zFS N/A N/A 31395 N/A

NOTE

These are temporary data sets, which can be removed after the SMP/E installation.

FMIDs deleted

Installing Zowe might result in the deletion of other FMIDs.

To see which FMIDs will be deleted, examine the ++VER statement in the SMPMCS of the product. If you do not want to

delete these FMIDs now, install Zowe into separate SMP/E target and distribution zones.

NOTE

These FMIDs are not automatically deleted from the Global Zone. If you want to delete these FMIDs from the Global

Zone, use the SMP/E REJECT NOFMID DELETEFMID command. See the SMP/E Commands book for details.

Special considerations

Zowe has no special considerations for the target system.

For details about installing Zowe SMP/E, see Installing Zowe via SMP/E instructions.

https://docs.zowe.org/stable/user-guide/install-zowe-smpe

Version: v3.3.x LTS

Installing Zowe via SMP/E instructions

Review this article and the procedures to install and activate the functions of Zowe server-side components using SMP/E.

REQUIRED ROLES: SYSTEM PROGRAMMER

NOTES:

To install Zowe into its own SMP/E environment, consult the SMP/E manuals for instructions on creating and

initializing the SMPCSI and SMP/E control data sets.

You can use the sample jobs that are provided to perform part or all of the installation tasks. The SMP/E jobs

assume that all DDDEF entries that are required for SMP/E execution have been defined in appropriate zones.

You can use the SMP/E dialogs instead of the sample jobs to accomplish the SMP/E installation steps.

TIP

You can now perform Zowe installation via the Zowe Server Install Wizard. Using the wizard streamlines the

installation process and is an alternative to performing manual Zowe server-side component installation. For more

information about the wizard, see Installing Zowe via Zowe Server Install Wizard.

SMP/E considerations for installing Zowe

Use the SMP/E RECEIVE, APPLY, and ACCEPT commands to install this release of Zowe.

SMP/E options subentry values

The recommended values for certain SMP/E CSI subentries are shown in the following table. Using values lower than the

recommended values can result in failures in the installation. DSSPACE is a subentry in the GLOBAL options entry. PEMAX

is a subentry of the GENERAL entry in the GLOBAL options entry. See the SMP/E manuals for instructions on updating the

global zone.

Subentry Value Comment

DSSPACE (1200,1200,1400) Space allocation

PEMAX SMP/E Default IBM recommends using the SMP/E default for PEMAX.

Overview of the installation steps

Follow these high-level steps to download and install Zowe Open Source Project (Base).

1. Download and unzip the Zowe SMP/E package.

2. Allocate the file system to hold the download package.

3. Upload the download package to the host

https://docs.zowe.org/stable/user-guide/install-zowe-server-install-wizard

4. Extract and expand the compress SMPMCS and RELFILEs

5. Customize sample installation jobs

6. Create SMP/E environment (optional)

7. Perform SMP/E RECEIVE

8. Allocate SMP/E target and distribution libraries

9. Allocate, create and mount ZSF files (Optional)

10. Allocate z/OS UNIX paths

11. Create DDDEF Entries

12. Perform SMP/E APPLY

13. Perform SMP/E ACCEPT

14. Run REPORT CROSSZONE

15. Cleaning up obsolete data sets, paths, and DDDEFs

Download and unzip the Zowe SMP/E package

To download the Zowe SMP/E package, open your web browser and go to the Zowe Download website. Click the option

Zowe SMP/E FMID AZWE003 to save the file to a folder on your desktop.

A ZIP package is sent to your desktop. Extract the following files from the package. You may need to use the unzip

command at a terminal rather than an unzip utility. For example, run unzip zowe-smpe-package-3.0.0.zip in your

terminal.

AZWE003.pax.Z (binary)

The SMP/E input data sets to install Zowe are provided as compressed files in AZWE003.pax.Z. This pax archive file

holds the SMP/E MCS and RELFILEs.

AZWE003.readme.txt (text)

The README file AZWE003.readme.txt is a single JCL file containing a job with the job steps you need to begin the

installation, including comprehensive comments on how to tailor them. There is a sample job step that executes the

z/OS UNIX System Services pax command to extract package archives. This job also executes the GIMUNZIP program

to expand the package archives so that the data sets can be processed by SMP/E.

AZWE003.htm (text)

The Program Directory for the Zowe Open Source Project.

Allocate the file system to hold the download package

You can either create a new z/OS UNIX file system (zFS) or create a new directory in an existing file system to place

AZWE003.pax.Z. The directory that will contain the download package must reside on the z/OS system where the

function will be installed.

To create a new file system, and directory, for the download package, you can use the following sample JCL (FILESYS).

Copy and paste the sample JCL into a separate data set, uncomment the job, and modify the job to update required

parameters before submitting the job.

https://www.zowe.org/download.html

EXPECTED RESULTS

You will receive a return code of 0 if this job runs correctly.

Upload the download package to the host

Upload the AZWE003.readme.txt file in text format and the AZWE003.pax.Z file in binary format from your workstation to

the z/OS UNIX file system. The instructions in this section are also in the AZWE003.readme.txt file that you downloaded.

IMPORTANT

Ensure you download the pax file in a different file system than where you put Zowe runtime.

There are many ways to transfer the files or make these files available to the z/OS system where the package will be

installed. The following sample dialog uses FTP from a Microsoft Windows command line to perform the transfer. This

method is applicable when the z/OS host is configured as an FTP host/server and the workstation is an FTP client.

Commands or other customizations entered by the user are in bold, and the following values are assumed.

NOTE

If you are not sure which protocol or port to use to transfer the files, or for other access requirements, consult with

your network administrator.

User

enters:
Values

mvsaddr TCP/IP address or hostname of the z/OS system

tsouid Your TSO user ID

tsopw Your TSO password

d: Location of the downloaded files

@zfs_path@
z/OS UNIX path where to store the files. This matches the @zfs_path@ variable you specified in the

previous step.

IMPORTANT

The AZWE003.pax.Z file must be uploaded to the z/OS driving system in binary format. Not using binary format

causes the subsequent UNPAX step to fail.

NOTE

This file tranfer can take a long time to run, depending on the capacity of your system, and on what other jobs are

running.

Sample FTP upload scenario:

TIP

If you are unable to connect with ftp and only able to use sftp, use sftp at the command prompt instead of ftp

As sftp only supports binary file transfer, the ascii and binary commands should be omitted. After you transfer the

AZWE003.readme.txt file, this file will be in an ASCII codepage so you need to convert the file to EBCDIC before it

can be used. To convert AZWE003.readme.txt to EBCDIC , log in to the distribution system using ssh and run the

ICONV command.

Extract and expand the compressed SMPMCS and RELFILEs

The AZWE003.readme.txt file uploaded in the previous step holds a sample JCL to expand the compressed SMPMCS and

RELFILEs from the uploaded AZWE003.pax.Z file into data sets for use by the SMP/E RECEIVE job. The JCL is repeated

here for your convenience.

@zfs_path@ matches the variable that you specified in the previous step.

If the oshell command gets a RC=256 and message "pax: checksum error on tape (got ee2e, expected 0)", then

the archive file was not uploaded to the host in binary format.

GIMUNZIP allocates data sets to match the definitions of the original data sets. You might encounter errors if your

SMS ACS routines alter the attributes used by GIMUNZIP. If this occurs, specify a non-SMS managed volume for the

GINUMZIP allocation of the data sets. For example:

Normally, your Automatic Class Selection (ACS) routines decide which volumes to use. Depending on your ACS

configuration, and whether your system has constraints on disk space, units, or volumes, some supplied SMP/E jobs

might fail due to volume allocation errors. See GIMUNZIP for more details.

GIMUNZIP

The GIMUNZIP job may issue allocation error messages for SYSUT1 similar to these:

The job will end with RC=12. If this happens, add a TEMPDS control statement to the existing SYSIN as shown below:

&VOLSER

Specifies the DISK volume with sufficient free space to hold temporary copies of the RELFILES. As a guide, this may

require 1,000 cylinders, or approximately 650 MB.

Customize sample installation jobs

The following sample installation jobs are provided in hlq.ZOWE.AZWE003.F1 , or equivalent, as part of the project to help

you install Zowe:

Job Name Job Type Description RELFILE

ZWE1SMPE SMP/E (Optional) Sample job to create an SMP/E environment ZOWE.AZWE003.F1

ZWE2RCVE RECEIVE Sample SMP/E RECEIVE job ZOWE.AZWE003.F1

Job Name Job Type Description RELFILE

ZWE3ALOC ALLOCATE Sample job to allocate target and distribution libraries ZOWE.AZWE003.F1

ZWE4ZFS ALLOMZFS
(Optional) Sample job to allocate, create mountpoint, and mount

zFS data sets
ZOWE.AZWE003.F1

ZWE5MKD MKDIR
Sample job to invoke the supplied ZWEMKDIR EXEC to allocate file

system paths
ZOWE.AZWE003.F1

ZWE6DDEF DDDEF Sample job to define SMP/E DDDEFs ZOWE.AZWE003.F1

ZWE7APLY APPLY Sample SMP/E APPLY job ZOWE.AZWE003.F1

ZWE8ACPT ACCEPT Sample SMP/E ACCEPT job ZOWE.AZWE003.F1

NOTE

When Zowe is downloaded from the web, the RELFILE data set name is prefixed by your chosen high-level qualifier,

as documented in the Extract and expand the compressed SMPMCS and RELFILEs section.

Follow these steps to access the sample installation jobs.

1. Performing an SMP/E RECEIVE. See Perform SMP/E RECEIVE.

2. Copy the jobs from the RELFILES to a working data set for editing and submission.

Alteratively, you can copy the sample installation jobs from the product files by submitting the job in the following

example.

Before you submit the job, add a job statement and change the lowercase parameters to uppercase values to meet the

requirements of your site.

Example:

Customize the statements is this job statement with the following values:

IN:

filevol

Specifies the volume serial of the DASD device where the downloaded files reside.

OUT:

jcl-library-name

Specifies the name of the output data set where the sample jobs are stored.

dasdvol

Specifies the volume serial of the DASD device where the output data set resides. Uncomment the statement is

a volume serial must be provided.

The following supplied jobs might fail due to disk space allocation errors for GIMUNZIP. Review the following sections for

example error and actions that you can take to resolve the error.

ZWE2RCVE

ZWE1SMPE and ZWE4ZFS

ZWEMKDIR, ZWE1SMPE, ZWE2RCVE, ZWE3ALOC, ZWE4ZFS and ZWE5MKD

ZWE2RCVE

Add space and directory allocations to this SMPCNTL statement in the preceding ZWE1SMPE job:

Result:

ZWE1SMPE and ZWE4ZFS

Example error:

Action

Uncomment the VOLUMES(...) control statements and refer to the comments at the start of the JCL job for related

necessary changes.

ZWEMKDIR, ZWE1SMPE, ZWE2RCVE, ZWE3ALOC, ZWE4ZFS and ZWE5MKD

Example error:

Action

Uncomment the VOL=SER=&... control statements and refer to the comments at the start of the JCL job for related

necessary changes.

Create SMP/E environment (Optional)

A sample job ZWE1SMPE is provided or you may choose to use your own JCL. If you are using an existing CSI, do not run

the sample job ZWE1SMPE. If you choose to use the sample job provided, edit and submit ZWE1SMPE. Consult the

instructions in the sample job for more information.

NOTE

To use the default of letting your Automatic Class Selection (ACS) routines decide which volume to use, comment

out the following line in the sample job ZWE1SMPE .

// SET CSIVOL=#csivol

EXPECTED RESULTS

You will receive a return code of 0 if this job runs correctly.

Perform SMP/E RECEIVE

Edit and submit sample job ZWE2RCVE to perform the SMP/E RECEIVE for Zowe. Consult the instructions in the sample

job for more information.

EXPECTED RESULTS

You will receive a return code of 0 if this job runs correctly.

Allocate SMP/E target and distributions libraries

Edit and submit sample job ZWE3ALOC to allocate the SMP/E target and distribution libraries for Zowe. Consult the

instructions in the sample job for more information.

EXPECTED RESULTS

You will receive a return code of 0 if this job runs correctly.

Allocate, create and mount ZSF files (Optional)

This job allocates, creates a mountpoint, and mounts zFS data sets.

If you plan to install Zowe into a new z/OS UNIX file system, you can edit and submit the optional ZWE4ZFS job to

perform the following tasks. Consult the instructions in the sample job for more information.

Create the z/OS UNIX file system

Create a mountpoint

Mount the z/OS UNIX file system on the mountpoint

The recommended z/OS UNIX file system type is zFS. The recommended mountpoint is _/usr/lpp/zowe ._

Before running the sample job to create the z/OS UNIX file system, ensure that OMVS is active on the driving system. zFS

must be active on the driving system if you are installing Zowe into a file system that is zFS.

If you create a new file system for this product, consider updating the BPXPRMxx PARMLIB member to mount the new file

system at IPL time. This action can be helpful if an IPL occurs before the installation is completed.

Customize the statements is this job statement with the following values:

#dsn

Specifies the name of the data set holding the z/OS UNIX file system.

/usr/lpp/zowe

Specifies the name of the mountpoint where the z/OS UNIX file system will be mounted.

EXPECTED RESULTS

You will receive a return code of 0 if this job runs correctly.

Allocate z/OS UNIX paths

The target system HFS or zFS data set must be mounted on the driving system when running the sample ZWE5MKD job

since the job will create paths in the HFS or zFS.

Before running the sample job to create the paths in the file system, ensure that OMVS is active on the driving system

and that the target system's HFS, or zFS file system is mounted on the driving system. zFS must be active on the driving

system if you are installing Zowe into a file system that is zFS.

If you plan to install Zowe into a new HFS or zFS file system, you must create the mountpoint and mount the new file

system on the driving system for Zowe.

The recommended mountpoint is /usr/lpp/zowe.

Edit and submit sample job ZWE5MKD to allocate the HFS or zFS paths for Zowe. Consult the instructions in the sample

job for more information.

If you create a new file system for this product, consider updating the BPXPRMxx PARMLIB member to mount the new file

system at IPL time. This action can be helpful if an IPL occurs before the installation is completed.

EXPECTED RESULTS

You will receive a return code of 0 if this job runs correctly.

Create DDDEF entries

Edit and submit sample job ZWE6DDEF to create DDDEF entries for the SMP/E target and distribution libraries for Zowe.

Consult the instructions in the sample job for more information.

EXPECTED RESULTS

You will receive a return code of 0 if this job runs correctly.

Perform SMP/E APPLY

In this step, you run the sample job ZWE7APLY to apply Zowe. This step can take a long time to run, depending on the

capacity of your system, and on what other jobs are running.

Follow these steps

1. Ensure that you have the latest HOLDDATA; then edit and submit sample job ZWE7APLY to perform an SMP/E APPLY

CHECK for Zowe. Consult the instructions in the sample job for more information.

The latest HOLDDATA is available through several different portals, and may identify HIPER and FIXCAT APARs for the

FMIDs you will be installing. Use the APPLY CHECK command to assist you to determine whether any HIPER or FIXCAT

APARs are applicable to the FMIDs you are installing.

If there are any applicable HIPER of FIXCAT APARs, the APPLY CHECK also identifies fixing PTFs that will resolve the

APARs, if a fixing PTF is available.

You should install the FMIDs regardless of the status of unresolved HIPER or FIXCAT APARs. However, do not deploy the

software until the unresolved HIPER and FIXCAT APARs have been analyzed to determine their applicability. Before

deploying the software either ensure fixing PTFs are applied to resolve all HIPER or FIXCAT APARs, or ensure the

problems reported by all HIPER or FIXCAT APARs are not applicable to your environment.

TIP

To receive the full benefit of the SMP/E Causer SYSMOD Summary Report, do not bypass the PRE, ID, REQ, and

IFREQ on the APPLY CHECK. The SMP/E root cause analysis identifies the cause only of errors and not of warnings

(SMP/E treats bypassed PRE, ID, REQ, and IFREQ conditions as warnings, instead of errors).

Sample APPLY commands

Review the following sample APPLY commands:

APPLY CHECK

To ensure that all recommended and critical services are installed with the FMIDs, receive the latest HOLDDATA and

use the APPLY CHECK.

Example:

NOTE

Some HIPER APARs might not have fixing PTFs available yet. You should analyze the symptom flags for the

unresolved HIPER APARs to determine if the reported problem is applicable to your environment and if you

should bypass the specific ERROR HOLDs in order to continue the installation of the FMIDs.

This method requires more initial research, but can provide resolution for all HPERs that have fixing PTFs

available and not in a PE chain. Unresolved PEs or HIPERs might still exist and require the use of BYPASS.

APPLY CHECK with operand

To install the FMIDs without regard for unresolved HIPER APARs, add the BYPASS(HOLDCLASS(HIPER)) operand to the

APPLY CHECK command. Using this command and operand enables you to install FMIDs, even though one or more

unresolved HIPER APARs exist. After the FMIDs are installed, use the SMP/E REPORT ERRSYSMODS command to

identify unresolved HIPER APARs and any fixing PTFs.

NOTES:

This method is quicker, but requires subsequent review of the Exception SYSMOD report produced by the

REPORT ERRSYSMODS command to investigate any unresolved HIPERs. If you have received the latest

HOLDDATA, you can also choose to use the REPORT MISSINGFIX command and specify Fix Category

IBM.PRODUCTINSTALL-REQUIREDSERVICE to investigate missing recommended service.

If you bypass HOLDs during the installation of the FMIDs because fixing PTFs are not yet available, you can be

notified when the fixing PTFs are available by using the APAR Status Tracking (AST) function of the ServiceLink

or the APAR Tracking function of Resource Link.

2. After you take actions that are indicated by the APPLY CHECK, remove the CHECK operand and run the job again to

perform the APPLY.

NOTE

The GROUPEXTENDED operand indicates the SMP/E applies all requisite SYSMODs. The requisite SYSMODS might be

applicable to other functions.

TIP

Expected results from APPLY CHECK You will receive a return code of 0 if this job runs correctly.

Expected results from APPLY You will receive a return code of 0 if the job runs correctly.

Perform SMP/E ACCEPT

Edit and submit sample job ZWE8ACPT to perform an SMP/E ACCEPT CHECK for Zowe. Consult the instructions in the

sample job for more information.

To receive the full benefit of the SMP/E Causer SYSMOD Summary Report, do not bypass the PRE, ID, REQ, and IFREQ on

the ACCEPT CHECK. The SMP/E root cause analysis identifies the cause of errors but not warnings (SMP/E treats

bypassed PRE, ID, REQ, and IFREQ conditions as warnings rather than errors).

Before you use SMP/E to load new distribution libraries, it is recommended that you set the ACCJCLIN indicator in the

distribution zone. In this way, you can save the entries that are produced from JCLIN in the distribution zone whenever a

SYSMOD that contains inline JCLIN is accepted. For more information about the ACCJCLIN indicator, see the description of

inline JCLIN in the SMP/E Commands book for details.

After you take actions that are indicated by ACCEPT CHECK, remove the CHECK operand and run the job again to

perform the ACCEPT.

NOTE

The GROUPEXTEND operand indicates that SMP/E accepts all requisite SYSMODs. The requisite SYSMODS might be

applicable to other functions.

EXPECTED RESULTS FROM ACCEPT CHECK

You will receive a return code of 0 if this job runs correctly.

If PTFs that contain replacement modules are accepted, SMP/E ACCEPT processing will link-edit or bind the modules into

the distribution libraries. During this processing, the Linkage Editor or Binder might issue messages that indicate

unresolved external references, which will result in a return code of 4 during the ACCEPT phase. You can ignore these

messages, because the distribution libraries are not executable and the unresolved external references do not affect the

executable system libraries.

EXPECTED RESULTS FROM ACCEPT

You will receive a return code of 0 if this job runs correctly.

Run REPORT CROSSZONE

The SMP/E REPORT CROSSZONE command identifies requisites for products that are installed in separate zones. This

command also creates APPLY and ACCEPT commands in the SMPPUNCH data set. You can use the APPLY and ACCEPT

commands to install those cross-zone requisites that the SMP/E REPORT CROSSZONE command identifies.

After you install Zowe, it is recommended that you run REPORT CROSSZONE against the new or updated target and

distribution zones. REPORT CROSSZONE requires a global zone with ZONEINDEX entries that describe all the target

and distribution libraries to be reported on.

For more information about REPORT CROSSZONE, see the SMP/E manuals.

Cleaning up obsolete data sets, paths, and DDDEFs

The web download data sets listed in DASD storage requirements are temporary data sets. You can delete these data

sets after you complete the SMP/E installation.

Activating Zowe

File system execution

If you mount the file system in which you have installed Zowe in read-only mode during execution, then you do not have

to take further actions to activate Zowe.

Zowe customization

You can find the necessary information about customizing and using Zowe on the Zowe doc site.

For more information about how to customize Zowe, see Configuring Overview.

For more information about how to use Zowe, see Using Zowe.

https://docs.zowe.org/stable/user-guide/install-zowe-smpe-overview#dasd-storage-requirements
https://docs.zowe.org/stable/user-guide/configuring-overview/
https://docs.zowe.org/stable/user-guide/zowe-getting-started-tutorial/

Version: v3.3.x LTS

Installing Zowe via z/OSMF from PSWI and

SMP/E workflow

The following information contains procedures and tips for meeting z/OSMF requirements. For complete information, go

to IBM Documentation and read the following documents.

IBM z/OS Management Facility Configuration Guide

IBM z/OS Management Facility Help

z/OS requirements for z/OSMF configuration

Ensure that the z/OS system meets the following requirements:

Requirements Description
Resources in IBM

Knowledge Center

AXR (System REXX)

z/OS uses AXR (System REXX) component to perform Incident Log

tasks. The component enables REXX executable files to run outside

of conventional TSO and batch environments.

System REXX

Common Event

Adapter (CEA) server

The CEA server, which is a co-requisite of the Common Information

Model (CIM) server, enables the ability for z/OSMF to deliver z/OS

events to C-language clients.

Customizing for CEA

Common Information

Model (CIM) server

z/OSMF uses the CIM server to perform capacity-provisioning and

workload-management tasks. Start the CIM server before you start

z/OSMF (the IZU* started tasks).

Reviewing your CIM

server setup

CONSOLE and

CONSPROF

commands

The CONSOLE and CONSPROF commands must exist in the

authorized command table.

Customizing the

CONSOLE and

CONSPROF

commands

Java level
IBM® 64-bit SDK for z/OS®, Java Technology Edition V8 or later is

required.

Software prerequisites

for z/OSMF

TSO region size

To prevent exceeds maximum region size errors, verify that the

TSO maximum region size is a minimum of 65536 KB for the z/OS

system.

N/A

User IDs

User IDs require a TSO segment (access) and an OMVS segment.

During workflow processing and REST API requests, z/OSMF might

start one or more TSO address spaces under the following job

names: userid; substr(userid, 1, 6) CN (Console).

N/A

https://www.ibm.com/docs/en/zos/2.3.0
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_PartConfiguring.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izu/izu.htm
https://www.ibm.com/docs/en/zos/2.3.0?topic=guide-system-rexx
https://www.ibm.com/docs/en/zos/2.3.0?topic=test-customizing-cea
https://www.ibm.com/docs/en/zos/2.3.0?topic=ins-reviewing-your-cim-server-setup
https://www.ibm.com/docs/en/zos/2.3.0?topic=ins-reviewing-your-cim-server-setup
https://www.ibm.com/docs/en/zos/2.3.0?topic=commands-customizing-console-consprof
https://www.ibm.com/docs/en/zos/2.3.0?topic=commands-customizing-console-consprof
https://www.ibm.com/docs/en/zos/2.3.0?topic=commands-customizing-console-consprof
https://www.ibm.com/docs/en/zos/2.3.0?topic=commands-customizing-console-consprof
https://www.ibm.com/docs/en/zos/2.3.0?topic=zosmf-software-prerequisites
https://www.ibm.com/docs/en/zos/2.3.0?topic=zosmf-software-prerequisites

Version: v3.3.x LTS

Addressing z/OSMF requirements

Before you install Zowe using IBM z/OSMF, address the following installation and security requirements. Your systems

programmers and security administrators can complete these tasks in parallel.

Configure z/OSMF

ROLES REQUIRED: SYSTEMS PROGRAMMER, SECURITY ADMINISTRATOR, DOMAIN ADMINISTRATOR

The IBM z/OS Management Facility Configuration Guide is your primary source of information about how to configure

z/OSMF. You can open the IBM documentation in a separate browser tab for reference during installation of your products

using z/OSMF Deployments. To prevent configuration errors and to enable z/OSMF Software Update for maintenance,

apply all z/OSMF related maintenance before you begin the installation process.

Configure z/OSMF security

ROLES REQUIRED: SECURITY ADMINISTRATOR

Configure z/OSMF security for ACF2, Top Secret, or IBM RACF as applicable to authorize users and resources. To prevent

SSL handshake failures when importing product information into z/OSMF, make sure that you have added the Digicert

Intermediate CA certificate to the z/OSMF keyring. For information, see Import Product Information into z/OSMF.

Confirm that the installer has read, create, update, and execute

privileges in z/OS

ROLES REQUIRED: SECURITY ADMINISTRATOR

Write access is also required to the USS directories that are used for the installation process.

To deploy a product that has USS components, the installer's user ID must have access to the appropriate resource

profiles in the UNIXPRIV class and access to the BPX.SUPERUSER resource profile in the FACILITY class, or UID(0) .

For UNIXPRIV class, read access is required to SUPERUSER.FILESYS.CHOWN , SUPERUSER.FILESYS.CHGRP , and

SUPERUSER.FILESYS.MOUNT .

Address USS requirements

ROLES REQUIRED: SECURITY ADMINISTRATOR, SYSTEM PROGRAMMER

Create a USS directory to receive the z/OSMF pax file and to perform the unpack steps.

Confirm that you have write authority to the USS directories that are used for the z/OSMF pax installation process.

https://techdocs.broadcom.com/us/en/ca-mainframe-software/traditional-management/mainframe-common-maintenance-procedures/1-0/getting-started/z-osmf-requirements/import-product-information-into-z-osmf.html

Confirm that you have available USS file space. To download and unpack the pax file, you need free space that is

approximately 3.5 times the pax file size in the file system that contains the pax directories. For example, to

download and unpack a 14-MB pax file, you need approximately 49 MB of free space in the file system hosting your

pax directory. If you do not have sufficient free space, error messages like EZA1490I Error writing to data set or

EZA2606W File I/O error 133 can occur.

Configure SMP/E Internet Service Retrieval

ROLES REQUIRED: SECURITY ADMINISTRATOR, SYSTEM PROGRAMMER

Configure SMP/E Internet Service Retrieval to receive and download maintenance on a regular cadence or build custom

maintenance packages (order PTFs, APARs, critical, recommended, all, or just HOLDDATA). This step is our recommended

best practice when installing maintenance and is required to use the z/OSMF Software Update. For configuration details,

see the Mainframe Common Maintenance Procedures documentation.

After these requirements have been addressed, you are ready to acquire a z/OSMF Portable Software Instance or

Configure Zowe with z/OSMF Workflows or Configuring API ML with z/OSMF Workflows.

https://docs.zowe.org/stable/user-guide/install-zowe-pswi-acquire#download-the-portable-software-instance-from-zowe-downloads
https://docs.zowe.org/stable/user-guide/configure-zowe-zosmf-workflow
https://docs.zowe.org/stable/user-guide/configure-apiml-zosmf-workflow

Version: v3.3.x LTS

Configuring z/OSMF

Follow these steps described in this article to configure z/OSMF.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR, DOMAIN ADMINISTRATOR

1. From the console, issue the following command to verify the version of z/OS:

Expected results:

Part of the output contains the release, for example, RELEASE z/OS 02.02.00 .

2. Configure z/OSMF.

z/OSMF is a base element of z/OS, so it is already installed. However, z/OSMF might not be configured and running

on every z/OS system.

To configure an instance of z/OSMF, run the IBM-supplied jobs IZUSEC and IZUMKFS , and then start the z/OSMF

server. The z/OSMF configuration process occurs in three stages, and in the following order:

Stage 1 - Security setup

Stage 2 - Configuration

Stage 3 - Server initialization

This stage sequence is critical to a successful configuration. For complete information about how to configure

z/OSMF, see Configuring z/OSMF for the first time if you use z/OS V2.2 or Setting up z/OSMF for the first time if V2.3.

NOTE

The base element z/OSMF is started by default at system initial program load (IPL). Therefore, z/OSMF is available

for use as soon as you set up the system. If you prefer not to start z/OSMF automatically, disable the autostart

function by checking for START commands for the z/OSMF started procedures in the COMMNDxx parmlib member.

The z/OS Operator Consoles task is new in Version 2.3. Applications that depend on access to the operator console

such as Zowe™ CLI's RestConsoles API require Version 2.3 or newer.

1. Verify that the z/OSMF server and angel processes are running. From the command line, issue the following

command:

If jobs IZUANG1 and IZUSVR1 are not active, issue the following command to start the angel process:

Expected results:

You will see the message CWWKB0056I INITIALIZATION COMPLETE FOR ANGEL .

To start the server, issue the following command:

Expected results:

It might take a few minutes to initialize. The z/OSMF server is available when the message CWWKF0011I: The server

zosmfServer is ready to run a smarter planet. is displayed.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.izua300/IZUHPINFO_ConfiguringMain.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_ConfiguringMain.htm

4. To find the startup messages in the SDSF log of the z/OSMF server, issue the following command:

Expected results:

You will see a message that indicates the port number, for example, IZUG349I: The z/OSMF STANDALONE Server

home page can be accessed at https://mvs.hursley.ibm.com:443/zosmf after the z/OSMF server is started

on your system. In this example, the port number is 443 . You will need this port number later.

5. Point your browser at the nominated z/OSMF STANDALONE Server home page. You should see its Welcome Page

where you can log in.

NOTE

If your implementation uses an external security manager other than RACF (for example, Top Secret for z/OS or

ACF2 for z/OS), provide equivalent commands for your environment. For more information, see the following product

documentation:

Configure z/OS Management Facility for Top Secret

Configure z/OS Management Facility for ACF2

z/OSMF REST services for Zowe clients

Zowe clients use z/OSMF Representational State Transfer (REST) APIs to work with system resources and extract system

data. Ensure that the following REST services are configured and available.

z/OSMF REST

services
Requirements

Resources in IBM

knowledge Center

Cloud provisioning

services

Cloud provisioning services are required for the Zowe CLI CICS and

Db2 command groups. Endpoints begin with /zosmf/provisioning/

Cloud provisioning

services

TSO/E address

space services

TSO/E address space services are required to issue TSO commands in

the Zowe CLI. Endpoints begin with /zosmf/tsoApp

TSO/E address space

services

z/OS console

services

z/OS console services are required to issue console commands in the

Zowe CLI. Endpoints begin with /zosmf/restconsoles/

z/OS console

services

z/OS data set and

file REST interface

z/OS data set and file REST interface is required to work with

mainframe data sets and UNIX System Services files in the Zowe CLI.

Endpoints begin with /zosmf/restfiles/

z/OS data set and

file REST interface

z/OS jobs REST

interface

z/OS jobs REST interface is required to use the zos-jobs command

group in the Zowe CLI. Endpoints begin with /zosmf/restjobs/

z/OS jobs REST

interface

z/OSMF workflow

services

z/OSMF workflow services is required to create and manage z/OSMF

workflows on a z/OS system. Endpoints begin with /zosmf/workflow/

z/OSMF workflow

services

https://techdocs.broadcom.com/content/broadcom/techdocs/us/en/ca-mainframe-software/security/ca-top-secret-for-z-os/16-0/installing/configure-z-os-management-facility-for-ca-top-secret.html
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-acf2-for-z-os/16-0/installing/configure-z-os-management-facility-for-ca-acf2.html
https://docs.zowe.org/stable/appendix/zowe-glossary#zowe-client-projects
https://www.ibm.com/docs/en/zos/2.3.0?topic=configuration-preparing-use-cloud-provisioning
https://www.ibm.com/docs/en/zos/2.3.0?topic=configuration-preparing-use-cloud-provisioning
https://www.ibm.com/docs/en/zos/2.3.0?topic=services-tsoe-address-space
https://www.ibm.com/docs/en/zos/2.3.0?topic=services-tsoe-address-space
https://www.ibm.com/docs/en/zos/2.3.0?topic=services-zos-console
https://www.ibm.com/docs/en/zos/2.3.0?topic=services-zos-console
https://www.ibm.com/docs/en/zos/2.3.0?topic=services-zos-data-set-file-rest-interface
https://www.ibm.com/docs/en/zos/2.3.0?topic=services-zos-data-set-file-rest-interface
https://www.ibm.com/docs/en/zos/2.3.0?topic=services-zos-jobs-rest-interface
https://www.ibm.com/docs/en/zos/2.3.0?topic=services-zos-jobs-rest-interface
https://www.ibm.com/docs/en/zos/2.3.0?topic=services-zosmf-workflow
https://www.ibm.com/docs/en/zos/2.3.0?topic=services-zosmf-workflow

Zowe uses symbolic links to the z/OSMF bootstrap.properties , jvm.security.override.properties , and ltpa.keys

files. Zowe reuses SAF, SSL, and LTPA configurations; therefore, they must be valid and complete.

For more information, see Using the z/OSMF REST services in IBM z/OSMF documentation.

To verify that z/OSMF REST services are configured correctly in your environment, enter the REST endpoint into your

browser. For example: https://mvs.ibm.com:443/zosmf/restjobs/jobs

NOTES

Browsing z/OSMF endpoints requests your user ID and password for defaultRealm; these are your TSO user

credentials.

The browser returns the status code 200 and a list of all jobs on the z/OS system. The list is in raw JSON format.

Configuring z/OSMF to properly work with API ML

There is an issue observed in z/OSMF which leads to a stuck JSON web token(JWT). It manifests as the endpoint

/zosmf/services/authenticate issuing a JWT with success RC that is not valid for API calls, resulting in 401 response

status code. This is a persistent condition. To get the token unstuck, perform a logout with the LTPA token from the login

request. This causes logins to start serving unique JWTs again.

Until this issue is properly fixed in z/OSMF, we propose the possible temporary workaround:

Disable Cache in z/OSMF

To disable the cache in z/OSMF, update the server_override.xml file in the z/OSMF installation with the following

parameter with the value false :

This parameter setting results in the generation of a new JWT from each authentication call.

https://www.ibm.com/docs/en/zos/2.3.0?topic=guide-using-zosmf-rest-services

Version: v3.3.x LTS

Configuring z/OSMF Lite (for non-production

use)

This section provides information about requirements for z/OSMF Lite configuration.

Disclaimer: z/OSMF Lite can be used in a non-production environment such as development, proof-of-concept, demo

and so on. It is not for use in a production environment. To use z/OSMF in a production environment, see Configuring

z/OSMF.

Introduction

IBM® z/OS® Management Facility (z/OSMF) provides extensive system management functions in a task-oriented, web

browser-based user interface with integrated user assistance, so that you can more easily manage the day-to-day

operations and administration of your mainframe z/OS systems.

By following the steps in this guide, you can quickly enable z/OSMF on your z/OS system. This simplified approach to set-

up, known as "z/OSMF Lite", requires only a minimal amount of z/OS customization, but provides the key functions that

are required by many exploiters, such as the open mainframe project (Zowe™).

A z/OSMF Lite configuration is applicable to any future expansions you make to z/OSMF, such as adding more optional

services and plug-ins.

It takes 2-3 hours to set up z/OSMF Lite. Some steps might require the assistance of your security administrator.

For detailed information about various aspects of z/OSMF configuration such as enabling the optional plug-ins and

services, see the IBM publication z/OSMF Configuration Guide.

Assumptions

This document is intended for a first time z/OSMF setup. If z/OSMF is already configured on your system, you do not need

to create a z/OSMF Lite configuration.

This document is designed for use with a single z/OS system, not a z/OS sysplex. If you plan to run z/OSMF in a sysplex,

see z/OSMF Configuration Guide for multi-system considerations.

It is assumed that a basic level of security for z/OSMF is sufficient on the z/OS system. IBM provides a program,

IZUNUSEC, to help you set up basic security for a z/OSMF Lite configuration.

System defaults are used for the z/OSMF environmental settings. Wherever possible, it is recommended that you use the

default values. If necessary, however, you can override the defaults by supplying an IZUPRMxx member, as described in

Appendix A. Creating an IZUPRMxx parmlib member.

It is recommended that you use the following procedures as provided by IBM:

Started procedures IZUSVR1 and IZUANG1

Logon procedure IZUFPROC

https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf
https://www.ibm.com/docs/en/zos/2.5.0?topic=configurations-autostart-concepts-in-zosmf
https://www.ibm.com/docs/en/zos/2.2.0?topic=configuration-using-zosmf-in-multi-system-environment

Information about installing these procedures is provided in Copying the IBM procedures into JES PROCLIB.

Software Requirements

Setting up z/OSMF Lite requires that you have access to a z/OS V2R2 system or later. Also, your z/OS system must meet

the following minimum software requirements:

Minimum Java level

WebSphere® Liberty profile (z/OSMF V2R3 and later)

System settings

Web browser

Minimum Java level

Java™ must be installed and operational on your z/OS system, at the required minimum level. See the table that follows

for the minimum level and default location. If you installed Java in another location, you must specify the JAVA_HOME

statement in your IZUPRMxx parmlib member, as described in Appendix A. Creating an IZUPRMxx parmlib member.

z/OS

Version
Minimum level of Java™

Recommended level of

Java
Default location

z/OS

V2R2

IBM® 64-bit SDK for z/OS®, Java Technology

Edition V7.1 (SR3), with the PTFs for APAR

PI71018 and APAR PI71019 applied OR IBM®

64-bit SDK for z/OS®, Java Technology Edition

V8, with the PTF for APAR PI72601 applied.

IBM® 64-bit SDK for

z/OS®, Java™ Technology

Edition, V8 SR6 (5655-

DGH)

/usr/lpp/java/J7.1_64

z/OS

V2R3

IBM® 64-bit SDK for z/OS®, Java™ Technology

Edition, V8 SR4 FP10 (5655-DGH)

IBM® 64-bit SDK for

z/OS®, Java™ Technology

Edition, V8 SR6 (5655-

DGH)

/usr/lpp/java/J8.0_64

WebSphere® Liberty profile (z/OSMF V2R3 and later)

z/OSMF V2R3 uses the Liberty Profile that is supplied with z/OS, rather than its own copy of Liberty. The WebSphere

Liberty profile must be mounted on your z/OS system. The default mount point is: /usr/lpp/liberty_zos . To determine

whether WebSphere® Liberty profile is mounted, check for the existence of the mount point directory on your z/OS

system.

If WebSphere® Liberty profile is mounted at a non-default location, you need to specify the location in the IZUSVR1

started procedure on the keyword WLPDIR=. For details, see Appendix B. Modifying IZUSVR1 settings.

Note: Whenever you apply PTFs for z/OSMF, you might be prompted to install outstanding WebSphere Liberty service. It

is recommended that you do so to maintain z/OSMF functionality.

System settings

Ensure that the z/OS host system meets the following requirements:

Port 443 (default port) is available for use.

The system host name is unique and maps to the system on which z/OSMF Lite will be configured.

Otherwise, you might encounter errors later in the process. If you encounter errors, see Troubleshooting problems for the

corrective actions to take.

Web browser

For best results with z/OSMF, use one of the web browsers supported by z/OSMF.

To check your web browser's level, click About in the web browser.

Creating a z/OSMF nucleus on your system

The following system changes are described in this chapter:

Running job IZUNUSEC to create security

Running job IZUMKFS to create the z/OSMF user file system

Copying the IBM procedures into JES PROCLIB

Starting the z/OSMF server

Accessing the z/OSMF Welcome page

Mounting the z/OSMF user file system at IPL time

The following sample jobs that you might use are included in the package and available for download:

IZUAUTH

IZUICSEC

IZUNUSEC_V2R2

IZUNUSEC_V2R3

IZUPRM00

IZURFSEC

IZUTSSEC

IZUWFSEC

Download sample jobs

Check out the video for a demo of the process:

https://www.ibm.com/docs/en/zos/3.1.0?topic=zosmf-software-prerequisites#SoftwarePrerequisites__title__4
https://docs.zowe.org/stable/zosmf_lite_samples.zip

Creating a z/OSMF Nucleus On Your SystemCreating a z/OSMF Nucleus On Your System

Running job IZUNUSEC to create security

The security job IZUNUSEC contains a minimal set of RACF® commands for creating security profiles for the z/OSMF

nucleus. The profiles are used to protect the resources that are used by the z/OSMF server, and to grant users access to

the z/OSMF core functions. IZUNUSEC is a simplified version of the sample job IZUSEC, which is intended for a more

complete installation of z/OSMF.

Note: If your implementation uses an external security manager other than RACF (for example, Top Secret or ACF2),

provide equivalent commands for your environment. For more information, see the following product documentation:

Configure z/OS Management Facility for Top Secret

Configure z/OS Management Facility for ACF2

Before you begin

In most cases, you can run the IZUNUSEC security job without modification. To verify that the job is okay to run as is, ask

your security administrator to review the job and modify it as necessary for your security environment. If security is not

a concern for the host system, you can run the job without modification.

Procedure

1. If you run z/OS V2R2 or V2R3, download job IZUNUSEC in the sample jobs package and upload this job to z/OS. If you

run z/OS V2R4, locate job IZUNUSEC at SYS1.SAMPLIB.

2. Review and edit the job, if necessary.

3. Submit IZUNUSEC as a batch job on your z/OS system.

4. Connect your user ID to IZUADMIN group.

i. Download job IZUAUTH in the sample jobs package and customize it.

ii. Replace the 'userid' with your z/OSMF user ID.

iii. Submit the job on your z/OS system.

https://www.youtube.com/watch?v=ebJb9RR9x9c
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-top-secret-for-z-os/16-0/installing/configure-z-os-management-facility-for-ca-top-secret.html
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-acf2-for-z-os/16-0/installing/configure-z-os-management-facility-for-ca-acf2.html
https://docs.zowe.org/stable/zosmf_lite_samples.zip

Results

Ensure the IZUNUSEC job completes with return code 0000 .

To verify, check the results of the job execution in the job log. For example, you can use SDSF to examine the job log:

1. In the SDSF primary option menu, select Option ST.

2. On the SDSF Status Display, enter S next to the job that you submitted.

3. Check the return code of the job. The job succeeds if '0000' is returned.

Common errors

Review the following messages and the corresponding resolutions as needed:

Symptom Cause Resolution

Message IKJ56702I:

INVALID data is issued

The job is submitted

more than once.
You can ignore this message.

Job fails with an

authorization error.

Your user ID lacks

superuser authority.

Contact your security admin to run IZUNUSEC. If you are

using RACF®, select a user ID with SPECIAL attribute which

can issue all RACF® commands.

Job fails with an

authorization error.

Your installation uses

the RACF PROTECT-ALL

option.

See Troubleshooting problems.

ADDGROUP and ADDUSER

commands are not

executed.

The automatic GID and

UID assignment is

required.

Define SHARED.IDS and BPX.NEXT.USER profiles to enable

the use of AUTOUID and AUTOGID.

Running job IZUMKFS to create the z/OSMF user file system

The job IZUMKFS initializes the z/OSMF user file system, which contains configuration settings and persistence

information for z/OSMF.

The job mounts the file system. On a z/OS V2R3 system with the PTF for APAR PI92211 installed, the job uses mount

point /global/zosmf . Otherwise, for an earlier system, the job mounts the file system at mount point /var/zosmf .

Before you begin

To perform this step, you need a user ID with "superuser" authority on the z/OS host system. For more information about

how to define a user with superuser authority, see the publication z/OS UNIX System Services.

Procedure

1. In the system library SYS1.SAMPLIB , locate job IZUMKFS.

2. Copy the job.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpx/bpx.htm

3. Review and edit the job:

Modify the job information so that the job can run on your system.

You must specify a volume serial (VOLSER) to be used for allocating a data set for the z/OSMF data directory.

4. Submit IZUMKFS as a batch job on your z/OS system.

Results

The z/OSMF file system is allocated, formatted, and mounted, and the necessary directories are created.

To verify if the file system is allocated, formatted, locate the following messages in IZUMKFS job output.

Sample output:

Common errors

Review the following messages and the corresponding resolutions as needed

Symptom Cause Resolution

Job fails with FSM error.
Your user ID lacks

superuser authority.

For more information about how to define a user with superuser

authority, see the publication z/OS UNIX System Services.

Job fails with an

authorization error.
Job statement errors. See Troubleshooting problems.

Copying the IBM procedures into JES PROCLIB

Copy the z/OSMF started procedures and logon procedure from SYS1.PROCLIB into your JES concatenation. Use $D

PROCLIB command to display your JES2 PROCLIB definitions.

Before you begin

Locate the IBM procedures. IBM supplies procedures for z/OSMF in your z/OS order:

ServerPac and CustomPac orders: IBM supplies the z/OSMF procedures in the SMP/E managed proclib data set. In

ServerPac and SystemPac, the default name for the data set is SYS1.IBM.PROCLIB.

CBPDO orders: For a CBPDO order, the SMP/E-managed proclib data set is named as SYS1.PROCLIB.

Application Development CD.

Procedure

Use ISPF option 3.3 or 3.4 to copy the procedures from SYS1.PROCLIB into your JES concatenation.

IZUSVR1

IZUANG1

IZUFPROC

Results

The procedures now reside in your JES PROCLIB.

Common errors

Review the following messages and the corresponding resolutions as needed

Symptom Cause Resolution

Not authorized to copy

into PROCLIB.

Your user ID doesn't have the

permission to modify PROCLIB.
Contact your security administrator.

Abend code B37 or E37. The data set runs out of space.
Use IEBCOPY utility to compress PROCLIB

dataset before you copy it.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpx/bpx.htm

Starting the z/OSMF server

z/OSMF processing is managed through the z/OSMF server, which runs as the started tasks IZUANG1 and IZUSVR1.

z/OSMF is started with the START command.

Before you begin

Ensure that you have access to the operations console and can enter the START command.

Procedure

In the operations console, enter the START commands sequentially:

Note: The z/OSMF angel (IZUANG1) must be started before the z/OSMF server (IZUSVR1).

You must enter these commands manually at subsequent IPLs. If necessary, you can stop z/OSMF processing by entering

the STOP command for each of the started tasks IZUANG1 and IZUSVR1.

Note: z/OSMF offers an autostart function, which you can configure to have the z/OSMF server started automatically. For

more information about the autostart capability, see z/OSMF Configuration Guide.

Results

When the z/OSMF server is initialized, you can see the following messages displayed in the operations console:

Accessing the z/OSMF Welcome page

At the end of the z/OSMF configuration process, you can verify the results of your work by opening a web browser to the

Welcome page.

Before you begin

To find the URL of the Welcome page, look for message IZUG349I in the z/OSMF server job log.

https://www.ibm.com/docs/en/zos/2.5.0?topic=configurations-autostart-concepts-in-zosmf

Procedure

1. Open a web browser to the z/OSMF Welcome page. The URL for the Welcome page has the following format:

https://hostname:port/zosmf/

Where:

hostname is the host name or IP address of the system in which z/OSMF is installed.

port is the secure port for the z/OSMF configuration. If you specified a secure port for SSL encrypted traffic

during the configuration process through parmlib statement HTTP_SSL_PORT, port is required to log in.

Otherwise, it is assumed that you use the default port 443.

2. In the z/OS USER ID field on the Welcome page, enter the z/OS user ID that you use to configure z/OSMF.

3. In the z/OS PASSWORD field, enter the password or pass phrase that is associated with the z/OS user ID.

4. Select the style of UI for z/OSMF. To use the desktop interface, select this option. Otherwise, leave this option

unselected to use the tree view UI.

5. Click Log In.

Results

If the user ID and password or pass phrase are valid, you are authenticated to z/OSMF. The Welcome page of IBM z/OS

Management Facility tab opens in the main area. At the top right of the screen, Welcome <your_user_ID> is displayed.

In the UI, only the options you are allowed to use are displayed.

You have successfully configured the z/OSMF nucleus.

Common errors

The following errors might occur during this step:

Symptom Cause Resolution

z/OSMF welcome page does not load in

your web browser.

The SSL handshake was not

successful. This problem can be

related to the browser

certificate.

See Certificate error in the Mozilla

Firefox browser.

To log into z/OSMF, enter a valid z/OS

user ID and password. Your account

might be locked after too many incorrect

log-in attempts.

The user ID is not connected to

the IZUADMIN group.

Connect your user ID to the

IZUADMIN group.

To log into z/OSMF, enter a valid z/OS

user ID and password. Your account

The password is expired. Log on to TSO using your z/OS User

ID and password, you will be asked

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_FirefoxCertificateError.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_FirefoxCertificateError.htm

Symptom Cause Resolution

might be locked after too many incorrect

log-in attempts.

to change your password if it's

expired.

Mounting the z/OSMF user file system at IPL time

Previously, in Running job IZUMKFS to create the z/OSMF user file system, you ran job IZUMKFS to create and mount the

z/OSMF user file system. Now you should ensure that the z/OSMF user file system is mounted automatically for

subsequent IPLs. To do so, update the BPXPRMxx parmlib member on your z/OS system.

Before you begin

By default, the z/OSMF file system uses the name IZU.SIZUUSRD, and is mounted in read/write mode. It is recommended

that this file system is mounted automatically at IPL time.

If you do not know which BPXPRMxx member is active, follow these steps to find out:

1. In the operations console, enter the following command to see which parmlib members are included in the parmlib

concatenation on your system:

D PARMLIB

2. Make a note of the BPXPRMxx member suffixes that you see.

3. To determine which BPXPRMxx member takes precedence, enter the following command:

D OMVS

The output of this command should be similar to the following:

In this example, the member BPXPRMST takes precedence. If BPXPRMST is not present in the concatenation, member

BPXPRM3T is used.

Procedure

Add a MOUNT command for the z/OSMF user file system to your currently active BPXPRMxx parmlib member. For

example:

On a z/OS V2R3 system with the PTF for APAR PI92211 installed:

On a z/OS V2R2 or V2R3 system without PTF for APAR PI92211 installed:

Results

The BPXPRMxx member is updated. At the next system IPL, the following message is issued to indicate that the z/OSMF

file system is mounted automatically.

Adding the required REST services

You must enable a set of z/OSMF REST services for the Zowe framework.

The following system changes are described in this topic:

Enabling the z/OSMF JOB REST services

Enabling the TSO REST services

Enabling the z/OSMF data set and file REST services

Enabling the z/OSMF Workflow REST services and Workflows task UI

Enabling the z/OSMF JOB REST services

The Zowe framework requires that you enable the z/OSMF JOB REST services, as described in this topic.

Procedure

None

Results

To verify if the z/OSMF JOB REST services are enabled, open a web browser to our z/OS system (host name and port) and

add the following REST call to the URL:

GET /zosmf/restjobs/jobs

The result is a list of the jobs that are owned by your user ID. For more information about the z/OSMF JOB REST services,

see z/OSMF Programming Guide.

Common errors

Review the following messages and the corresponding resolutions as needed:

Symptom 1

401 Unauthorized

Cause

The user ID is not connected to IZUADMIN or IZUUSER.

Resolution

Connect your user ID to IZUADMIN or IZUUSER.

Symptom 2

HTTP/1.1 500 Internal Server Error

Cause

For JES2, you may have performed one of the following "Modify" operations: Hold a job, Release a job, Change the job

class, Cancel a job, Delete a job (Cancel a job and purge its output), or you are running JES3 without configuring CIM

Server.

Resolution

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTJOBS.htm

If you are running JES2, you can use synchronous support for job modify operations which does not required CIM. If you

are running JES3, follow the CIM setup instructions to configure CIM on your system.

Enabling the TSO REST services

The Zowe framework requires that you enable the TSO REST services, as described in this topic.

Before you begin

Ensure that the common event adapter component (CEA) of z/OS is running in full function mode.

1. To check if the CEA address space is active, enter the following command:

D A,CEA

2. If not, start CEA in full function mode. For detailed instructions, see System prerequisites for the CEA TSO/E address

space services.

3. To verify that CEA is running in full function mode, enter the following command:

F CEA,D

The output should look like the following:

Procedure

1. If you run z/OS V2R2 and V2R3, download job IZUTSSEC in the sample jobs package and upload this Job to z/OS. If

you run z/OS V2R4, locate job IZUTSSEC at SYS1.SAMPLIB .

2. Review and edit job IZUTSSEC before you submit. You can review the IZUTSSEC section below for more details.

3. Submit IZUTSSEC as a batch job on your z/OS system.

IZUTSSEC

IBM provides a set of jobs in SYS1.SAMPLIB with sample RACF commands to help with your z/OSMF configuration and its

prerequisites. The IZUTSSEC job represents the authorizations that are needed for the z/OSMF TSO/E address space

service. Your security administrator can edit and run the job. Generally, your z/OSMF user ID requires the same

authorizations for using the TSO/E address space services as when you perform these operations through a TSO/E

session on the z/OS system. For example, to start an application in a TSO/E address space requires that your user ID be

authorized to operate that application. In addition, to use TSO/E address space services, you must have:

READ access to the account resource in class ACCTNUM, where account is the value specified in the COMMON_TSO

ACCT option in parmlib.

READ access to the CEA.CEATSO.TSOREQUEST resource in class SERVAUTH.

READ access to the proc resource in class TSOPROC, where proc is the value specified with the COMMON_TSO PROC

option in parmlib.

READ access to the <SAF_PREFIX>.*.izuUsers profile in the EJBROLE class. Or, at a minimum, READ access to the

<SAF_PREFIX>.IzuManagementFacilityTsoServices.izuUsers resource name in the EJBROLE class. You must also

ensure that the z/OSMF started task user ID, which is IZUSVR by default, has READ access to the

CEA.CEATSO.TSOREQUEST resource in class SERVAUTH. To create a TSO/E address space on a remote system, you

require the following authorizations:

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTJOBS.htm#izuhpinfo_api_restjobs__RequestingSynchronousProcessing
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_AdditionalCIMStepsForZOS.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieac100/prerequisites.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieac100/prerequisites.htm
https://docs.zowe.org/stable/zosmf_lite_samples.zip

You must be authorized to the SAF resource profile that controls the ability to send data to the remote system

(systemname), as indicated: CEA.CEATSO.FLOW.systemname

To flow data between different systems in the sysplex, you must be authorized to do so by your external security

manager, such as a RACF database with sysplex-wide scope. For example, to flow data between System A and

System B, you must be permitted to the following resource profiles:

CEA.CEATSO.FLOW.SYSTEMA

CEA.CEATSO.FLOW.SYSTEMB

Results

The IZUTSSEC job should complete with return code 0000.

Enabling the z/OSMF data set and file REST services

The Zowe framework requires that you enable the z/OSMF data set and file REST services.

Before you begin

1. Ensure that the message queue size is set to a large enough value. It is recommended that you specify an

IPCMSGQBYTES value of at least 20971520 (20M) in BPXPRMxx.

Issue command D OMVS,O to see the current value of IPCMSGQBYTES, if it is not large enough, use the SETOMVS

command to set a large value. To set this value dynamically, you can enter the following operator command:

SETOMVS IPCMSGQBYTES=20971520

2. Ensure that the TSO REST services are enabled.

3. Ensure that IZUFPROC is in your JES concatenation.

4. Ensure that your user ID has a TSO segment defined. To do so, enter the following command from TSO/E command

prompt:

LU userid TSO

Where userid is your z/OS user ID.

The output from this command must include the section called TSO information, as shown in the following example:

Procedure

1. If you run z/OS V2R2 and V2R3, download job IZURFSEC in the sample jobs package and upload it to z/OS. If you run

z/OS V2R4, locate job IZURFSEC at SYS1.SAMPLIB .

2. Copy the job.

3. Examine the contents of the job.

4. Modify the contents as needed so that the job will run on your system.

5. From the TSO/E command line, run the IZURFSEC job.

Results

Ensure that the IZURFSEC job completes with return code 0000 .

https://docs.zowe.org/stable/zosmf_lite_samples.zip

To verify if this setup is complete, try issuing a REST service. See the example in List data sets in the z/OSMF

programming guide.

Common errors

Review the following messages and the corresponding resolutions as needed:

Symptom Cause Resolution

REST API doesn't return expected data

with rc=12, rsn=3, message: message

queue size "SIZE" is less than

minimum: 20M

The message

queue size for

CEA is too small.

Ensure that the message queue size is set to a large

enough value. It is recommended that you specify an

IPCMSGQBYTES value of at least 20971520 (20M) in

BPXPRMx.

Enabling the z/OSMF Workflow REST services and Workflows task UI

The Zowe framework requires that you enable the z/OSMF Workflow REST services and Workflows task UI.

Before you begin

1. Ensure that the JOB REST services are enabled.

2. Ensure that the TSO REST services are enabled.

3. Ensure that the dataset and file REST services are enabled.

Procedure

1. If you run z/OS V2R2 and V2R3, download job IZUWFSEC in the sample jobs package and upload this job to z/OS. If

you run z/OS V2R4, locate job IZUWFSEC at SYS1.SAMPLIB .

2. Copy the job.

3. Examine the contents of the job.

4. Modify the contents as needed so that the job will run on your system.

5. From the TSO/E command line, run the IZUWFSEC job.

Results

Ensure the IZUWFSEC job completes with return code 0000 .

To verify, log on to z/OSMF (or refresh it) and verify that the Workflows task appears in the z/OSMF UI.

At this point, you have completed the setup of z/OSMF Lite.

Optionally, you can add more users to z/OSMF, as described in Appendix C. Adding more users to z/OSMF.

Troubleshooting problems

This section provides tips and techniques for troubleshooting problems you might encounter when creating a z/OSMF

Lite configuration. For other types of problems that might occur, see z/OSMF Configuration Guide.

Common problems and scenarios

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_GetListDataSets.htm
https://docs.zowe.org/stable/zosmf_lite_samples.zip
https://www.ibm.com/docs/en/zos/2.5.0?topic=configurations-autostart-concepts-in-zosmf

This section discusses troubleshooting topics, procedures, and tools for recovering from a set of known issues.

System setup requirements not met

This document assumes that the following is true of the z/OS host system:

Port 443 is available for use. To check this, issue either TSO command NETSTAT SOCKET or TSO command NETSTAT

BYTE to determine if the port is being used.

The system host name is unique and maps to the system on which z/OSMF Lite is being installed. To retrieve this

value, enter either "hostname" z/OS UNIX command or TSO command "HOMETEST". If your system uses another

method of assigning the system name, such as a multi-home stack, dynamic VIPA, or System Director, see z/OSMF

Configuration Guide.

The global mount point exists. On a z/OS 2.3 system, the system includes this directory by default. On a z/OS 2.2

system, you must create the global directory at the following location: /global/zosmf/ .

If you find that a different value is used on your z/OS system, you can edit the IZUPRMxx parmlib member to specify the

correct setting. For details, see Appendix A. Creating an IZUPRMxx parmlib member.

Tools and techniques for troubleshooting

For information about working with z/OSMF log files, see z/OSMF Configuration Guide.

Common messages

If you see above error messages, check if your IZUANG0 procedure is up to date.

For descriptions of all the z/OSMF messages, see z/OSMF messages in IBM Knowledge Center.

Appendix A. Creating an IZUPRMxx parmlib member

If z/OSMF requires customization, you can modify the applicable settings by using the IZUPRMxx parmlib member. To see

a sample member, locate the IZUPRM00 member in the SYS1.SAMPLIB data set. IZUPRM00 contains settings that match

the z/OSMF defaults.

Using IZUPRM00 as a model, you can create a customized IZUPRMxx parmlib member for your environment and copy it

to SYS1.PARMLIB to override the defaults.

The following IZUPRMxx settings are required for the z/OSMF nucleus:

HOSTNAME

HTTP_SSL_PORT

JAVA_HOME.

The following setting is needed for the TSO/E REST services:

COMMON_TSO ACCT(IZUACCT) REGION(50000) PROC(IZUFPROC)

https://www.ibm.com/docs/en/zos/2.3.0?topic=configuration-configuring-zosmf-high-availability
https://www.ibm.com/docs/en/zos/2.3.0?topic=configuration-configuring-zosmf-high-availability
https://www.ibm.com/docs/en/zos/2.4.0?topic=troubleshooting-zosmf-log-files
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zosmfmessages.help.doc/izuG00hpMessages.html

Descriptions of these settings are provided in the table below. For complete details about the IZUPRMxx settings and the

proper syntax for updating the member, see z/OSMF Configuration Guide.

If you change values in the IZUPRMxx member, you might need to customize the started procedure IZUSVR1,

accordingly. For details, see Appendix B. Modifying IZUSVR1 settings.

To create an IZUPRMxx parmlib member, follow these steps:

1. Copy the sample parmlib member into the desired parmlib data set with the desired suffix.

2. Update the parmlib member as needed.

3. Specify the IZUPRMxx parmlib member or members that you want the system to use on the IZU parameter of

IEASYSxx. Or, code a value for IZUPRM= in the IZUSVR1 started procedure. If you specify both IZU= in IEASYSxx and

IZUPARM= in IZUSVR1, the system uses the IZUPRM= value you specify in the started procedure.

Setting Purpose Rules Default

HOSTNAME(hostname)

Specifies the host name, as defined by DNS,

where the z/OSMF server is located. To use the

local host name, enter asterisk (*), which is

equivalent to @HOSTNAME from previous

releases. If you plan to use z/OSMF in a

multisystem sysplex, IBM recommends using a

dynamic virtual IP address (DVIPA) that resolves

to the correct IP address if the z/OSMF server is

moved to a different system.

Must be a valid

TCP/IP

HOSTNAME or

an asterisk (*).

Default: *

HTTP_SSL_PORT(nnn)

Identifies the port number that is associated

with the z/OSMF server. This port is used for SSL

encrypted traffic from your z/OSMF

configuration. The default value, 443, follows the

Internet Engineering Task Force (IETF) standard.

Note: By default, the z/OSMF server uses the

SSL protocol SSL_TLSv2 for secure TCP/IP

communications. As a result, the server can

accept incoming connections that use SSL V3.0

and the TLS 1.0, 1.1 and 1.2 protocols.

Must be a valid

TCP/IP port

number. Value

range: 1 -

65535 (up to 5

digits)

Default: 443

COMMON_TSO

ACCT(account-number)

REGION(region-size)

PROC(proc-name)

Specifies values for the TSO/E logon procedure

that is used internally for various z/OSMF

activities and by the Workflows task.

The valid

ranges for each

value are

described in

z/OSMF

Configuration

Guide.

Default: 443

ACCT(IZUACCT)

REGION(50000)

PROC(IZUFPROC)

USER_DIR=filepath z/OSMF data directory path. By default, the

z/OSMF data directory is located in

Must be a valid

z/OS UNIX path

Default:

/global/zosmf/

https://www.ibm.com/docs/en/zos/2.3.0?topic=sys1parmlib-izuprmxx-configure-zos-management-facility
https://www.ibm.com/docs/en/zos/2.4.0?topic=system-izuprmxx-reference-information
https://www.ibm.com/docs/en/zos/2.4.0?topic=system-izuprmxx-reference-information
https://www.ibm.com/docs/en/zos/2.4.0?topic=system-izuprmxx-reference-information

Setting Purpose Rules Default

/global/zosmf . If you want to use a different

path for the z/OSMF data directory, specify that

value here, for example:

USER_DIR= /the/new/config/dir .

name.

Appendix B. Modifying IZUSVR1 settings

You might need to customize the started procedure IZUSVR1 for z/OSMF Lite.

To modify the IZUSVR1 settings, follow these steps:

1. Make a copy

2. Apply your changes

3. Store your copy in PROCLIB.

Setting Purpose Rules Default

WLPDIR='directory-

path'
WebSphere Liberty server code path.

The directory

path must: Be a

valid z/OS UNIX

path name Be a

full or absolute

path name Be

enclosed in

quotation marks

Begin with a

forward slash

('/').

Default:

/usr/lpp/zosmf/liberty

USER_DIR=filepath

z/OSMF data directory path. By default, the

z/OSMF data directory is located in

/global/zosmf. If you want to use a different

path for the z/OSMF data directory, specify

that value here, for example:

USER_DIR= /the/new/config/dir .

Must be a valid

z/OS UNIX path

name.

Default: /global/zosmf/

Appendix C. Adding more users to z/OSMF

Your security administrator can authorize more users to z/OSMF. Simply connect the required user IDs to the z/OSMF

administrator group (IZUADMIN). This group is permitted to a default set of z/OSMF resources (tasks and services). For

the specific group permissions, see Appendix A in z/OSMF Configuration Guide.

You can create more user groups as needed, for example, one group per z/OSMF task.

https://www.ibm.com/docs/en/zos/2.2.0?topic=ins-managing-user-access-zosmf-tasks-links

Before you Begin

Collect the z/OS user IDs that you want to add.

Procedure

1. On an RACF system, enter the CONNECT command for the user IDs to be granted authorization to z/OSMF resources:

CONNECT userid GROUP(IZUADMIN)

Results

The user IDs can now access z/OSMF.

Version: v3.3.x LTS

Installing Zowe from a Portable Software

Instance

As a systems programmer, your responsibilities include acquiring, installing, maintaining, and configuring mainframe

products on your systems. z/OSMF lets you perform these tasks. z/OSMF lets you manage software on your z/OS systems

through a browser at any time, from any location. By streamlining some traditional tasks and automating others, z/OSMF

can simplify some areas of system management and also reduce the level of expertise that is required for managing

system activities. Experienced users can view, define, and update policies that affect system behavior, monitor system

performance, and manage their z/OS software. As products and vendors adopt z/OSMF services, you can install and

maintain all your mainframe products in a common way according to industry best practices. After configuration is

complete, you can execute the product and easily provision new software instances for use on other systems throughout

your environment.

End-to-end installation diagram

Prerequisites

To install Zowe using z/OSMF, ensure that you meet the following requirements:

z/OSMF 2.5 or higher

1.2GB of free space

READ access to data set names with the HLQ ZWE on the user ID you use to deploy the portable package

Procedure

Refer to the following subpages to guide you through the installation procedure using z/OSMF.

Address z/OSMF Requirements

Provides information about z/OSMF general configuration and security requirements.

Acquire a z/OSMF Portable Software Instance

Provides the steps to acquire the product software by downloading the z/OSMF portable software instance to the

z/OSMF host. You must then register the portable software instance in z/OSMF.

Install Product Software Using z/OSMF Deployments

Provides the steps to install (deploy) the portable software instance to an LPAR using z/OSMF Deployments. This step

creates the SMP/E environment and runs the RECEIVE, APPLY, and ACCEPT steps to prepare the software instance for

SMP/E operations. This step also:

Customizes the data set names that are defined to SMP/E.

Mounts required USS files if necessary.

Performs workflow execution to customize the deployed runtime environment for use on a specific z/OS system.

When these tasks are completed, you are ready to install preventive maintenance.

https://docs.zowe.org/stable/user-guide/install-zowe-pswi-address-requirements
https://docs.zowe.org/stable/user-guide/install-zowe-pswi-acquire
https://docs.zowe.org/stable/user-guide/install-zowe-pswi-deployment

Version: v3.3.x LTS

Acquiring a z/OSMF Portable Software Instance

As a systems programmer, you can acquire an IBM z/OSMF portable package for your product and then add the portable

software instance to z/OSMF. The product SMP/E environments are pre-built, backed up, and made available for download

as a z/OSMF portable software instance. After you acquire the portable software instance, you can use z/OSMF

Deployments to perform the installation and z/OSMF workflows to perform post-install configuration.

When you complete the acquisition process, the product software is ready for installation using z/OSMF Deployments.

NOTE

Before you begin the acquisition process, ensure that you address the z/OSMF requirements.

The z/OSMF product acquisition process consists of 2 tasks.

1. Download the portable software instance from Zowe downloads and transfer the instance to the mainframe.

2. Register the portable software instance in z/OSMF.

Download the Portable Software Instance from Zowe

Downloads

The portable software instance is a portable form of a software instance, including the SMP/E CSI data sets, all

associated SMP/E-managed target and distribution libraries, non-SMP/E-managed data sets, and meta-data that is

required to describe the product software instance.

To acquire the portable software instance, you can download it from the Zowe Downloads page and transfer the instance

to a local z/OSMF host using a file transfer utility, such as FTP.

1. Go to Zowe Downloads and find Zowe - Portable Software Instance.

2. Download the latest version of the package to your workstation.

3. Use a file transfer utility such as an FTP client to transfer the single pax file to the mainframe.

4. Execute the JCL to unpack the installation file and restore the individual pax files.

Sample JCL:

5. Customize the sample JCL as follows and then submit for execution:

i. Update a JOB statement if needed.

ii. Update the USS directory yourUSSpaxdirectory with the path where the pax file is located.

iii. Update yourpaxfilename with the name of the pax file that you want to restore.

EXPECTED RESULTS:

USSBATCH can take several minutes to execute. You will receive a return code of 0 if this job runs correctly.

After successful execution, the individual pax files are restored and ready for use. The next step is to register the

Portable Software Instance in z/OSMF.

https://www.zowe.org/download.html
https://www.ibm.com/docs/en/zos/2.5.0?topic=reference-job-statement

Register Portable Software Instance in z/OSMF

After you have acquired and downloaded the portable software instance to a local z/OSMF host system, it is necessary to

log in to z/OSMF to register the product software and define the portable software instance to z/OSMF as shown in the

following procedure. When you complete these steps, the portable software instance is registered in z/OSMF and ready

for installation (deployment).

1. Log in to the z/OSMF web interface and select your user ID in the top or bottom right-hand corner to switch between

the Desktop Interface and Classic Interface.

2. Complete either of the following steps to display the Software Management page:

i. In the Desktop Interface, select Software Management.

ii. In the Classic Interface, select Software, Software Management.

3. Select Portable Software Instances to define your portable software instance to z/OSMF.

4. Select Add from the Actions menu and select From z/OSMF System. The Add Portable Software Instance page

should display.

5. Select or type the system name (destination LPAR) and UNIX directory (destination USS directory) where the

portable software instance files reside and select Retrieve.

6. Enter a name for the new portable software instance. You can also enter an optional description and assign one or

more categories that display existing packages.

7. Select OK.

The new portable software instance is now defined to z/OSMF, and the portable software instance is registered in z/OSMF

and ready to install (deploy).

Version: v3.3.x LTS

Installing Product Software Using z/OSMF

Deployments

SYSTEM PROGRAMMER

After the portable software instance or software instance is registered in z/OSMF, you can use z/OSMF Deployments to

install the product software and create the product data sets (global, CSI, target libraries, and distribution libraries) for

the new software instance. The deployment jobs create a copy of the source product data sets to create the product

target runtime environment. Creating a copy of the SMP/E target data sets keeps the SMP/E environment clean and

separates the product runtime environment for maintenance activities. You can also perform z/OSMF workflows to

customize the SMP/E data sets, mount UNIX System Services (USS) files if necessary, and configure the new software

instance on the target system.

Prerequisite - Define a new deployment

To install Zowe PSWI using z/OSMF and make the product software available for use on a system by users and other

programs, you first need to define a new deployment. This step defines the SMP/E environment name and the prefix of

the CSI data set in z/OSMF. Specify data set allocation parameters for all SMP/E data sets, target libraries, and

distribution libraries.

To define a new deployment, complete the deployment checklist as specified in Deploying software in the IBM

documentation. Specify the following configuration elements:

UNIX System Services path (USS path)

Data Set Name (DNS)

Volume Serial Numbers (VOLSERs)

Then submit the deployment jobs through the z/OSMF user interface. When the deployment is complete, you have a

source and target copy of the software.

Subsequent product maintenance activities update the SMP/E environment without affecting your active product runtime

environments. You can decide when to redeploy the maintenance-updated SMP/E target data sets to each of the product

runtime environments.

Before installing, ensure the z/OSMF requirements are met.

Installing process

1. Display the Deployments table in z/OSMF (Software ManagementU, Deployments).

2. Define a new deployment by selecting New from the Actions menu. The deployment checklist displays where you

can also modify, view, copy, cancel, or remove existing deployments.

3. Complete the deployment checklist items as described in Defining new deployments in the IBM documentation. As

you complete the deployment checklist, be sure to make the following selections:

i. Specify the properties for this deployment (name, description, and optional category).

https://www.ibm.com/docs/en/zos/2.4.0?topic=task-deploying-software
https://docs.zowe.org/stable/user-guide/install-zowe-pswi-address-requirements#confirm-that-the-installer-has-read-create-update-and-execute-privileges-in-zos

ii. Select the software to deploy. Select Portable Software Instance and select your package.

iii. Select the objective for this deployment to indicate where and how you want to install the selected portable

software instance. Indicate that you want to create a software instance and specify the global zone CSI and the

system where the target software instance will reside.

iv. Check for missing SYSMODs and view missing SYSMOD reports. Deselect the following report options:

Requisite SYSMODs and Fix Categories reports

Regressed SYSMODs and HOLDDATA Delta reports

v. Configure this deployment to define the target software instance.

For DLIBs, specify Yes to copy the distribution zones and libraries that are associated with the source

software. You can customize the names and the storage class or volumes of the new data sets.

For Model, indicate The source software to use as a model. z/OSMF uses the data sets, volumes, mount

points, catalogs, and SMP/E zones that are associated with the model to specify default values for the target

software instance.

For SMP/E Zones, the DLIB and TLIB names do not typically need to be changed.

For Data sets, change the target data set name prefix to the one that you want to use for your deployment.

Specify a volume or storage class to identify where to create the target data sets.

For Catalogs, no action is required assuming that your target data set prefix is defined in a user catalog.

For Volumes and Storage Classes, no action is required. A summary is presented of the target data sets

to be created and how much space is required.

For Mount Points, review the mount points for the UNIX file system data sets that are included in the target

software instance. When specifying a new target mount point, retain the static path extension in the path

name to prevent failures in the configuration workflow

Example: _targetpathname_**/staticpathextension** .

Note: If your product does not include USS directories, ignore this instruction.

vi. Define the job settings to generate the JCL to install the software and view the deployment summary. Update the

JOB statement as needed.

Note: If the target system for the deployment is in a JES Multi-Access Spool (MAS) and the mount point is only

accessible from the target system, add a System Affinity (SYSAFF) to the job card to ensure execution on the

system where the zFS resides.

vii. Submit the deployment jobs in sequential order. Wait for each job to complete, and then select Refresh to

register job completion in z/OSMF.

EXPECTED RESULTS:

You will receive a return code of 0 if this job runs correctly. When all deployment jobs are executed

successfully, you have unzipped, renamed and copied the product data sets, updated the CSI data set, and

specified the properties for the target software instance.

viii. Complete Mount Workflow to mount the Zowe zFS. Complete both steps in the workflow. Perform the following

steps to execute each step individually:

a. Click the title of the step.

b. Select the Perform tab.

c. Review the step contents and update the JCL if needed.

d. Select Next.

e. Repeat the previous two steps to complete all items until the Finish option is available.

ix. (Optional) To configure your Zowe instance, follow the procedure in Configuring Zowe with z/OSMF Workflows. To

configure your Zowe instance specifically for API Mediation Layer, see Configuring API ML with z/OSMF

Workflows.

x. Specify the name and description of the new target software instance.

NOTES

All workflows that are mentioned in the previous steps are part of the PSWI.

You do not have to execute all workflows during PSWI provisioning in z/OSMF immediately.

The deployment process is complete. The new software instance is defined to z/OSMF. You are now ready to Import

Product Information into z/OSMF before you install product maintenance.

Recommendations

Cleanup

If there is a need to update the deployment settings such as the HLQ after a previous run, note that the deployment

process does not perform a full cleanup of the datasets. Before attempting job execution again, make sure the following

datasets are deleted to avoid write conflicts:

For Zowe v2

For Zowe v3

If deployment options must be modified and the JCL recreated, first check the original JCL for the temporary ZFS dataset

name.

Example: <user>.SWDEPL.<random_id>.ZFS

Delete this name manually.

NOTE

Note that the deployment job is unable to clean this data set name once the data set is recreated because the value

for random_id will change.

Resources

It is recommended to update the job card to run with REGION=0M , particularly for job IZUD01DZ which unpaxes the

contents.

https://docs.zowe.org/stable/user-guide/configure-zowe-zosmf-workflow
https://docs.zowe.org/stable/user-guide/configure-apiml-zosmf-workflow
https://docs.zowe.org/stable/user-guide/configure-apiml-zosmf-workflow

Version: v3.3.x LTS

Installing Zowe SMP/E build with z/OSMF

workflow

z/OSMF workflow simplifies the procedure to create an SMP/E environment for Zowe. Register and execute the Zowe

SMP/E workflow to create SMP/E environment in the z/OSMF web interface. Perform the following steps to register and

execute the Zowe workflow in the z/OSMF web interface:

1. Log in to the z/OSMF web interface.

2. Select Workflows from the navigation tree.

3. Select Create Workflow from the Actions menu.

4. Enter the complete path to the workflow definition file in the Workflow Definition filed.

The workflow is located in the ZWEWRF01 member of the hlq.ZOWE.AZWE002.F4 data set.

5. (Optional) Enter the path to the customized variable input file that you prepared in advance.

The variable input file is located in ZWEYML01 member of the hlq.ZOWE.AZWE002 data set.

Create a copy of the variable input file. Modify the file as necessary according to the built-in comments. Set the field

to the path where the new file is located. When you execute the workflow, the values from the variable input file

override the workflow variables default values.

6. Select the system where you want to execute the workflow.

7. Select Next.

8. Specify the unique workflow name.

9. Select or enter an Owner Use ID and select Assign all steps to owner user ID.

10. Select Finish.

The workflow is registered in z/OSMF and ready to execute.

11. Select the workflow that you registered from the workflow list.

12. Execute the steps in order.

13. Perform the following steps to execute each step individually:

i. Double-click the title of the step.

ii. Select the Perform tab.

iii. Review the step contents and update the input values as required.

iv. Select Next.

v. Repeat the previous two steps to complete all items until the option Finish is available.

vi. Select Finish.

After you execute each step, the step is marked as Complete. The workflow is executed.

After you complete executing all the steps individually, the Zowe SMP/E is created.

Activating Zowe

File system execution

If you mount the file system in which you have installed Zowe in read-only mode during execution, then you do not have

to take further actions to activate Zowe.

Zowe customization

You can find the necessary information about customizing and using Zowe on the Zowe doc site.

For more information about how to customize Zowe, see Configuring Zowe after installation.

For more information about how to use Zowe, see Using Zowe.

https://docs.zowe.org/stable/user-guide/mvd-configuration
https://docs.zowe.org/stable/user-guide/zowe-getting-started-tutorial

Version: v3.3.x LTS

Installing the z/OS Build via Convenience Build

(PAX file)

You can install the Zowe™ convenience build by obtaining a PAX file which is used to create the Zowe runtime

environment.

Introduction

The Zowe installation file for Zowe z/OS components is distributed as a PAX file that contains the runtimes and the

scripts to install and launch the z/OS runtime. You must first obtain the PAX file and transfer this file to z/OS. To install,

configure, and start Zowe, use the zwe command. This command defines help messages, logging options, and more. For

details about how to use this command, see the ZWE Server Command Reference.

The configuration data that is read by the zwe command are stored in a YAML configuration file named zowe.yaml .

Modify the zowe.yaml file based on your environment.

Complete the following steps to install the Zowe runtime.

End-to-end installation diagram

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/

Step 1: Obtain the convenience build

1. To download the PAX file, open your web browser on the Zowe Download website.

2. Navigate to Zowe V3 -> Zowe 3.v.p z/OS Convenience build section, and select download the v3 convenience

build.

Step 2: Transfer the convenience build to USS and expand it

After you download the PAX file, transfer the file to z/OS and expand the file contents.

1. Open a terminal in Mac OS or Linux, or command prompt in Windows OS, and navigate to the directory where you

downloaded the Zowe PAX file.

2. Connect to z/OS using SFTP. Issue the following command:

If SFTP is not available or if you prefer to use FTP, you can issue the following command instead:

3. Navigate to the target directory that you want to transfer the Zowe PAX file into on z/OS.

Note: After you connect to z/OS and enter your password, enter the UNIX file system. The following commands are

useful:

To see what directory you are in, type pwd .

To switch directory, type cd .

To list the contents of a directory, type ls .

To create a directory, type mkdir .

4. When you are in the directory you want to transfer the Zowe PAX file into, issue the following command:

zowe-V.v.p

Specifies the name of the PAX file you downloaded.

Note: When your terminal is connected to z/OS through FTP or SFTP, you can prepend commands with l to have

them issued against your desktop. To list the contents of a directory on your desktop, type lls where ls lists

contents of a directory on z/OS.

TIP

You can simplify sftp usage for the existing directory with the following command:

After the PAX file successfully transfers, exit your sftp or ftp session.

5. Use cd to move into the high level directory where you want the code to be installed.

Note: The directory may be /usr/lpp/zowe

6. Open a USS shell to expand the PAX file. THe command environment can be any of the following options:

ssh terminal

OMVS

https://www.zowe.org/download.html

iShell

Any other z/OS USS command environment.

7. Expand the PAX file by issuing the following command in the USS shell.

zowe-V.v.p

Specifies the name of the PAX file you downloaded. When extracting the Zowe convenience build, ensure that

you include the -ppx argument that preserves the extended attributes.

This command expands to a file structure similar to the following example:

This directory is the Zowe runtime directory, and is referred to as <RUNTIME_DIR> throughout this documentation.

Note: In Zowe v2, and Zowe v3 the contents of the expanded Zowe PAX file are the Zowe runtime directory.

Step 3: (Optional) Add the zwe command to your PATH

The zwe command is provided in the <RUNTIME_DIR>/bin directory. You can optionally add this Zowe bin directory to

your PATH environment variable so you can execute the zwe command without having to fully qualify its location. To

update your PATH , run the following command:

Replace <RUNTIME_DIR> with your Zowe runtime directory path. This replacement updates the PATH for the current shell.

To make this update persistent, add the line to your ~/.profile file, or the ~/.bashProfile file if you are using a bash

shell. To make this update system wide, update the /etc/.profile file. Once the PATH is updated, you can execute the

zwe command from any USS directory.

Note: For the remainder of the documentation, references to the zwe command assumes this update to your PATH .

TIP

The zwe command has built-in help that can be retrieved with the -h option. For example, type zwe -h to display

all of the supported commands. These are broken down into a number of sub-commands:

Step 4: Copy the zowe.yaml configuration file to preferred

location

Copy the template file <RUNTIME_DIR>/example-zowe.yaml file to a new location, such as /var/lpp/zowe/zowe.yaml or

your home directory ~/.zowe.yaml . This file is your configuration file that contains data used by the zwe command

throughout the lifecycle of configuring and starting Zowe. Modify the zowe.yaml file based on your environment.

When you execute the zwe command, the -c argument is used to pass the location of the zowe.yaml file.

TIP

To avoid passing --config or -c to every zwe commands, you can define the ZWE_CLI_PARAMETER_CONFIG

environment variable pointing to the location of zowe.yaml .

Example of defining the path:

Once the path is defined, it is possible to enter zwe install as a substitute for the full command zwe install -c

/path/to/my/zowe.yaml .

Step 5: Install the MVS data sets

After you extract the Zowe convenience build, run the zwe install command to install MVS data sets.

About the MVS data sets

Review the list of datasets and members in a Zowe installation in the Server Datasets Appendix.

Procedure

The high level qualifer (or HLQ) for these data sets is specified in the zowe.yaml section below. Ensure that you update

the zowe.setup.dataset.prefix value to match your system.

To create and install the MVS data sets, use the command zwe install .

1. In a USS shell, execute the command zwe install -c /path/to/zowe.yaml . This creates the data sets and copies

the data set content.

2. If the data sets already exist, specify --allow-overwritten .

3. To see the full list of parameters, execute the command zwe install -h .

The following example illustrates a sample run of the command using default values.

Example:

Next steps

You successfully installed Zowe from the convenience build. However, before you start Zowe, it is necessary to complete

several required configurations. The next step is Initializing Zowe z/OS runtime.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-install
https://docs.zowe.org/stable/appendix/server-datasets
https://docs.zowe.org/stable/user-guide/configure-zowe-runtime

Version: v3.3.x LTS

Installing Zowe via a containerization build (PAX

file)

You can download Zowe (server) containers as an alternative to running Zowe servers on z/OS through the Zowe

convenience and SMP/E builds. Choose the appropriate installation type for your use case.

REQUIRED ROLES: SYSTEM PROGRAMMER

Using containers for installation has the following advantages:

You can run Zowe servers on other platforms including Linux on Z and your PC.

You can run Zowe servers locally on your system for rapid development.

You can run redundant copies of servers for scaling capacity to meet workload requirements.

You can leverage container monitoring tools.

For more information about containers, see the Kubernetes website to learn about key concepts.

TIP

You can now perform Zowe installation via the Zowe Server Install Wizard. Using the wizard streamlines the

installation process and is an alternative to performing manual Zowe server-side component installation. For more

information about the wizard, see Installing Zowe via Zowe Server Install Wizard.

End-to-end container installation

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://docs.zowe.org/stable/user-guide/install-zowe-server-install-wizard

Zowe containers are designed to run together with extensions and Zowe utilities, and therefore are built for

orchestration software that can manage the relationship and lifecycle of the containers. The following topics guide you to

set up and use Zowe's containers with the Kubernetes orchestration software.

Stage 1: Plan and prepare for the installation

Stage 1 ensures that your software and hardware are prepared for installation. For more information, see Preparing for

Zowe server containers installation.

Stage 2: Download Zowe containers

In Stage 2, you download the Zowe containers. Choose from the following download methods:

Download Configuration samples.(This is the recommended method)

Download container images.

Stage 3 & 4: Install and configure Zowe containers

In Stage 3, you do not need to install the Zowe containers if you use Zowe's Kubernetes configuration samples. If you

download container images, installation is achieved when the images are findable by Kubernetes. For more information,

see the Installing section of Downloading and installing containers.

In Stage 4, you can configure the Zowe container environment.

Follow these steps:

1. Create namespace and service account

2. Create Persistent Volume Claim (PVC)

3. Create and modify ConfigMaps and Secrets (Manually creating ConfigMaps and Secrets)

4. Expose API Mediation Layer components

Stage 5: Start Zowe containers

In Stage 5, you can start Zowe containers.

Follow these steps:

1. Apply the deployment files to start Zowe containers.

2. After you start Zowe containers, verify that Zowe containers are started.

(Optional) Stage 6: Monitor Zowe containers

In Stage 6, monitor your containers to verify that the containers are functioning properly.

Known limitations

You may encounter an issue that some plugins do not appear in Zowe Desktop. We recommnend you try the

Refresh Applications icon that appears in the Desktop start menu.

You may encounter an issue that some services do not appear in Zowe API Catalog. We recommend you try the

Refresh Static APIs option that appears in the upper-right corner of API Catalog web page.

useConfigmgr is disabled within containers. As such yaml schema validation is not currently supported.

https://docs.zowe.org/stable/user-guide/k8s-prereqs
https://docs.zowe.org/stable/user-guide/k8s-prereqs
https://docs.zowe.org/stable/user-guide/k8s-downloading#downloading-configuration-samples
https://docs.zowe.org/stable/user-guide/k8s-downloading#downloading-container-images
https://docs.zowe.org/stable/user-guide/k8s-downloading#installing
https://docs.zowe.org/stable/user-guide/k8s-config
https://docs.zowe.org/stable/user-guide/k8s-config#1-create-namespace-and-service-account
https://docs.zowe.org/stable/user-guide/k8s-config#2-create-persistent-volume-claim-pvc
https://docs.zowe.org/stable/user-guide/k8s-config#3-create-and-modify-configmaps-and-secrets
https://docs.zowe.org/stable/user-guide/k8s-config#4-expose-api-mediation-layer-components
https://docs.zowe.org/stable/user-guide/k8s-using#starting-zowe-containers
https://docs.zowe.org/stable/user-guide/k8s-using#starting-zowe-containers
https://docs.zowe.org/stable/user-guide/k8s-using#verifying-zowe-containers
https://docs.zowe.org/stable/user-guide/k8s-using#monitoring-zowe-containers

Version: v3.3.x LTS

Preparing for Zowe server containers

installation

Before you install the Zowe server container, make sure that you have the required software and environments.

Zowe installed on z/OS for users of ZSS and ZIS (default when you use the Zowe Application Framework app-server ,

the Zowe Desktop, or products that are based on them)

z/OSMF installed on z/OS for users of it (default when you use gateway , API Mediation Layer, Web Explorers, or

products that are based on them)

A container runtime, such as:

Docker

CRI-O

containerd

Kubernetes Cluster software

kubectl, for initial setup and management of the cluster

Note: This documentation uses container terminology that may be explained within the Kubernetes Glossary.

Kubernetes cluster

The Zowe containerization solution is compatible with Kubernetes v1.19+ or OpenShift v4.6+.

You can prepare a Kubernetes cluster based on your requirements in many different ways.

For development purposes, you can set up a Kubernetes cluster on your local computer in one of the following ways:

Enable Kubernetes shipped with Docker Desktop

Set up minikube

Attention! You must make sure that the Kubernetes cluster you have created has a minimum RAM of 3GB in order

for Zowe to start.

For production purposes, you can set up a Kubernetes cluster in one of the following ways:

Bootstrap your own cluster by following instructions in Installing Kubernetes with deployment tools in the

Kubernetes documentation.

Provision a Kubernetes cluster from popular Cloud vendors:

Amazon Elastic Kubernetes Service

Microsoft Azure Kubernetes Service

IBM Cloud Kubernetes Service

Google Cloud Kubernetes Engine

https://docs.zowe.org/stable/user-guide/install-zos
https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://kubernetes.io/docs/reference/glossary/?fundamental=true
https://docs.docker.com/desktop/kubernetes/
https://minikube.sigs.k8s.io/docs/start/
https://kubernetes.io/docs/setup/production-environment/tools/
https://aws.amazon.com/eks/
https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes
https://www.ibm.com/ca-en/cloud/kubernetes-service
https://cloud.google.com/kubernetes-engine

kubectl tool

You need kubectl CLI tool installed on your local computer where you want to manage the Kubernetes cluster. For

instructions on how to install the kubectl tool, see Install Tools in the Kubernetes documentation.

https://kubernetes.io/docs/tasks/tools/

Version: v3.3.x LTS

Downloading and installing Zowe containers

Learn how to download and install Zowe's containers.

Downloading

You can download Zowe's containers in one of the following ways:

Downloading configuration samples

Downloading container images

Downloading configuration samples

The easiest way to install and run Zowe's containers is by using the configuration samples that are provided on Zowe's

website. If you don't already have these samples, you can download them by completing the following tasks:

1. Download Zowe containerization build from zowe.org.

2. Extract the compressed file to the system where you will run the Zowe containers.

3. Find the samples within the extracted folder kubernetes .

Downloading container images

Downloading Zowe's container images manually is not required because this can be done automatically when applying a

Kubernetes deployment configuration.

If wanted, you can download Zowe's container images manually by using the docker pull commands. This allows you

to get an image from a registry or attach an image that you have downloaded directly. You can find Zowe's container

images in https://zowe.jfrog.io/ui/repos/tree/General/docker-release%2Fompzowe:

Registry: zowe-docker-release.jfrog.io

Organization: ompzowe

Full image addresses include,

zowe-docker-release.jfrog.io/ompzowe/gateway-service:latest-ubuntu

zowe-docker-release.jfrog.io/ompzowe/app-server:latest-ubuntu

zowe-docker-release.jfrog.io/ompzowe/explorer-jes:latest-ubuntu

Therefore, you can download these manually with the docker pull commands. For example,

docker pull zowe-docker-release.jfrog.io/ompzowe/app-server:latest-ubuntu

Installing

You do not need to install the Zowe containers if you use Zowe's Kubernetes configuration samples. By default, these

sample configurations will pull Zowe component images from the public Zowe docker release registry zowe-docker-

https://www.zowe.org/download.html
https://zowe.jfrog.io/ui/repos/tree/General/docker-release%2Fompzowe

release.jfrog.io directly and then start them. Your Kubernetes nodes require an Internet connection that can reach

this registry.

An image could be considered "installed" when it is findable by Kubernetes. Just like downloading, this is done

automatically by Kubernetes but commands such as docker pull or docker load accomplishes the same task.

Upgrading

Upgrade is an automatic process when you apply Kubernetes deployment configuration. The configuration files tell

Kubernetes to automatically download the latest version of Zowe. Here, latest is the keyword for constantly updated

version. For example zowe-docker-release.jfrog.io/ompzowe/gateway-service:latest-ubuntu .

Note: Automatic upgrades can fail if you have changed the workload configuration files to use a specific Zowe version.

In that case, you must enter the latest version manually in the configuration file such as zowe-docker-

release.jfrog.io/ompzowe/gateway-service:2.0.0-ubuntu .

If your Kubernetes nodes do not have an Internet connection, you can follow the instruction of the previous step to

manually pull all images into all your Kubernetes nodes. After you have done this, you need to modify all occurrences of

imagePullPolicy: Always in the sample configurations and replace them with imagePullPolicy: Never before

applying them.

Version: v3.3.x LTS

Configuring Zowe containers

Zowe provides sample configurations that make it easy for you to run Zowe in Kubernetes. You can use them directly or

as a reference.

You can customize the configuration or make your own. If you do so, note the following objects that are expected by the

container deployments:

Kind Name Note

Namespace zowe

ServiceAccount zowe-sa

ConfigMap zowe-certificates-cm
Contains zowe-certificates.env with the same format as seen

on z/OS keystore

Secret
zowe-certificates-

secret
Contains the base64 PEM and P12 data for keystore and truststore

Ingress discovery-ingress Used for external access to the Discovery service

Ingress gateway-ingress Used for external access to the Gateway service

Route discovery Used for external access to the Discovery service

Route gateway Used for external access to the Gateway service

Service discovery-service Used for internal or external access to the Discovery service

Service gateway-service Used for external access to the Gateway service

Service catalog-service Used for access to the Catalog service

PersistentVolumeClaim zowe-workspace-pvc

HorizontalPodAutoscaler * Autoscalers exist for the various pods

PodDisruptionBudget * Disruption budgets exist for the various pods

To configure the Zowe container environment, complete the following procedure.

1. Create namespace and service account

Run the following commands to create Zowe's Namespace zowe with Service Account zowe-sa .

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://docs.openshift.com/enterprise/3.0/architecture/core_concepts/routes.html
https://docs.openshift.com/enterprise/3.0/architecture/core_concepts/routes.html
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/configure-pdb/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/

Note that by default, zowe-sa service account has automountServiceAccountToken disabled for security purposes.

Verification

To verify, check the following configurations.

kubectl get namespaces should show a Namespace zowe .

This displays the default Namespace zowe, if not set.

kubectl get serviceaccounts --namespace zowe should show a ServiceAccount zowe-sa .

This displays the default ServiceAccount zowe-sa, if not set.

2. Create Persistent Volume Claim (PVC)

Zowe's PVC has a default StorageClass value that may not apply to all Kubernetes clusters. Check and customize the

storageClassName value of samples/workspace-pvc.yaml as needed. You can use kubectl get sc to confirm which

StorageClass you can use.

After you customize the storageClassName value, apply the result by issuing the following commands:

Verification

To verify, run the following commands and check if the STATUS of line item zowe-workspace-pvc shows as Bound .

IMPORTANT:

zowe-workspace-pvc PersistentVolumeClaim must be declared in access mode ReadWriteMany to allow the

workspace be shared by all Zowe components.

In some Kubernetes environment, you may need to define PeristentVolume and define volumeName in

PersistentVolumeClaim instead of defining storageClassName . Please consult your Kubernetes administrator to confirm

the appropriate way for your environment. This is an example to configure PersistentVolumeClaim with pre-configured

zowe-workspace-pv PeristentVolume .

3. Create and modify ConfigMaps and Secrets

Similarly, to run Zowe services on z/OS, you can use the Zowe zowe.yaml configuration file to customize Zowe in

Kubernetes.

You can modify samples/config-cm.yaml and samples/certificates-secret.yaml directly. Or more conveniently, if you

have Zowe ZSS/ZIS running on z/OS, the Kubernetes environment can reuse instance and keystore configuration from

that installation. Ensure that the verify certificate setting of your existing keystore configuration is set to STRICT mode.

Otherwise, update your zowe.yaml configuration file to change the setting to STRICT mode and generate a new set of

certificates.

If you want to manually create, or later customize the ConfigMaps and Secrets, see Customizing or manually creating

ConfigMaps and Secrets for details.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

To create and modify ConfigMaps and Secrets by using the migrate configuration script, complete the following steps:

a. To make Zowe v2 certificates work in Kubernetes, in your zowe.yaml (in runtime directory), you need to:

set zowe.verifyCertificate to STRICT mode.

set zowe.setup.certificate.pkcs12.caAlias . Default alias is local_ca .

set zowe.setup.certificate.pkcs12.caPassword . Default CA password is local_ca_password .

make sure the certificate that you are using have defined the following domains in certificate Subject Alt Name

(SAN):

your external domains to access Zowe APIML Gateway Service running in Kubernetes cluster

*.<k8s-namespace>.svc.<k8s-cluster-name>

*.discovery-service.<k8s-namespace>.svc.<k8s-cluster-name>

*.gateway-service.<k8s-namespace>.svc.<k8s-cluster-name>

*.<k8s-namespace>.pod.<k8s-cluster-name>

where,

<k8s-namespace> is the Kubernetes Namespace you installed Zowe into

<k8s-cluster-name> is the Kubernetes cluster name, which usually should be cluster.local . Note that the

following command will automatically add the k8s internal domain into SAN.

Next, on z/OS, run the following command:

For more detailed explaination of zwe migrate command parameters, see zwe migrate for kubernetes.

As a result, it displays ConfigMaps zowe-config and Secrets (zowe-certificates-secret) Kubernetes objects which are

based on the Zowe instance and keystore used. The content looks similar to samples/config-cm.yaml and

samples/certificates-secret.yaml but with real values.

b. Follow the instructions in the script output to copy the output and save it as a YAML file configs.yaml on your

computer where you manage Kubernetes.

c. Apply the file into Kubernetes:

d. Remove the previously saved configs.yaml file from all systems for security.

Verification

To verify, run the following commands and check the results.

kubectl get configmaps --namespace zowe

This command must display the two ConfigMaps zowe-config and zowe-certificates-cm .

kubectl get secrets --namespace zowe

This command must display a Secret zowe-certificates-secret .

https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate-for-kubernetes

4. Expose API Mediation Layer components

This step makes Zowe's Gateway, Discovery, and API Catalog servers available over a network.

The Gateway is always required to be externally accessible, and depending upon your environment the Discovery

service may also need to be externally accessible.

The actions you need to take in this step vary depending upon your Kubernetes cluster configuration. If you are

uncertain about this section, please contact your Kubernetes administrator or the Zowe community.

4a. Create service

You can set up either a LoadBalancer or NodePort type Service.

Note: Because NodePort cannot be used together with NetworkPolicies , LoadBalancer and Ingress is preferred

configuration option.

Review the following table for steps you may take depending on the Kubernetes provider you use. If you don't need

additional setups, you can skip steps 4b, 4c and jump directly to the Apply zowe section.

Kubernetes

provider
Service Additional setups required

minikube
LoadBalancer or

NodePort

Port Forward (on next section Starting, stopping, and

monitoring)

docker-desktop LoadBalancer none

bare-metal
LoadBalancer or

NodePort
Create Ingress

cloud-vendors LoadBalancer none

OpenShift
LoadBalancer or

NodePort
Create Route

Defining api-catalog service

api-catalog-service is required by Zowe, but not necessarily exposed to external users. Therefore, api-catalog-

service is defined as type ClusterIP .

To define this service, run the command:

To verify, You should see the following output:

Then, you can proceed with creating the Gateway and Discovery services according to your environment.

Applying Gateway Service

If using LoadBalancer , run the command:

https://kubernetes.io/docs/concepts/services-networking/service/
https://docs.zowe.org/stable/user-guide/k8s-using

Or if using NodePort instead, first check spec.ports[0].nodePort as this will be the port to be exposed to external. In

this case, the default gateway port is not 7554 but 32554. You will need to use https://<your-k8s-node>:32554/ to

access APIML Gateway. To apply NodePort type gateway-service , run the following command:

To verify either case, run the following command and check that the command displays the service gateway-service .

Applying Discovery service

Exposing the Discovery service is only required when there is a Zowe service or extension which needs to be registered

to the API Mediation Layer but is running outside of Kubernetes, such as on z/OS. Otherwise, the discovery service can

remain accessible only within the Kubernetes environment.

Optional: To set up the discovery service without exposing it externally, edit samples/discovery-service-lb.yaml if

using LoadBalancer type services, or samples/discovery-service-np.yaml if using NodePort type services. In either

file, specify ClusterIP as the type, replacing the NodePort or LoadBalancer value.

To enable the service externally when using LoadBalancer services, run the command:

Or if using NodePort instead, first check spec.ports[0].nodePort as this will be the port to be exposed to external. In

this case, the default discovery port is not 7553 but 32553. And you will need to use https://<your-k8s-node>:32553/

to access APIML Discovery. To apply NodePort type discovery-service , run the following command:

To verify either case, run the following command and check that this command displays the service discovery-

service :

kubectl get services --namespace zowe

Upon completion of all the preceding steps in this 4a. Create service section, you may need to run additional setups.

Refer to "Additional setups required" in the table. If you don't need additional setups, you can skip 4b, 4c, 4d, and jump

directly to Apply Zowe section.

4b. Create Ingress (Bare-metal)

An Ingress gives Services externally-reachable URLs and may provide other abilities such as traffic load balancing.

To create Ingress, perform the following steps:

a. Edit samples/gateway-ingress.yaml and samples/discovery-ingress.yaml before applying them, by uncommenting

the lines (19 and 20) for defining spec.rules[0].host and http: , and then commenting out the line below, - http:

b. Run the following commands:

To verify, run the following commands:

kubectl get ingresses --namespace zowe

This command must display two Ingresses gateway-ingress and discovery-ingress .

Upon completion, you can finish the setup by applying zowe and starting it.

4c. Create Route (OpenShift)

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://docs.zowe.org/stable/user-guide/k8s-using

If you are using OpenShift and choose to use LoadBalancer services, you may already have an external IP for the

service. You can use that external IP to access Zowe APIML Gateway. To verify your service external IP, run:

If you see an IP in the EXTERNAL-IP column, that means your OpenShift is properly configured and can provision external

IP for you. If you see <pending> and it does not change after waiting for a while, that means you may not be able to use

LoadBalancer services with your current configuration. Try ClusterIP services and define Route . A Route is a way to

expose a service by giving it an externally reachable hostname.

To create a route, perform the following steps:

a. Check and set the value of spec.port.targetPort in samples/gateway-route.yaml and samples/discovery-

route.yaml before applying the changes.

b. Run the following commands:

To verify, run the following commands:

oc get routes --namespace zowe

This command must display the two Services gateway and discovery .

Upon completion, you can finish the setup by applying zowe and starting it.

Customizing or manually creating ConfigMaps and Secrets

The z/OS to k8s convert tool can automatically create a config map and secret. However, if you want to customize or

create your own, review the instructions in this section.

To make certificates work in Kubernetes, make sure the certificate you are using have defined the following domains in

certificate Subject Alt Name (SAN):

your external domains to access Zowe APIML Gateway Service running in Kubernetes cluster

*.<k8s-namespace>.svc.<k8s-cluster-name>

*.discovery-service.<k8s-namespace>.svc.<k8s-cluster-name>

*.gateway-service.<k8s-namespace>.svc.<k8s-cluster-name>

*.<k8s-namespace>.pod.<k8s-cluster-name>

<k8s-namespace> is the Kubernetes Namespace you installed Zowe into. And <k8s-cluster-name> is the Kubernetes

cluster name, which usually should be cluster.local .

Without the additional domains in SAN, you may see warnings/errors related to certificate validation.

CAUTION

It's not recommended to disable zowe.verifyCertificates .

Notes: When the following conditions are true, this migration script will regenerate a new set of certificates for you with

proper domain names listed above.

You use zwe init command to initialize Zowe

https://docs.openshift.com/enterprise/3.0/architecture/core_concepts/routes.html
https://docs.zowe.org/stable/user-guide/k8s-using

You use PKCS#12 format keystore by defining zowe.setup.certificate.type: PKCS12

You did not define zowe.setup.certificate.pkcs12.import.keystore and let zwe command to generate PKCS12

keystore for you

You enabled STRICT mode zowe.verifyCertificates

To manually create the ConfigMaps and Secrets used by Zowe containers, you must create the following objects:

1. A ConfigMap, with values based upon a Zowe configuration zowe.yaml and similar to the example samples/config-

cm.yaml with the following differences to the values seen on a z/OS installation:

zowe.setup and haInstances are not needed for Zowe running in Kubernetes and will be ignored. You can

remove them.

java.home and node.home are not usually needed if you are using Zowe base images.

zowe.runtimeDirectory must be set to /home/zowe/runtime .

zowe.externalDomains is suggested to define as a list of domains you are using to access your Kubernetes

cluster.

zowe.externalPort must be the port you expose to end-user. This value is optional if it's same as default APIML

Gateway service port 7554 . With default settings,

if you choose LoadBalancer gateway-service , this value is optional, or set to 7554 ,

if you choose NodePort gateway-service and access the service directly, this value should be same as

spec.ports[0].nodePort with default value 32554 ,

if you choose NodePort gateway-service and access the service through port forwarding, the value should

be the forwarded port you set.

components.discovery.replicas should be set to same value of spec.replicas defined in

workloads/discovery-statefulset.yaml .

All components running in Kubernetes should use default ports:

components.api-catalog.port is 7552 ,

components.discovery.port is 7553 ,

components.gateway.port is 7554 ,

components.caching-service.port is 7555 ,

components.app-server.port is 7556 .

components.caching-service.storage.mode should NOT be set to VSAM . redis is suggested. Follow Redis

configuration documentation to customize other Redis related variables. Leave the value to empty for debugging

purposes.

Must append and customize these 2 values into zowe.environments section:

ZWED_agent_host=<ZOWE_ZOS_HOST>

ZWED_agent_https_port=<ZOWE_ZSS_SERVER_PORT>

2. A Secret, with values based upon a Zowe keystore's files, and similar to the example samples/certificates-

secret.yaml .

You need 2 entries under the data section:

keystore.p12 : which is base64 encoded PKCS#12 keystore,

truststore.p12 : which is base64 encoded PKCS#12 truststore.

And 3 entries under stringData section:

https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-redis/#redis-configuration
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-redis/#redis-configuration

keystore.key : is the PEM format of certificate private key,

keystore.cer : is the PEM format of the certificate,

ca.cer : is the PEM format of the certificate authority.

PodDisruptionBudget

Zowe provides optional PodDisruptionBudget which can provide high availability during upgrade. By default, Zowe

defines minAvailable to be 1 for all deployments. This configuration is optional but recommended. To apply

PodDisruptionBudget , run this command:

To verify this step, run:

This should show you a list of PodDisruptionBudget like this:

HorizontalPodAutoscaler

Zowe provides optional HorizontalPodAutoscaler which can automatically scale Zowe components based on resource

usage. By default, each workload has a minimum of 1 replica and a maximum of 3 to 5 replicas based on CPU usage.

This configuration is optional but recommended. HorizontalPodAutoscaler relies on Kubernetes Metrics server

monitoring to provide metrics through the Metrics API. To learn how to deploy the metrics-server, see the metrics-server

documentation. Please adjust the HorizontalPodAutoscaler definitions based on your cluster resources, then run this

command to apply them to your cluster:

To verify this step, run:

This should show you a list of HorizontalPodAutoscaler like this:

Kubernetes v1.21+

If you have Kubernetes v1.21+, several optional changes are recommended based on Deprecated API Migration Guide.

Kind CronJob : change apiVersion: batch/v1beta1 to apiVersion: batch/v1 on workloads/zowe-yaml/cleanup-

static-definitions-cronjob.yaml and workloads/instance-env/cleanup-static-definitions-cronjob.yaml .

apiVersion: batch/v1beta1 will stop working on Kubernetes v1.25.

Kind PodDisruptionBudget : change apiVersion: policy/v1beta1 to apiVersion: policy/v1 on all files in

samples/pod-disruption-budget/ . apiVersion: policy/v1beta1 will stop working on Kubernetes v1.25.

https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes/metrics
https://github.com/kubernetes-sigs/metrics-server#deployment
https://github.com/kubernetes-sigs/metrics-server#deployment
https://kubernetes.io/docs/reference/using-api/deprecation-guide/

Version: v3.3.x LTS

Starting, stopping, and monitoring Zowe

containers

After Zowe's containers are installed and configured, you can refer to the following topics that help you manage your

installation.

Starting Zowe containers

The Kubernetes cluster will automatically start as many containers as needed per service according to the Deployment

configuration.

To apply the deployment files, run this command:

Port forwarding (for minikube only)

Kubectl port-forward allows you to access and interact with internal Kubernetes cluster processes from your localhost.

For debugging or development, you might want to port forward to make Zowe gateway or discovery service available

externally quickly.

Before issuing port forward commands, make sure that gateway and discovery services pods are running. You can run

kubectl get pods -n zowe and check if the STATUS of both discovery-* and gateway-* is RUNNING . If not, you may

have to wait.

Once both STATUS shows RUNNING , run the following command to port forward:

The & sign at the command will run the command as a background process. Otherwise, the port forward process will

occupy the terminal indefinitely until canceled as a foreground service.

Verifying Zowe containers

The containers will start soon after applying the deployments.

To verify:

1. kubectl get deployments --namespace zowe

This command must show you a list of deployments including explorer-jes , gateway-service , app-server , etc.

Each deployment should show 1/1 in READY column. It could take a moment before all deployments say 1/1 .

2. kubectl get statefulsets --namespace zowe

This command must show you a StatefulSet discovery which READY column should be 1/1 .

3. kubectl get cronjobs --namespace zowe

This command must show you a CronJob cleanup-static-definitions which SUSPEND should be False .

https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/

Monitoring Zowe containers

You can monitor Zowe containers using a UI or CLI.

Monitoring Zowe containers via UI

Kubernetes provides a container that allows you to manage your cluster through a web browser. When using Docker

Desktop, it is already installed in the namespace kubernetes-dashboard . See the Kubernetes website for install

instructions.

Metrics Server is also recommended and is required if you want to define Horizontal Pod Autoscaler. Check if you have

metrics-server Service in kube-system namespace with this command kubectl get services --namespace kube-

system . If you don't have it, you can follow this Installation instruction to install it.

Monitoring Zowe containers via CLI

kubectl allows you to see the status of any kind of object with the get command. This applies to the table in the

Configuring article but also for the pods that run the Zowe containers.

Here are a few commands you can use to monitor your environment:

kubectl get pods -n zowe lists the status of the components of Zowe.

kubectl describe pods -n zowe <podid> can see more details about each pod.

kubectl logs -n zowe <podid> will show you the terminal output of a particular pod, with -f allowing you to keep

the logs open as new messages are added.

kubectl get nodes -n zowe -owide will tell you more about the environment you're running.

Stopping, pausing or removing Zowe containers

To temporarily stop a component, locate the Deployment component and scale down to 0 . For example, if you want to

stop the api-catalog container, run this command:

You can later re-enable a component by scaling the component back to 1 or more.

If you want to permanently remove a component, you can delete the component Deployment . To use api-catalog as an

example, run this command:

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://github.com/kubernetes-sigs/metrics-server
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://github.com/kubernetes-sigs/metrics-server#installation
https://docs.zowe.org/stable/user-guide/k8s-config
https://docs.zowe.org/stable/user-guide/k8s-config

Version: v3.3.x LTS

Configuring Overview

Review this article for an overview of the procedures that must be performed to configure Zowe z/OS components and

the z/OS system. More details about the individual procedures are provided in the articles in this section.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

Configuring Zowe z/OS components consists of the following four main steps:

1. Configure Zowe runtime

2. Configure the z/OS system for Zowe

3. Assign security permissions

4. Configure the Zowe cross memory server (ZIS)

NOTE

Successful completion of steps 2, 3, and 4 may require elevated security permissions. We recommend you consult

with your security administrator to assist with performing these steps.

Configuring Zowe runtime

To cofigure Zowe runtime, choose from the following options:

Option 1: Configure Zowe manually using the zwe init command group

To run the zwe init command, it is necessary to create a Zowe configuration file. For more information about this

file, see the Runtime directory which details all of the started tasks in the article Preparing for installation.

Once your configuration file is prepared, see Configuring Zowe with zwe init, for more information about using the

zwe init command group.

Option 2: Configure Zowe via JCL You can configure Zowe by directly customizing JCLs. The Zowe Runtime

Dataset SZWESAMP contains JCL samples that have templates referencing zowe.yaml parameters. These samples

should not be submitted without modification.

For more information, see Configuring Zowe via JCL

Option 3: Configure Zowe with z/OSMF workflows

You can execute the Zowe configuration workflow either from a PSWI during deployment, or later from a created

software instance in z/OSMF. Alternatively, you can execute the configuration workflow z/OSMF during the workflow

registration process.

For more information about configuring all Zowe server-side components, see Configuring Zowe with z/OSMF

Workflows.

To simplify configuration for Zowe API Mediation Layer, see Configuring API ML with z/OSMF Workflows.

https://docs.zowe.org/stable/user-guide/installandconfig#runtime-directory
https://docs.zowe.org/stable/user-guide/initialize-zos-system
https://docs.zowe.org/stable/user-guide/configuring-zowe-via-jcl
https://docs.zowe.org/stable/user-guide/configure-zowe-zosmf-workflow
https://docs.zowe.org/stable/user-guide/configure-zowe-zosmf-workflow
https://docs.zowe.org/stable/user-guide/configure-apiml-zosmf-workflow

Configuring the z/OS system for Zowe

Configuration of the z/OS system is dependent on the specific Zowe features and functionalities you would like to employ

with your Zowe installation.

TIP

Note that configuring the z/OS system requires elevated permissions. We recommend you consult with your security

administrator to perform the reqired steps to configure the z/OS system.

For more information, see Configuring the z/OS system for Zowe.

Assigning security permissions

Specific user IDs with sufficient permissions are required to run or access Zowe. Your organization's security

administrator is responsible to assign user IDs during Zowe z/OS component configuration.

In addition, each TSO user ID that logs on to Zowe services that require z/OSMF must have permissions to access these

z/OSMF services. This user ID should be added to either IZUUSER or IZUADMIN (default).

TIP

Granting users permissions requires elevated permissions. We recommend you consult with your security

administrator to grant these user permissions.

For more information about granting the user permissions, see Assigning security permissions to users.

Configuring the Zowe cross memory server (ZWESISTC)

The Zowe cross memory server (ZIS), provides privileged cross-memory services to the Zowe Desktop and runs as an

APF-authorized program. The same cross memory server can be used by multiple Zowe desktops. The cross memory

server is needed to be able to log on to the Zowe desktop and operate its apps such as the Code Editor.

For more information, see Configuring the Zowe cross memory server (ZIS).

https://docs.zowe.org/stable/user-guide/configure-zos-system
https://docs.zowe.org/stable/user-guide/assign-security-permissions-to-users
https://docs.zowe.org/stable/user-guide/configure-xmem-server

Version: v3.3.x LTS

Initializing Zowe z/OS runtime

Begin configuration of your installation of Zowe z/OS components by initializing Zowe z/OS runtime.

REQUIRED ROLES: SYSTEM PROGRAMMER

Use one of the following options to initialize Zowe z/OS runtime:

Initialize Zowe maunually using zwe init command group

Configure Zowe with z/OSMF workflows

Initialize Zowe manually using zwe init command group

After your installation of Zowe runtime, you can run the zwe init command to perform the following configurations:

Initialize Zowe with copies of data sets provided with Zowe

Create user IDs and security manager settings (Security Admin)

Provide APF authorize load libraries (Security Admin)

Configure Zowe to use TLS certificates (Security Admin)

Configure VSAM files to run the Zowe caching service used for high availability (HA)

Configure the system to launch the Zowe started task

For more information about this z/OS runtime initialization method, see Configuring Zowe with zwe init

Configure Zowe with z/OSMF workflows

Another option to initialize Zowe z/OS runtime is to configure Zowe with z/OSMF workflows. This method also performs

the initization using the zwe init command group. You can use z/OSMF workflows to perform the following

configurations:

Configure the Zowe instance directory

Enable the API ML gateway

Enable the API catalog

Enable automatic discovery

Enable a caching service

Enable an application server

Enable the ZSS component

Enable JES Explorer

Enable MVS Explorer

Enable USS Explorer

You can execute the Zowe configuration workflow either from a PSWI during deployment, or later from a created

software instance in z/OSMF. Alternatively, you can execute the configuration z/OSMF workflow during the workflow

registration process.

https://docs.zowe.org/stable/user-guide/initialize-zos-system

For more information about this z/OS runtime initialization method, see Configuring Zowe with z/OSMF Workflows.

For details about API ML optimized initialization, see Configuring API ML with z/OSMF Workflows.

https://docs.zowe.org/stable/user-guide/configure-zowe-zosmf-workflow
https://docs.zowe.org/stable/user-guide/configure-apiml-zosmf-workflow

Version: v3.3.x LTS

Configuring Zowe with zwe init

Once you complete the installation of the Zowe runtime, begin configuration by initializing Zowe with proper security

configurations. To simplify this configuration process, one option is to run the zwe init command. This step is common

for installing and configuring Zowe from either a convenience build or from an SMP/E build.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

About the zwe init command

The zwe init command is a combination of the following subcommands. Each subcommand defines a configuration.

mvs Copies the data sets provided with Zowe to custom data sets.

security Creates the user IDs and security manager settings.

apfauth APF authorizes the LOADLIB containing the modules that need to perform z/OS privileged security calls.

certificate Configures Zowe to use TLS certificates.

stc Configures the system to launch the Zowe started task.

(Deprecated) vsam Configures the VSAM files needed if the Caching service is set to VSAM mode. This is not

required nor the default, and exists for compatibility.

RECOMMENDATION:

We recommend you to run these sub commands one by one to clearly see the output of each step. To successfully

run zwe init security , zwe init apfauth , and zwe init certificate , it is likely that your organization requires

elevated permissions. We recommend you consult with your security administrator to run these commands. For

more information about tasks for the security administrator, and details about the zwe init security command,

see the section Configuring security in this configuration documentation

TIP

Enter zwe init --help to learn more about the command or see the zwe init command reference for detailed

explanation, examples, and parameters.

zwe init arguments

The following zwe init arguments can assist you with the initization process:

--update-config

This argument allows the init process to update your configuration file based on automatic detection and your

zowe.setup settings. For example, if java.home and node.home are not defined, they can be updated based on the

information that is collected on the system. zowe.certificate section can also be updated automatically based on

your zowe.setup.certificate settings.

https://docs.zowe.org/stable/user-guide/configuring-security
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-vsam

--allow-overwrite

This argument allows you to rerun the zwe init command repeatedly regardless of whether some data sets are

already created.

-v or --verbose

This argument provides execution details of the zwe command. You can use it for troubleshooting purposes if the

error message is not clear enough.

-vv or --trace

This argument provides you more execution details than the --verbose mode for troubleshooting purposes.

Zowe initilization command

The zwe init command runs the subcommands in sequence automatically. If you have the Zowe configuration file

preparted and have security administrator privileges, or security and certificates setup was already completed on the

system, you can run the following command:

NOTE

For more information about the individual zwe init subcommands, see zwe init subcommand overview.

VALIDATE SUCCESSFUL INITIALIZATION

Output from the execution of this command indicates the command ran successfully. However, to determine if each

of the subcommands ran successfully, check the full output log. Failed execution of some subcommands may be the

result of insufficient user permissions. Consult with your security administrator to find out if elevated permissions

are required to successfully execute some of the zwe init subcommands.

For more information about security administrator tasks, see:

Addressing security requirements

Configuring security

Configuring certificates

Next steps

For detailed information about individual zwe init subcommands, see zwe init subcommand overview.

https://docs.zowe.org/stable/user-guide/zwe-init-subcommand-overview
https://docs.zowe.org/stable/user-guide/address-security-requirements
https://docs.zowe.org/stable/user-guide/configuring-security
https://docs.zowe.org/stable/user-guide/configure-certificates
https://docs.zowe.org/stable/user-guide/zwe-init-subcommand-overview

Version: v3.3.x LTS

zwe init subcommand overview

Review this article to learn about the individual subcommands executed in zwe init . Based on your use case, you may

choose to run the subcommands of zwe init individually rather than running all of these commands together. Review

this article to get started with using zwe init subcommands.

IMPORTANT

Some of the following zwe init subcommands require elevated permissions. See the required roles associated with

each of these commands.

Initializing Zowe custom data sets (zwe init mvs)

Procedure to initialize Zowe custom data sets

Initializing Zowe security configurations (zwe init security)

Performing APF authorization of load libraries (zwe init apfauth)

Configuring Zowe to use TLS certificates (zwe init certificate)

Installing Zowe main started tasks (zwe init stc)

Initializing Zowe custom data sets (zwe init mvs)

Use the zwe init mvs command to intialize Zowe custom MVS data sets.

REQUIRED ROLE: SYSTEM PROGRAMMER

During the installation of Zowe, the following three data sets are created and populated with members copied across

from the Zowe installation files:

SZWEAUTH

SZWESAMP

SZWEEXEC

The contents of these data sets represent the original files that were provided as part of the Zowe installation and are

not meant to be modified.

For modification and execution, it is necessary to create custom data sets by using the zwe init mvs command. For

detailed information about this command, see the zwe init mvs command reference.

The following zowe.yaml section contains the parameters for the data set names:

Review the following table for storage requirements for the three data sets:

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-mvs

Library

DDNAME

Member

Type
zowe.yaml

Target

Volume
Type Org RECFM LRECL

No

o

339

Trk

CUST.PARMLIB

PARM

Library

Members

zowe.setup.dataset.parmlib ANY U PDSE FB 80 15

CUST.JCLLIB
JCL

Members
zowe.setup.dataset.jcllib ANY U PDSE FB 80 15

CUST.ZWESAPL

CLIST

copy

utilities

zowe.setup.dataset.authPluginLib ANY U PDSE U 0 15

Procedure to initialize Zowe custom data sets

To initialize Zowe custom data sets, run the following command:

The following output is an example of running zwe init mvs .

Example:

Successful execution of zwe init mvs has the following results:

In the zowe.yaml file, three custom data sets are created that have matching values with the following libraries:

zowe.setup.dataset.parmlib

zowe.setup.dataset.jcllib

zowe.setup.dataset.authPluginLib .

The member ZWESIP00 is contained in CUST.PARMLIB . JCLLIB and ZWESAPL are empty.

The PDS SZWEAUTH is created. If SZWEAUTH already exists, the following error is thrown:

You can ignore this message, or you can use the --allow-overwritten option on the command. For example, zwe

init mvs -c zowe.yaml --allow-overwritten .

Initializing Zowe security configurations (zwe init security)

This subcommand creates the user IDs and security manager settings.

REQUIRED ROLE: SECURITY ADMINISTRATOR

If Zowe has already been launched on a z/OS system from a previous release of Zowe v2 or later, you can skip this

security configuration step unless told otherwise in the release documentation.

The JCL member .SZWESAMP(ZWESECUR) is provided to assist with the security configuration. Before submitting the

ZWESECUR JCL member, customize this member to match site security rules. For script driven scenarios, you can run the

command zwe init security which uses ZWESECUR as a template to create a customized member in .CUST.JCLLIB .

This member contains the commands required to perform the security configuration.

For more information about zwe init security , see:

Configure with zwe init security command in Configuring security.

zwe init security in the Reference section.

TIP

To avoid having to run the init security command, you can specify the flag --security-dry-run . This flag

enables you to construct a JCL member containing the security commmands without running the member. This is

useful for previewing commands and can also be used to copy and paste commands into a TSO command prompt

for step by step manual execution.

Example:

For production environments, inform your security administrator to re-submit the init security command with

proper authorization.

Performing APF authorization of load libraries (zwe init
apfauth)

Zowe contains load modules that require access to make privileged z/OS security manager calls. These load modules are

held in two load libraries which must be APF authorized.

REQUIRED ROLES: SECURITY ADMINISTRATOR

The command zwe init apfauth reads the PDS names for the following load libraries from zowe.yaml and performs the

APF authority commands.

zowe.setup.dataset.authLoadLib

Specifies the user custom load library, containing the ZWELNCH, ZWESIS01 and ZWESAUX load modules. These are

the Zowe launcher, the ZIS cross memory server and the auxiliary server.

zowe.setup.dataset.authPluginLib

References the load library for ZIS plugins.

For more information about zwe init apfauth see:

Performing APF authorization of load libraries.

zwe init apfauth in the Reference section.

TIP

To avoid having to run the init apfauth command, you can specify the flag --security-dry-run as in the

following example.

https://docs.zowe.org/stable/user-guide/configuring-security
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-security
https://docs.zowe.org/stable/user-guide/apf-authorize-load-library
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-apfauth

Example:

For production environments, inform your security administrator to re-submit the init apfauth command with

proper authorization.

Configuring Zowe to use TLS certificates (zwe init certificate)

Zowe uses digital certificates for secure, encrypted network communication over Secure Sockets Layer/Transport Layer

Security (SSL/TLS) and HTTPS protocols.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

Zowe supports using either file-based (PKCS12) or z/OS key ring-based (when on z/OS) keystores and truststores, and

can reuse compatible stores. You can use the zwe init certificate command to create keystores and truststores by

either generating certificates or by allowing users to import their own compatible certificates.

For more information about init certificate , see:

Configuring certificates.

zwe init certificate in the Reference section.

Installing Zowe main started tasks (zwe init stc)

Execute the subcommand zwe init stc to install Zowe main started tasks.

Installation of Zowe main started tasks requires that JCL members for each of Zowe's started tasks be present on the JES

proclib concatenation path.

Once you have completed security configuration, you can install the Zowe main started tasks.

REQUIRED ROLE: SYSTEM PROGRAMMER

The JCL members for each of Zowe's started tasks need to be present on the JES proclib concatenation path. The

command zwe init stc copies these members from the install source location .SZWESAMP to the targted PDS specified

in the zowe.setup.dataset.proclib value USER.PROCLIB . The three proclib member names are specified in zowe.yaml

arguments.

The zwe init stc command uses the CUST.JCL LIB data sets as a staging area to contain intermediatory JCL which are

transformed version of the originals that are shiped in .SZWESAMP with paths, PDS locations, and other runtime data

updated. If you wish to just generate the CUST.JCLLIB members without having them copied to USER.PROCLIB , specify -

-security-dry-run . If the JCL members are already in the target PROCLIB, specify --allow-overwritten .

Example:

(Deprecated) Creating VSAM caching service datasets (zwe init
vsam)

https://docs.zowe.org/stable/user-guide/configure-certificates
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-certificate

This command is no longer required as the Caching service by default uses Infinispan instead. You only need to run this

command if you wish the Caching service to use VSAM for its storage medium.

Zowe can work in a high availability (HA) configuration where multiple instances of the Zowe launcher are started, either

on the same LPAR or different LPARs connected through sysplex distributor. If you are only running a single Zowe

instance on a single LPAR you do not need to create a caching service so you may skip this step.

REQUIRED ROLES: SYSTEM PROGRAMMER

The command zwe init vsam uses the template JCL in SZWESAMP(ZWECSVSM) to copy the source template member from

zowe.setup.mvs.hlq.SZWESAMP(ZWECVCSM) and creates a target JCL member in zowe.setup.mvs.jcllib(ZWECVSCM) with

values extracted from the zowe.yaml file.

For more information about zwe init vsam , see Creating VSAM caching service datasets

Next steps

After each of the zwe init subcommands run successfully, the next step is to complete configuring security.

https://docs.zowe.org/stable/user-guide/configure-caching-service-ha
https://docs.zowe.org/stable/user-guide/configuring-security

Version: v3.3.x LTS

Configuring Zowe via JCL

One option to configure Zowe is by directly customizing JCLs. The Zowe Runtime Dataset SZWESAMP contains JCL samples

that have templates referencing Zowe YAML parameters. These samples should not be submitted without modification.

Samples that are submitted without modification will end unsuccessfully with a JCL ERROR status.

Edit and submit the job SZWESAMP(ZWEGENER) to validate the contents of your zowe.yaml before resolving the JCL

templates and placing the resulting JCL into a separate data set created by the job ZWEGENER . The location is specified in

zowe.setup.dataset.jcllib .

NOTE

zowe.setup.dataset.jcllib is deleted and created each time the job SZWESAMP(ZWEGENER) is submitted.

When the JCL is prepared, the following jobs can be submitted to perform the following instance configuration actions. In

addition to core JCL samples, you can also customize JCL samples for various keyring setup options according to your

security manager.

For sample JCLs corresponding to core tasks, see the table Core Tasks.

For sample JCLs corresponding to keyring tasks, see the section Keyring Tasks later in this article.

For JCL samples if you are using VSAM as your storage solution for the Caching service, see the table corresponding

to (Deprecated) Caching Service VSAM Task.

Core Tasks

Task Description
Sample

JCL

Create Instance

Datasets

Purpose:

Create datasets for Zowe's PARMLIB content and non-ZFS extension content for a

given Zowe Instance

Action:

1) Allocate the PDSE FB80 dataset with at least 15 tracks named from Zowe

parameter zowe.setup.dataset.parmlib

2) Allocate the PDSE FB80 dataset with at least 30 tracks named from Zowe

parameter zowe.setup.dataset.authPluginLib

3) Copy the member ZWESIP00 from zowe.setup.dataset.prefix.SZWESAMP into

zowe.setup.dataset.parmlib

ZWEIMVS

APF Authorize

privileged

content

Purpose:

The majority of Zowe is unprivileged code running in Key 8. Zowe relies on a

single component called ZIS to own all of the privileged code logic. The load

library for the ZIS component and its extension library must be set as APF

authorized and run in Key 4 to use ZIS and components that depend upon it.

ZWEIAPF

https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWEIMVS
https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWEIAPF

Task Description
Sample

JCL

Action:

1) APF authorize the datasets defined at zowe.setup.dataset.authLoadlib and

zowe.setup.dataset.authPluginLib .

2) Define PPT entries for the members ZWESIS01 and ZWESAUX as Key 4, NOSWAP

in the SCHEDxx member of the system PARMLIB.

Grant SAF

premissions

Purpose:

The STC accounts for Zowe need permissions for operating servers, and users

need permissions for interacting with the servers.

Action:

Set SAF permissions for accounts

RACF:

ZWEIRAC

TSS:

ZWEITSS

ACF2:

ZWEIACF

(z/OS v2.4 ONLY)

Create Zowe SAF

Resource Class

On z/OS v2.4, the SAF resource class for Zowe is not included, and must be

created. This step is not needed on z/OS v2.5 and later versions.

RACF:

ZWEIRACZ

TSS:

ZWEITSSZ

ACF2:

ZWEIACFZ

Copy STC JCL to

PROCLIB

Purpose:

The job ZWESLSTC runs Zowe's webservers. The job ZWESISTC runs the APF

authorized cross-memory server. The job ZWESASTC is started by ZWESISTC on

an as-needed basis.

Action:

Copy the members ZWESLSTC, ZWESISTC, and ZWESASTC into your desired

PROCLIB. If the job names are customized, also modify the YAML values of them

in zowe.setup.security.stcs .

ZWEISTC

Keyring Tasks

Certificate requirements

Ensure that your Zowe keyring has the following elements:

Private key & certificate pair

The Zowe Servers will use this certificate. Ensure that the certificate either does not have the Extended Key Usage

attribute, or alternatively, that the certificate does have Extended Key Usage with both Server Authorization and

Client Authorization values. For more information about extended key usage, see Extended key usage heading in

the article Configuring certificates.

Certificate Authorities

Every intermediate and root Certificate Authority (CA) that Zowe interacts with must be within the Keyring, unless

the zowe.yaml value zowe.verifyCertificates is set to DISABLED . CAs that must be within the keyring include

z/OSMF's CAs if using z/OSMF, and Zowe's own certificate's CAs as Zowe servers must be able to verify each other.

https://docs.zowe.org/stable/user-guide/assign-security-permissions-to-users#security-permissions-reference-table
https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWEIRAC
https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWEITSS
https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWEIACF
https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWEIRACZ
https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWEITSSZ
https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWEIACFZ
https://github.com/zowe/zowe-install-packaging/blob/v2.x/staging/files/SZWESAMP/ZWEISTC
https://docs.zowe.org/stable/user-guide/configure-certificates#extended-key-usage

There are four options for setting up keyrings: Three scenarios presented in the following table include JCL samples

where a keyring is created for you. If you already have a keyring, you can configure Zowe to use this keyring by

configuring zowe.yaml values within zowe.certificate according to the following example:

Keyring

Setup

Type

Description Sample JCL

1

Zowe will create a keyring and

populate it with a newly

generated certificate and

certificate authority. The

certificate would be seen as "self-

signed" by clients unless import of

the CA to clients is performed

RACF: ZWEIKRR1

TSS: ZWEIKRT1

ACF2: ZWEIKRA1

2

Zowe will create a keyring and

populate it by connecting pre-

existing certificates and CAs that

you specify.

RACF: [ZWEIKRR2]https://github.com/zowe/zowe-install-

packaging/tree/v3.x/master/files/SZWESAMP/ZWEIKRR2)

TSS: ZWEIKRT2

ACF2: ZWEIKRA2

3

Zowe will create a keyring and

populate it by importing PKCS12

content from a dataset that you

specify.

RACF: ZWEIKRR3

TSS: ZWEIKRT3

ACF2: ZWEIKRA3

(Deprecated) Caching Service VSAM Task

The Caching Service is a server of Zowe that improves the high availability and fault tolerance of Zowe. It is enabled by

default and uses Infinispan for its backing storage by default.

Using VSAM instead of Infinispan is deprecated, but still possible.

If you would like Zowe to create a keyring instead, click here for options

Click here to see how to set up a VSAM dataset for the Caching Service.

https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWEIKRR1
https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWEIKRT1
https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWEIKRA1
https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWEIKRR2
https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWEIKRR2
https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWEIKRT2
https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWEIKRA2
https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWEIKRR3
https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWEIKRT3
https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWEIKRA3

Task Description
Sample

JCL

Create VSAM

Dataset for Caching

Service

Action: Create a RLS or NONRLS dataset for the caching service, and set

the name into the YAML value components.caching-

service.storage.vsam.name

ZWECSVSM

You can also use JCL samples for removing Zowe configuration:

Action Sample JCL

Remove Instance Datasets ZWERMVS

Remove SAF Permissions ZWENOSEC

Remove Keyring

ACF2:

ZWENOKRA

RACF:

ZWENOKRR

TSS:

ZWENOKRT

Remove Caching Service VSAM Dataset ZWECSRVS

https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWECSVSM
https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWERMVS
https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWENOSEC
https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWENOKRA
https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWENOKRR
https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWENOKRT
https://github.com/zowe/zowe-install-packaging/tree/v3.x/master/files/SZWESAMP/ZWECSRVS

Version: v3.3.x LTS

Configuring API ML with z/OSMF Workflows

After you install Zowe, you can register and execute the z/OSMF workflows in the web interface to perform a range of API

ML/Zowe configuration tasks. The Stand-alone Zowe API ML Configuration workflow simplifies configuration of Zowe

API Mediation Layer and does not require the level of expertise that is needed to perform manual API ML/Zowe

configuration. The Stand-alone Zowe API ML Configuration workflow also runs the zwe install and zwe init

command to initialize Zowe z/OS runtime.

REQUIRED ROLE: SYSTEM PROGRAMMER

Prerequisites

Ensure that you meet the following requirements before you start your Zowe configuration:

Install and configure z/OSMF

Install Zowe with an SMP/E build, PSWI, or a convenience build

Overview of Stand-alone Zowe API ML Configuration workflow

The following components are automatically enabled after performing the Stand-alone Zowe API ML Configuration

workflow:

API Gateway

ZAAS

API Catalog

Discovery service

Caching service

The following components are automatically disabled:

Application server

ZSS component

JES Explorer

MVS Explorer

USS Explorer

NOTE

These disabled components can be enabled by performing manual changes in the yaml file. Note that making such

changes to the yaml file is not recommended for simplified and optimized configuration of API ML.

You can execute the Stand-alone Zowe API ML Configuration workflow either from a PSWI during deployment or

later from a created software instance in z/OSMF. Alternatively, you can execute the configuration workflow in z/OSMF

during the workflow registration process.

The configuration workflow described in this article is executed directly from a deployment of the Zowe PSWI.

Executing Stand-alone Zowe API ML Configuration workflow from

PSWI

After Zowe installation, follow this procedure to perform Zowe API ML Configuration workflow from PSWI.

TIP

For more information about installing Zowe server-side components with z/OSMF, see Installing Product Software

Using z/OSMF Deployments.

1. In the Software Management panel, click Actions and Add from z/OSMF System.

2. Specify your system name and file location path (UNIX file).

3. Click Retrieve.

4. Review the Deployment Jobs and click Deployment Checklist.

5. Follow each step outlined in the Deployment Checklist.

6. After you complete all of the preceding steps outlined in the Deployment checklist, click Perform workflows to

leverage configuration of API ML with z/OSMF workflows.

Each workflow appears in the panel.

NOTE

The Perform Workflows step enables you to run either all attached workflows or just the post-deployment

workflow for mounting, which is required.

https://docs.zowe.org/stable/user-guide/install-zowe-pswi-deployment
https://docs.zowe.org/stable/user-guide/install-zowe-pswi-deployment

IMPORTANT

Before you start your configuration, ensure that you first perform the Zowe Mount workflow. For more information,

see Configure - UNIX file system mount points in the IBM documentation.

After you successfully perform the Zowe Mount workflow, you can start the Stand-alone Zowe API ML

Configuration workflow.

Select the Stand-alone Zowe API ML Configuration workflow from the list of Workflow Definition Files.

The following screen displays:

Expand the Workflow Details panel to see the workflow details and the state of each step. This workflow is in three

parts:

Define variables

Create configuration

Perform Zowe installation

Sequence to execute each workflow step

Before you start performing workflow steps, first review the following sequence within a workflow step:

1. Click the title of the step or sub-step.

2. Select the Perform tab.

https://docs.zowe.org/assets/files/061422_zOSMF_SM-2fcbfa17e205a23073b790ea89c9fddc.pdf

3. Review the step contents and update the variables that are marked by a red asterisk based on your mainframe

environment.

4. Select Next.

5. Repeat the previous steps in this sequent to complete all items until the Finish option is available.

NOTES

You can click Save, to save your values and Finish to populate these values in subsequent steps.

Basic validation is supported in many of the fields including the proper path structure, dataset name

conventions, or numeric size. The workflow, however, does not check, for example, if a target dataset exists, or

if a directory has sufficient space.

6. When you complete this list of Input variables, click Next to view the components. Tick each component in this list

that you want to enable.

7. Click Finish to populate the values. This action customizes your workflow according to the components.

You are then presented with enabled sub-steps according to the Zowe components you specified.

8. Click each sub-step and customize component-specific variables. Click Next until you complete your customization

of the variables.

9. Click Finish to apply the values.

Define variables

The first workflow step in API ML configuration is to define variables.

1. Expand Define variables.

2. Under Input Variables, click Define the main variables.

3. Click the Perform tab. The input variables are displayed by category.

4. Customize workflow variables in the fields provided.

Example:

5. After you complete defining the main variables for your configuration, define all ports for automatically enabled API

ML services.

After all sub-steps are completed, the step Define variables is marked as Complete.

Create configuration

The second workflow step is to create a configuration zowe.yaml file with the variable setup that was defined in the

Define variables step.

1. Review your configurations.

2. If necessary, customize the JCL according you your specifications and click Finish.

The zowe.yaml file is ready, and the step is marked as Complete.

NOTE

The Create configuration step is mandatory. A valid zowe.yaml is required to execute the Zowe installation

step.

Perform Zowe Installation

This step consumes the zowe.yaml configuration file and contains two sub-steps:

1. Run Zowe install to run the zwe install command.

2. Run Zowe init to run zwe init mvs and zwe init stc commands.

NOTE

If you did not set up security prior to this installation, you can submit the ZWESECUR JCL. For details, see Configuring

security.

For more information about zwe install and zwe init commands, see the following articles:

zwe install command

Configuring Zowe with zwe init

Schema information and next steps

The Stand-alone Zowe API ML Configuration workflow strictly follows the Zowe v3 install and configuration schema.

This workflow generates the zowe.yaml file and runs the Zowe zwe CLI tool.

After completing the workflow execution, you can return to the Deployment Checklist for the Zowe PSWI.

After you complete the steps in the checklist you are ready to start your Zowe instance with optimized setup for Zowe

API Mediation Layer.

https://docs.zowe.org/stable/user-guide/configuring-security
https://docs.zowe.org/stable/user-guide/configuring-security
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-install
https://docs.zowe.org/stable/user-guide/initialize-zos-system

Version: v3.3.x LTS

Configuring Zowe with z/OSMF Workflows

After you install Zowe, you can register and execute the z/OSMF workflows in the web interface to perform a range of

Zowe configuration tasks. z/OSMF helps to simplify the Zowe configuration tasks and does not require the level of

expertise that is needed to perform manual Zowe configuration. This configuration method also runs the zwe init

command to initialize Zowe z/OS runtime.

REQUIRED ROLE: SYSTEM PROGRAMMER

Prerequisites

Ensure that you meet the following requirements before you start your Zowe configuration:

Install and configure z/OSMF

Install Zowe with an SMP/E build, PSWI, or a convenience build

Overview of Full Zowe server-side configuration for Zowe 3.0

workflow

You can complete the following tasks with the Full Zowe server-side configuration for Zowe 3.0 workflow:

Configure the Zowe instance

Enable the API Gateway

Enable ZAAS

Enable the API Catalog

Enable the Discovery service

Enable a Caching service

Enable an Application server

Enable the ZSS component

Enable JES Explorer

Enable MVS Explorer

Enable USS Explorer

You can execute the Full Zowe server-side configuration Zowe 3.0 workflow either from a PSWI during deployment

or later from a created software instance in z/OSMF. Alternatively, you can execute the configuration workflow in z/OSMF

during the workflow registration process.

The configuration workflow described in this article is executed directly from a deployment of the Zowe PSWI.

Executing Full Zowe server-side configuration for Zowe 3.0

workflow from PSWI

After Zowe installation, follow this procedure to perform Zowe server-side configuration.

TIP

For more information about installing Zowe server-side components with z/OSMF, see Installing Product Software

Using z/OSMF Deployments.

1. In the Software Management panel, click Actions and Add from z/OSMF System.

2. Specify your system name and file location path (UNIX file).

3. Click Retrieve.

4. Review the Deployment Jobs and click Deployment Checklist.

5. Follow each step outlined in the Deployment Checklist.

As presented in the Deployment Checklist, during deployment you have the option to perform workflows.

After you complete all of the preceding steps outlined in the Deployment Checklist, click Perform workflows to

leverage configuration with z/OSMF workflows.

Each workflow appears in the panel.

NOTE

The Perform Workflows step enables you to run either all attached workflows or just the post-deployment

workflow for mounting, which is required.

IMPORTANT

Before you start your configuration, ensure that you first perform the Zowe Mount workflow. For more information,

see Configure - UNIX file system mount points in the IBM documentation.

After you successfully perform the Zowe Mount workflow, you can start the Full Zowe server-side configuration for

Zowe 3.0 workflow.

https://docs.zowe.org/stable/user-guide/install-zowe-pswi-deployment
https://docs.zowe.org/stable/user-guide/install-zowe-pswi-deployment
https://docs.zowe.org/assets/files/061422_zOSMF_SM-2fcbfa17e205a23073b790ea89c9fddc.pdf

Select the Full Zowe server-side configuration for Zowe 3.0 workflow from the list of Workflow Definition Files.

The following screen displays:

Expand the Workflow Details panel to see the workflow details and the state of each step. This workflow is in three

parts:

Define variables

Create configuration

Perform Zowe installation

Define variables

This workflow step includes the list of Zowe variables for configuration and as well as sub-steps.

1. Expand Define variables to display the following screen:

2. Under Input Variables, click Define the main variables.

3. Click the Perform tab. The input variables are displayed by category.

4. Customize workflow variables in the fields provided.

Example:

5. Perform the applicable sub-steps that correspond to the components you choose to enable.

Sequence to execute steps and sub-steps in the workflow

Perform the following steps for each step and sub-step:

1. Click the title of the step or sub-step.

2. Select the Perform tab.

3. Review the step contents and update the variables that are marked by a red asterisk based on your mainframe

environment.

NOTE

Once completed, sub-steps for configured components are in the Ready state. Components that are not enabled

are shown in the Skipped state.

4. Select Next.

5. Repeat the previous steps in this sequent to complete all items until the Finish option is available.

NOTES

You can click Save, to save your values and Finish to populate these values in subsequent steps.

Basic validation is supported in many of the fields including the proper path structure, dataset name

conventions, or numeric size. The workflow, however, does not check, for example, if a target dataset exists, or

if a directory has sufficient space.

6. When you complete this list of Input variables, click Next to view the components. Tick each component in this list

that you want to enable.

7. Click Finish to populate the values. This action customizes your workflow according to the components.

You are then presented with enabled sub-steps according to the Zowe components you specified.

8. Click each sub-step and customize component-specific variables. Click Next until you complete your customization

of the variables.

9. Click Finish to apply the values.

After all sub-steps are completed, the step Define variables is marked as Complete.

Create configuration

This step creates a configuration zowe.yaml file with the variable setup that was defined in the Define variables

workflow.

1. Review your configurations.

2. If necessary, customize the JCL according you your specifications and click Finish.

The zowe.yaml file is ready, and the step is marked as Complete.

NOTE

The Create configuration step is mandatory. A valid zowe.yaml is required to execute the Zowe installation

step.

Perform Zowe installation

This step consumes the zowe.yaml configuration file and contains three sub-steps.

1. Run Zowe install runs the zwe install command.

2. Run Zowe init runs zwe init mvs and zwe init stc commands.

3. Run Zowe init security.

This sub-step is optional if you already preformed security setup for Zowe. This sub-step requires Security

Administrator permissions, which are required to run the zwe init apfauth and zwe init security commands. If

security is not set up for Zowe, contact your Security Administrator to perform this setup.

NOTE

An alternative to executing Run Zowe init security is to submit ZWESECUR JCL. For details, see Configuring

security.

For more information about zwe install and zwe init commands, see the following articles:

zwe install command

https://docs.zowe.org/stable/user-guide/configuring-security
https://docs.zowe.org/stable/user-guide/configuring-security
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-install

Configuring Zowe with zwe init

Schema information and next steps

The Full Zowe server-side configuration for Zowe 3.0 workflow strictly follows Zowe v3 install and configuration

schema. This workflow generates the zowe.yaml file and runs Zowe's zwe CLI tool.

After completing the workflow execution, you can return to the Deployment Checklist for the Zowe PSWI. After you

complete the steps in the checklist you are ready to start your Zowe instance.

https://docs.zowe.org/stable/user-guide/initialize-zos-system

Version: v3.3.x LTS

Configuring security

During the initial installation of Zowe server-side components, it is necessary for your organization's security

administrator to perform a range of tasks that require elevated security permissions. As a security administrator, follow

the procedures outlined in this article to configure Zowe and your z/OS system to run Zowe with z/OS.

REQUIRED ROLE: SECURITY ADMINISTRATOR (ELEVATED PERMISSIONS REQUIRED)

NOTE

For initial tasks to be performed by the security administrator before Zowe server-side installation, see Addressing

security requirements.

Validate and re-run zwe init commands

During installation, the system programmer customizes values in the zowe.yaml file. However, due to insufficient

permissions of the system programmer, the zwe init security command may fail without sufficient user authorization.

Initialize Zowe security configurations

This security configuration step is required for first time setup of Zowe and may require security authorization. If Zowe

has already been launched on a z/OS system from a previous release of Zowe v2, and the zwe init security

subcommand successfully ran when initializing the z/OS subsystem, you can skip this step unless told otherwise in the

release documentation.

Choose from the following methods to initialize Zowe security configurations:

Configure with zwe init security command

The zwe init security command reads data from zowe.yaml and constructs a JCL member using ZWESECUR as a

template which is then submitted. This is a convenience step to assist with driving Zowe configuration through a

pipeline or when you prefer to use USS commands rather than directly edit and customize JCL members.

NOTE

If you do not have permissions to update your security configurations, use the security-dry-run described in

the following tip. We recommend you inform your security administrator to review the ZWESECUR job content.

TIP

To avoid having to run the init security command, you can specify the parameter --security-dry-run . This

parameter enables you to construct a JCL member containing the security commmands without running the

Click here to configure with the zwe init security command.

https://docs.zowe.org/stable/user-guide/address-security-requirements
https://docs.zowe.org/stable/user-guide/address-security-requirements

member. This is useful for previewing commands and can also be used to copy and paste commands into a TSO

command prompt for step by step manual execution.

Example:

Configure with ZWESECUR JCL

An alternative to using zwe init security is to prepare a JCL member to configure the z/OS system, and edit

ZWESECUR to make changes.

The JCL allows you to vary which security manager you use by setting the PRODUCT variable to be one of the

following ESMs:

RACF

ACF2

TSS .

Example:

If ZWESECUR encounters an error or a step that has already been performed, it continues to the end, so it can be run

repeatedly in a scenario such as a pipeline automating the configuration of a z/OS environment for Zowe

installation.

IMPORTANT

It is expected that your security administrator will be required to review, edit where necessary, and either

execute ZWESECUR as a single job, or execute individual TSO commands to complete the security configuration

of a z/OS system in preparation for installing and running Zowe.

The following video shows how to locate the ZWESECUR JCL member and execute it.

Click here to configure with ZWESECUR JCL.

Zowe ZWESECUR configure system for security (one-time)Zowe ZWESECUR configure system for security (one-time)

TIP

If an error occured in performing security configuration, these configurations can be undone.

To undo all of the z/OS security configuration steps performed by the JCL member ZWESECUR , use the reverse

member ZWENOSEC . This member contains steps that reverse steps performed by ZWESECUR . This is useful in the

following situations:

You are configuring z/OS systems as part of a build pipeline that you want to undo, and redo configuration

and installation of Zowe using automation.

You configured a z/OS system for Zowe that you no longer want to use, and you prefer to delete the Zowe

user IDs and undo the security configuration settings rather than leave them enabled.

If you run ZWENOSEC on a z/OS system, it is necessary to rerun ZWESECUR to reinitialize the z/OS security

configuration. Zowe cannot be run until ZWESECUR is rerun.

Perform APF authorization of load libraries

Zowe contains load modules that require access to make privileged z/OS security manager calls. These load modules are

held in two load libraries which must be APF authorized. For more information about how to issue the zwe init apfauth

command to perform APF authority commands, see Performing APF authorization of load libraries.

Customize security of your z/OS system

Click here for details about undoing security configurations.

https://www.youtube.com/watch?v=-7PZFVESitI
https://docs.zowe.org/stable/user-guide/apf-authorize-load-library

Review and perform z/OS configuration steps based on your settings. For a detailed table of configuration procedures

and associated purposes for performing these procedures, see Customizing z/OS system security.

Assign security permissions to users

Assign users (ZWESVUSR and ZWESIUSR) and the ZWEADMIN security group permissions required to perform specific

tasks. For more information see, Assigning security permissions to users.

Zowe Feature specific configuration tasks

Depending on the specific Zowe server-side components that your organization is wishing to utilize, specific security

configuration settings may apply. Review the following table of Zowe server-side component features and their

associated configuration tasks, and perform the tasks that apply to your use case.

Feature of a Zowe server-side component Configuration Task

If using Top Secret as your security manager

Note: No specific configuration is necessary for security

managers other than Top Secret.

Configuring multi-user address space (for TSS only)

High Availability
Configuring ZWESLSTC to run Zowe high availability

instances under ZWESVUSR user ID

z/OSMF authentication or onboarding of z/OSMF service Granting users permission to access z/OSMF

ZSS component enabled (required for API ML certificate

and identity mapping)

Configuring an ICSF cryptographic services environment

and

Configuring security environment switching

API Mediation Layer certificate mapping
Configuring main Zowe server to use client certificate

identity mapping

API Mediation Layer identity mapping
Configuring main Zowe server to use distributed identity

mapping

API Mediation Layer Identity Tokens (IDT) Configuring signed SAF Identity tokens (IDT)

Cross memory server (ZIS)

Configuring the cross memory server for SAF

and

Configuring cross memory server load module

and

Configuring cross-memory server SAF configuration

Next steps

https://docs.zowe.org/stable/user-guide/configure-zos-system
https://docs.zowe.org/stable/user-guide/assign-security-permissions-to-users
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-multi-user-address-space-for-tss-only
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-zweslstc-to-run-zowe-high-availability-instances-under-zwesvusr-user-acid
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-zweslstc-to-run-zowe-high-availability-instances-under-zwesvusr-user-acid
https://docs.zowe.org/stable/user-guide/assign-security-permissions-to-users#granting-users-permission-to-access-zosmf
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-an-icsf-cryptographic-services-environment
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-security-environment-switching
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-client-certificate-identity-mapping
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-client-certificate-identity-mapping
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-distributed-identity-mapping
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-distributed-identity-mapping
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-signed-saf-identity-tokens-idt
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-the-cross-memory-server-for-saf
https://docs.zowe.org/stable/user-guide/configure-xmem-server#load-module
https://docs.zowe.org/stable/user-guide/configure-xmem-server#saf-configuration

After Zowe z/OS runtime is initialized, and you complete other procedures in the Configuring security section, the next

step is Configuring certificates.

https://docs.zowe.org/stable/user-guide/configure-certificates

Version: v3.3.x LTS

Performing APF authorization of load libraries

Review this article to learn how to perform APF authorization of Zowe load libraries to make privileged calls. Note that

this procedure requires elevated permissions.

REQUIRED ROLE: SECURITY ADMINISTRATOR

Zowe contains load modules that require access to make privileged z/OS security manager calls. These load modules are

held in two load libraries which must be APF authorized. The command zwe init apfauth reads the PDS names for the

load libraries from zowe.yaml and performs the APF authority commands. Performing APF authorization presupposes

that libraries were already created manually, by zwe init , or by zwe init mvs .

zowe.setup.dataset.authLoadLib

Specifies the user custom load library, which contains the following load modules:

ZWELNCH : the Zowe launcher

ZWESIS01 : the ZIS cross memory server

ZWESAUX : the auxiliary server

zowe.setup.dataset.authPluginLib

References the load library for ZIS plugins

The following command presents an example of running zwe init apfauth :

Example:

TIP

If you do not have permissions to update your security configurations, append the flag --security-dry-run to have

the command echo the commands that need to be run without executing the command. We recommend you inform

your security administrator to review your job content.

Making APF auth be part of the IPL

Add one of the following APF statements to your active PROGxx PARMLIB member according to the following example.

Example:

To ensure that the APF authorization is added automatically after next IPL, add SYS1.PARMLIB(PROG00) .

If the load library is not SMS-managed, add the following lines, where ${volume} is the name of the volume that

holds the data set:

If the load library is SMS-managed, add the following line, where DSNAME is the name of the SZWEAUTH and

CUST.ZWESAPL data sets, as created during Zowe installation.

The PDS member SZWESAMP(ZWESIPRG) contains the SETPROG statement and PROGxx update for reference.

Version: v3.3.x LTS

Customizing z/OS system security

As a security administrator, configure your z/OS system according to the specific features and functionalities you choose

to include in your Zowe installation. Review the following article for specific configuration steps that apply to these

features and fuctionalities.

REQUIRED ROLE: SECURITY ADMINISTRATOR

NOTE

Before performing configuration steps specific to your use case, ensure that you meet the z/OS system

requirements presented in the section Preparing for installation. For detailed information, see Addressing z/OS

requirements.

Review the following table to determine which configuration steps are required based on your Zowe use case.

Purpose
Applicable Zowe

Component(s)
Configuration step

Set the names for the different z/OS UNIX address

spaces for the Zowe runtime components.

Important: This configuration step is required.

All components
Configure address space job

naming

Required for TSS only. A TSS FACILITY needs to be

defined and assigned to the ZWESLSTC started task.
All components

Configure multi-user address

space for TSS only

Required to manually create the user ID and groups in

your z/OS environment. Tasks are performed as part of

Zowe runtime configuration

All components
Configure user IDs and groups for

the Zowe started tasks

Required to configure the started task ZWESLSTC to

run under the correct user ID and group. Tasks are

performed as part of Zowe runtime configuration.

All components

Configure ZWESLSTC to run Zowe

high availability instances under

ZWESVUSR user ID.

To use multi-factor authentication (MFA) All components Multi-Factor Authentication (MFA)

Required for API Mediation Layer to map a client

certificate to a z/OS identity.
API ML

Configure main Zowe server to

use client certificate identity

mapping

Required for API ML to map the association between a

z/OS user ID and a distributed user identity.
API ML

Configure main Zowe server to

use distributed identity mapping

Required for API Mediation Layer to issue SMF records. API ML
Configure the main Zowe server to

issue SMF records

https://docs.zowe.org/stable/user-guide/systemrequirements-zos
https://docs.zowe.org/stable/user-guide/systemrequirements-zos
https://docs.zowe.org/stable/user-guide/configure-zowe-runtime
https://docs.zowe.org/stable/user-guide/configure-zowe-runtime
https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation-smf#configure-the-main-zowe-server-to-issue-smf-records
https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation-smf#configure-the-main-zowe-server-to-issue-smf-records

Purpose
Applicable Zowe

Component(s)
Configuration step

To use OIDC Authentication with API Mediation Layer API ML
API Mediation Layer OIDC

Authentication

To allow users to log on to the Zowe desktop through

impersonation.

Application

Framework

API ML

Configure security environment

switching

To configure SAF Identity tokens on z/OS so that they

can be used by Zowe components like zss or API

Mediation Layer.

Application

Framework

API ML

Configure signed SAF Identity

tokens IDT

Required to configure the cross memory server for SAF

to guard against access by non-privileged clients. Tasks

are performed as part of Zowe runtime configuration.

Application

Framework

Configure the cross memory

server for SAF

To use Zowe desktop. This step generates random

numbers for zssServer that the Zowe desktop uses.

Application

Framework

Configure an ICSF cryptographic

services environment

To use Single Sign-On (SSO) All components Single Sign-On (SSO)

Configure address space job naming

INFO

This configuration applies to all Zowe components and is required for stand-alone installation of API Mediation

Layer.

The user ID ZWESVUSR that is associated with the Zowe started task must have READ permission for the BPX.JOBNAME

profile in the FACILITY class. This is to allow setting of the names for the different z/OS UNIX address spaces for the

Zowe runtime components.

NOTE

This procedure may require security administrator authorization. Consult with your security administrator.

To display who is authorized to the profile, issue the following command:

Additionally, you need to activate facility class, permit BPX.JOBNAME , and refresh facility class:

For more information, see Setting up the UNIX-related FACILITY and SURROGAT class profiles in the "z/OS UNIX System

Services" documentation.

Configure multi-user address space (for TSS only)

INFO

https://docs.zowe.org/stable/user-guide/configure-zowe-runtime
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxb200/fclass.htm

This configuration applies to all Zowe components and is required for stand-alone installation of API Mediation

Layer.

The Zowe server started task ZWESLSTC is multi-user address space, and therefore a TSS FACILITY needs to be defined

and assigned to the started task. Then, all acids signing on to the started task will need to be authorized to the FACILITY.

The following example shows how to create a new TSS FACILITY.

Example:

In the TSSPARMS, add the following lines to create the new FACILITY:

For more information about how to administer Facility Matrix Table, see How to Perform Facility Matrix Table

Administration.

To assign the FACILITY to the started task, issue the following command:

To authorize a user to sign on to the FACILITY, issues the following command:

Configure user IDs and groups for the Zowe started tasks

INFO

This configuration applies to all Zowe components and is required for stand-alone installation of API Mediation

Layer.

Zowe requires a user ID ZWESVUSR to execute its main z/OS runtime started task. This user ID must have a valid OMVS

segment.

Zowe requires a user ID ZWESIUSR to execute the cross memory server started task ZWESISTC . This user ID must have a

valid OMVS segment.

Zowe requires a group ZWEADMIN that both ZWESVUSR and ZWESIUSR should belong to. This group must have a valid

OMVS segment.

If you have run ZWESECUR , you do not need to perform the steps described in this section, because the TSO commands

to create the user IDs and groups are executed during the JCL sections of ZWESECUR .

If you have not run ZWESECUR and are manually creating the user ID and groups in your z/OS environment, the

commands are described below for reference.

To create the ZWEADMIN group, issue the following command according to your ESM:

RACF:

Click here for command details for RACF.

Click here for command details for Top Secret.

https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-top-secret-for-z-os/16-0/administrating/protecting-facilities/how-to-perform-facility-matrix-table-administration.html
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-top-secret-for-z-os/16-0/administrating/protecting-facilities/how-to-perform-facility-matrix-table-administration.html

TSS:

ACF2:

To create the ZWESVUSR user ID for the main Zowe started task, issue the following command according to your ESM:

RACF:

TSS:

ACF2:

To create a ZWESIUSR for the Zowe cross memory server started task, issue the following command according to

your ESM:

RACF:

TSS:

ACF2:

Click here for command details for ACF2.

Click here for command details for RACF.

Click here for command details for Top Secret.

Click here for command details for ACF2.

Click here for command details for RACF.

Click here for command details for Top Secret.

Click here for command details for ACF2.

Configure ZWESLSTC to run Zowe high availability instances under ZWESVUSR user

ACID

INFO

This configuration applies to all Zowe components and is required for stand-alone installation of API Mediation

Layer.

You need Zowe started task ZWESLSTC for Zowe high availability. When the Zowe started task ZWESLSTC is started, it

must be associated with the user ID ZWESVUSR and group ZWEADMIN . A different user ID and group can be used if

required to conform with existing naming standards.

If you have run ZWESECUR , you do not need to perform the steps described in this section, because they are executed

during the JCL section of ZWESECUR .

If you have not run ZWESECUR and are configuring your z/OS environment manually, the following steps describe how to

configure the started task ZWESLSTC to run under the correct user ID and group. Issue the following commands according

to your ESM:

If you use RACF, issue the following commands:

If you use ACF2, issue the following commands:

If you use Top Secret, issue the following commands:

Multi-Factor Authentication (MFA)

INFO

This configuration applies to all Zowe components and is required for stand-alone installation of API Mediation

Layer.

Multi-factor authentication is supported for several components, such as the Desktop and API Mediation Layer. Multi-

factor authentication is provided by third-party products which Zowe is compatible with. The following are known to

work:

Click here for command details for RACF.

Click here for command details for ACF2.

Click here for command details for Top Secret.

CA Advanced Authentication Mainframe

IBM Z Multi-Factor Authentication.

NOTES

To support the multi-factor authentication, it is necessary to apply z/OSMF APAR PH39582.

MFA must work with Single-Sign-On (SSO). Make sure that SSO is configured before you use MFA in Zowe.

Configure main Zowe server to use client certificate identity mapping

INFO

This configuration is required for stand-alone installation of API Mediation Layer.

This security configuration is necessary for API ML to be able to map client certificate to a z/OS identity. A user running

API Gateway must have READ access to the SAF resource IRR.RUSERMAP in the FACILITY class. To set up this security

configuration, submit the ZWESECUR JCL member. For users upgrading from version 1.18 and lower use the following

configuration steps according to your ESM:

If you use RACF, verify and update permission in the FACILITY class.

Follow these steps:

1. Verify user ZWESVUSR has READ access.

2. Add user ZWESVUSR permission to READ.

3. Activate changes.

If you use ACF2, verify and update permission in the FACILITY class.

Follow these steps:

1. Verify user ZWESVUSR has READ access.

2. Add user ZWESVUSR permission to READ.

3. Activate changes.

Click here for procedure details for RACF.

Click here for procedure details for ACF2.

Click here for procedure details for Top Secret.

https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-advanced-authentication-mainframe/2-0.html
https://www.ibm.com/products/ibm-multifactor-authentication-for-zos
https://www.ibm.com/support/pages/apar/PH39582

If you use TSS, verify and update permission in FACILITY class.

Follow these steps:

1. Verify user ZWESVUSR has READ access.

2. Add user ZWESVUSR permission to READ.

Configure main Zowe server to use distributed identity mapping

INFO

This configuration is required for stand-alone installation of API Mediation Layer.

This security configuration is necessary for API ML to map the association between a z/OS user ID and a distributed user

identity. A user running the API Gateway must have READ access to the SAF resource IRR.IDIDMAP.QUERY in the

FACILITY class. To set up this security configuration, submit the ZWESECUR JCL member. For users upgrading from

version 1.28 and lower, use the following configuration steps according to your ESM:

If you use RACF, verify and update permission in the FACILITY class.

Follow these steps:

1. Verify that user ZWESVUSR has READ access.

2. Activate the IDIDMAP class:

3. Define the IRR.IDIDMAP.QUERY profile in the FACILITY class.

4. Add user ZWESVUSR permission to with READ access.

5. Activate changes.

If you use ACF2, verify and update permission in the FACILITY class.

Follow these steps:

1. Verify that user ZWESVUSR has READ access.

2. Add user ZWESVUSR permission with READ access.

3. Activate changes.

Click here for procedure details for RACF.

Click here for procedure details for ACF2.

If you use TSS, verify and update permission in FACILITY class.

Follow these steps:

1. Verify that user ZWESVUSR has READ access.

2. Add user ZWESVUSR permission with READ access.

Configure the main Zowe server to issue SMF records

INFO

This configuration is required for stand-alone installation of API Mediation Layer.

This security configuration is necessary for API ML to be able to issue SMF records. A user running the API Gateway must

have READ access to the RACF general resource IRR.RAUDITX in the FACILITY class. To set up this security

configuration, submit the ZWESECUR JCL member. For users upgrading from version 1.18 and lower, use the configuration

steps that correspond to the ESM.

To check whether you already have the auditing profile defined, issue the following command and review the output

to confirm that the profile exists and that the user ZWESVUSR who runs the ZWESLSTC started task has READ access

to this profile.

If you use RACF, issue the following command:

If you use ACF2, issue the following commands:

If you use Top Secret, issue the following command:

If the user ZWESVUSR who runs the ZWESLSTC started task does not have READ access to this profile, follow the

procedure that corresponds to your ESM:

Click here for procedure details for Top Secret.

Click here for command details for RACF.

Click here for command details for ACF2.

Click here for command details for Top Secret.

If you use RACF, update permission in the FACILITY class.

Follow these steps:

i. Add user ZWESVUSR permission to READ .

ii. Activate changes.

If you use ACF2, add user ZWESVUSR permission to READ . Issue the following commands:

If you use Top Secret, add user ZWESVUSR permission to READ. Issue the following command:

For more information about SMF records, see SMF records in the Using Zowe API Mediation Layer documentation.

API Mediation Layer OIDC Authentication

INFO

This configuration is required for stand-alone installation of API Mediation Layer.

Zowe requires ACF2 APAR LU01316 to be applied when using the ACF2 security manager.

Configure security environment switching

INFO

This configuration is required for stand-alone installation of API Mediation Layer and also applies to the Application

Framework.

Typically, the user ZWESVUSR that the Zowe server started task runs under needs to be able to change the security

environment of its process to allow API requests to be issued on behalf of the logged on TSO user ID, rather than the

server's user ID. This capability provides the functionality that allows users to log on to the Zowe desktop and use apps

such as the File Editor to list data sets or USS files that the logged on user is authorized to view and edit, rather than the

user ID running the Zowe server. This technique is known as impersonation.

To enable impersonation, you must grant the user ID ZWESVUSR associated with the Zowe server started task UPDATE

access to the BPX.SERVER and BPX.DAEMON profiles in the FACILITY class.

Click here for procedure details for RACF.

Click here for command details for ACF2.

Click here for command details for Top Secret.

https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation-smf

You can issue the following commands first to check whether you already have the impersonation profiles defined as

part of another server configuration, such as the FTPD daemon. Review the output to confirm that the two impersonation

profiles exist and the user ZWESVUSR who runs the Zowe server started task has UPDATE access to both profiles.

If you use RACF, issue the following commands:

If you use Top Secret, issue the following commands:

If you use ACF2, issue the following commands:

If the user ZWESVUSR who runs the Zowe server started task does not have UPDATE access to both profiles follow the

instructions below.

If you use RACF, complete the following steps:

1. Activate and RACLIST the FACILITY class. This may have already been done on the z/OS environment if another

z/OS server has been previously configured to take advantage of the ability to change its security environment,

such as the FTPD daemon that is included with z/OS Communications Server TCP/IP services.

2. Define the impersonation profiles. This may have already been done on behalf of another server such as the

FTPD daemon.

3. Having activated and RACLIST the FACILITY class, the user ID ZWESVUSR who runs the Zowe server started task

must be given update access to the BPX.SERVER and BPX.DAEMON profiles in the FACILITY class.

where:

<zowe_stc_user> is ZWESVUSR unless a different user ID is being used for the z/OS environment.

/* Activate these changes */

4. Issue the following commands to check whether permission has been successfully granted:

Click here for command details for RACF.

Click here for command details for Top Secret.

Click here for command details for ACF2.

Click here for procedure details for RACF.

Click here for procedure details for Top Secret.

If you use Top Secret, complete the following steps:

1. Define the BPX Resource and access for <zowe_stc_user> .

where <zowe_stc_user> is ZWESVUSR unless a different user ID is being used for the z/OS environment.

2. Issue the following commands and review the output to check whether permission has been successfully

granted:

If you use ACF2, complete the following steps:

1. Define the BPX Resource and access for <zowe_stc_user> .

where <zowe_stc_user> is ZWESVUSR unless a different user ID is being used for the z/OS environment.

2. Issue the following commands and review the output to check whether permission has been successfully

granted:

You must also grant READ access to the OMVSAPPL profile in the APPL class to the Zowe STC user as well as all other

Zowe users using various Zowe features. Skip the following steps when the OMVSAPPL profile is not defined in your

environment.

If you use RACF, complete the following steps:

1. Check if you already have the required access defined as part of the environment configuration. Skip the

following steps if access is already granted.

2. Issue the following commands and review the output to check if permission has been successfully granted:

If you use Top Secret, complete the following steps:

1. Check if you already have the required access as part of the environment configuration. Skip the following steps

if access is already granted.

2. Issue the following commands and review the output to check if permission has been successfully granted:

Click here for procedure details for ACF2.

Click here for procedure details for RACF.

Click here for procedure details for Top Secret.

Click here for procedure details for ACF2.

If you use ACF2, complete the following steps:

1. Check if you already have the required access defined as part of the environment configuration. Skip the

following steps if access is already granted.

2. Issue the following commands and review the output to check if permission has been successfully granted:

Single Sign-On (SSO)

INFO

This configuration applies to all Zowe components.

Zowe has an SSO scheme with the goal that each time you use multiple Zowe components you should only be prompted

to login once.

Requirements:

IBM z/OS Management Facility (z/OSMF)

Configure signed SAF Identity tokens (IDT)

INFO

This configuration applies to API Mediation Layer and Application Framework.

This section provides a brief description of how to configure SAF Identity tokens on z/OS so that they can be used by

Zowe components like zss or API ML. See Implement a new SAF IDT provider.

Follow these steps:

1. Create a PKCS#11 token.

2. Generate a secret key for the PKCS#11 token (you can use the sample program ZWESECKG in the SZWESAMP

dataset).

3. Define a SAF resource profile under the IDTDATA SAF resource class.

Details with examples can be found in documentation of external security products:

RACF

See Signed and Unsigned Identity Tokens and IDT Configuration subsections in z/OS Security Server

RACROUTE Macro Reference in the article Activating and using the IDTA parameter in RACROUTE REQUEST=VERIFY.

ACF2

See IDTDATA Profile Records subsection in Administrating chapter, in the article IDTDATA Profile Records.

Top Secret

See Maintain Identity Token (IDT) Records subsection in Administrating chapter, in the article Maintain Identity

Token (IDT) Records.

https://docs.zowe.org/stable/extend/extend-apiml/implement-new-saf-provider
https://www.ibm.com/docs/en/zos/2.4.0?topic=reference-activating-using-idta-parameter-in-racroute-requestverify
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-acf2-for-z-os/16-0/administrating/administer-records/profile-records/idtdata-profile-records.html
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-top-secret-for-z-os/16-0/administrating/maintaining-special-security-records/maintain-identity-token-(idt)-records.html
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-top-secret-for-z-os/16-0/administrating/maintaining-special-security-records/maintain-identity-token-(idt)-records.html

A part of the Signed SAF Identity token configuration is a nontrivial step that has to generate a secret key for the

PKCS#11 token. The secret key is generated in ICSF by calling the PKCS#11 Generate Secret Key (CSFPGSK) or Token

Record Create (CSFPTRC) callable services. An example of the CSFPGSK callable service can be found in the SZWESAMP

dataset as the ZWESECKG job.

Configure an ICSF cryptographic services environment

INFO

This configuration applies to the Application Framework.

The zssServer uses cookies that require random number generation for security. To learn more about the zssServer, see

the Zowe architecture. Integrated Cryptographic Service Facility (ICSF) is a secure way to generate random numbers.

If you have not configured your z/OS environment for ICSF, see Cryptographic Services ICSF: System Programmer's

Guide for more information. To see whether ICSF has been started, check whether the started task ICSF or CSF is active.

If you run Zowe high availability on a Sysplex, ICSF needs to be configured in a Sysplex environment to share KDS data

sets across systems in a Sysplex. For detailed information, see Running in a Sysplex Environment

The Zowe z/OS environment configuration JCL member ZWESECUR does not perform any steps related to ICSF that is

required for zssServer that the Zowe desktop uses. Therefore, if you want to use Zowe desktop, you must perform the

steps that are described in this section manually.

To generate symmetric keys, the ZWESVUSR user who runs Zowe server started task requires READ access to CSFRNGL in

the CSFSERV class.

Define or check the following configurations depending on whether ICSF is already installed:

The ICSF or CSF job that runs on your z/OS system.

The configuration of ICSF options in SYS1.PARMLIB(CSFPRM00) , SYS1.SAMPLIB , SYS1.PROCLIB .

Create CKDS, PKDS, TKDS VSAM data sets.

Define and activate the CSFSERV class:

If you use RACF, issue the following commands:

If you use ACF2, issue the following commands (note that profile-prefix and profile-suffix are user-defined):

(repeat for userids IKED, NSSD, and Policy Agent)

Click here for command details for RACF.

Click here for command details for ACF2.

Click here for command details for Top Secret

https://docs.zowe.org/stable/getting-started/zowe-architecture#zss
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb200/abstract.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb200/abstract.htm
https://www.ibm.com/docs/en/zos/2.3.0?topic=guide-running-in-sysplex-environment

If you use Top Secret, issue the following command (note that profile-prefix and profile-suffix are user

defined):

(repeat for user-acids IKED, NSSD, and Policy Agent)

NOTES

Determine whether you want SAF authorization checks against CSFSERV and set

CSF.CSFSERV.AUTH.CSFRNG.DISABLE accordingly.

Refer to the z/OS 2.3.0 z/OS Cryptographic Services ICSF System Programmer's Guide: Installation, initialization,

and customization.

CCA and/or PKCS #11 coprocessor for random number generation.

Enable FACILITY IRR.PROGRAM.SIGNATURE.VERIFICATION and RDEFINE CSFINPV2 if required.

Configure the cross memory server for SAF

INFO

This configuration applies to the Application Framework.

Zowe has a cross memory server that runs as an APF-authorized program with key 4 storage. Client processes accessing

the cross memory server's services must have READ access to a security profile ZWES.IS in the FACILITY class. This

authorization step is used to guard against access by non-priviledged clients.

If you have run ZWESECUR you do not need to perform the steps described in this section.

If you have not run ZWESECUR and are configuring your z/OS environment manually, the following steps describe how to

configure the cross memory server for SAF.

Activate the FACILITY class, define a ZWES.IS profile, and grant READ access to the user ID ZWESVUSR . This is the user ID

that the main Zowe started task runs under.

To perform these steps, issue the following commands that are also included in the ZWESECUR JCL member. The

commands assume that you run the Zowe server under the ZWESVUSR user.

If you use RACF, issue the following commands:

To see the current class settings, use:

To define and activate the FACILITY class, use:

To RACLIST the FACILITY class, use:

To define the ZWES.IS profile in the FACILITY class and grant Zowe's started task userid READ access, issue the

following commands:

Click here for command details for RACF.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb200/iandi.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb200/iandi.htm

where <zowe_stc_user> is the user ID ZWESVUSR under which the Zowe server started task runs.

To check whether the permission has been successfully granted, issue the following command:

This shows the user IDs who have access to the ZWES.IS class, which should include Zowe's started task user ID

with READ access.

If you use ACF2, issue the following commands:

If you use Top Secret, issue the following commands, where owner-acid can be IZUSVR or a different ACID:

NOTES

The cross memory server treats "no decision" style SAF return codes as failures. If there is no covering profile

for the ZWES.IS resource in the FACILITY class, the request will be denied.

Cross memory server clients other than Zowe might have additional SAF security requirements. For more

information, see the documentation for the specific client.

Click here for command details for ACF2.

Click here for command details for Top Secret.

Version: v3.3.x LTS

Assigning security permissions to users

Assign users (ZWESVUSR and ZWESIUSR) and the ZWEADMIN security group permissions required to perform specific

tasks. Each TSO user ID that logs on to Zowe and uses Zowe services that use z/OSMF requires permission to access

these z/OSMF services.

REQUIRED ROLES: SECURITY ADMINISTRATOR

Overview of user categories and roles

Specific user IDs with sufficient permissions are required to run or access Zowe. Your organization's security

administrator is responsible to assign the following user IDs during Zowe z/OS component configuration.

The following user IDs run Zowe:

ZWESVUSR

This is the started task ID of the Zowe runtime user who runs most of the Zowe core components.

ZWESIUSR

This user runs the cross memory server (ZIS). This is a started task ID used to run the PROCLIB ZWESISTC that

launches the cross memory server (ZIS).

IMPORTANT!

To work with USS, the user ID must have a valid OMVS segment. For more information about OMVS segments, see

the article The OMVS segment in user profiles in the IBM documentation. For detailed information about which

permissions are required to run Zowe core services as well as specific individual components, see the Security

Permissions Reference Table in this article.

The security administrator also assigns permissions to the security group ZWEADMIN. ZWEADMIN is a group consisting of

ZWESVUSR and ZWESIUSR . This group must have a valid OMVS segment.

Additionally, the security administrator assigns permissions to individual Zowe users. If z/OSMF is used for authentication

and serving REST APIs for Zowe CLI and Zowe Explorer users, the TSO user ID for end users must belong to one or both

of the groups IZUUSER or IZUADMIN .

Security Permissions Reference Table

The following reference table describes which permissions are required for the user ID ZWESVUSR to run Zowe core

services and specific individual components.

If you already successfully ran the ZWESECUR JCL either separately or by running the zwe init security command, you

do not need to perform the steps described in this section. The TSO commands to create the user IDs and groups are

executed during the JCL sections of ZWESECUR . For more information about the zwe init security command, see zwe

init security.

https://docs.zowe.org/stable/user-guide/configure-xmem-server
https://docs.zowe.org/stable/user-guide/initialize-security-configuration#configuring-with-zwesecur-jcl
https://docs.zowe.org/stable/user-guide/initialize-security-configuration#configuring-with-zwe-init-security-command
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-security
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-security

Feature of a

Zowe

server-side

component

Resource

class
Resource name

Type of

access

required

Reason Actions

Core FACILITY BPX.JOBNAME READ

Allow z/OS address

spaces for unix

processes to be

renamed for ease of

identification.

This parameter

permits the Zowe

main server to set

the job name. Run

the command that

applies to your ESM.

• RACF

• ACF2

• Top Secret

API Mediation

Layer

certificate

mapping

FACILITY IRR.RUSERMAP READ

Optional Allow Zowe

to map an X.509 client

certificate to a z/OS

identity.

This parameter

permits the Zowe

main server to use

the client certificate

mapping service.

Run the command

that applies to your

ESM.

• RACF

• ACF2

• Top Secret

API Mediation

Layer identity

mapping

FACILITY IRR.IDIDMAP.QUERY READ

Optional Allow Zowe

to map a distributed

identity to a z/OS

identity.

This parameter

permits the Zowe

main server to use

distributed identity

mapping service.

Run the command

that applies to your

ESM.

• RACF

• ACF2

• Top Secret

https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-address-space-job-naming
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-address-space-job-naming
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L353
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L586
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L801
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-client-certificate-identity-mapping
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-client-certificate-identity-mapping
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-client-certificate-identity-mapping
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L369
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L606
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L811
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-distributed-identity-mapping
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-distributed-identity-mapping
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-distributed-identity-mapping
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L374
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L611
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L815

Feature of a

Zowe

server-side

component

Resource

class
Resource name

Type of

access

required

Reason Actions

API Mediation

Layer SMF

records

FACILITY IRR.RAUDITX READ

Optional Allow API

Mediation Layer to

issue SMF 83 records

about activity of

Personal Access

Tokens. For more

information about

configuring the main

Zowe server to issue

SMF records, see

Configure the main

Zowe server to issue

SMF records

This parameter

permits the Zowe

main server to cut

SMF records. Run

the command that

applies to your ESM.

• RACF

• ACF2

• Top Secret

ZSS (required

for API ML

certificate

and identity

mapping)

FACILITY

BPX.SERVER +

BPX.DAEMON
UPDATE

Allow Zowe to run code

on behalf of the API

requester's TSO user

ID. For more

information, see

Security Environment

Switching.

This parameter

permits the Zowe

main server to

create a user's

security

environment. Run

the command that

applies to your ESM.

• RACF

• ACF2

• Top Secret

ZSS (required

for API ML

certificate

and identity

mapping)

APPL OMVSAPPL READ

Allow Zowe to run code

on behalf of the API

requester's TSO user

ID. This permission is

also required from a

requester's TSO user.

You can skip this

requirement when the

resource OMVSAPPL in

the APPL class is not

defined. For more

information, see

Security Environment

Switching.

This parameter

permits the Zowe

main server to run

the code on behalf

of the user. Run the

command that

applies to your ESM.

• RACF

• ACF2

• Top Secret

ZSS FACILITY IRR.RADMIN.LISTUSER READ Allow Zowe to obtain

information about

This parameter

permits the Zowe

https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation-smf
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-the-main-zowe-server-to-issue-smf-records
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-the-main-zowe-server-to-issue-smf-records
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-the-main-zowe-server-to-issue-smf-records
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L381
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L616
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L820
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-security-environment-switching
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-security-environment-switching
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L333
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L568
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L784
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-security-environment-switching
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-security-environment-switching
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L347
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L579
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L796

Feature of a

Zowe

server-side

component

Resource

class
Resource name

Type of

access

required

Reason Actions

OMVS segment of the

user profile using

LISTUSER TSO

command.

main server to

obtain information

about OMVS

segment of the user

profile. Run the

command that

applies to your ESM.

• RACF

• ACF2

• Top Secret

ZSS CSFSERV Multiple READ

Generate symmetric

keys using ICSF that is

used by Zowe Desktop

cookies.

The list of IDs to

enable include

CSF1TRD , CSF1TRC ,

CSF1SKE , CSF1SKD .

The full list of IDs is

described in the

z/OS Cryptographic

Services user guide

for your z/OS release

level: 2.2, 2.3, 2.4

and 2.5.

Cross

memory

server (ZIS)

FACILITY ZWES.IS READ

Allow Zowe ZWESLSTC

processes to access

the Zowe ZIS cross

memory server.

This parameter

permits the Zowe

main server to use

ZIS cross memory

server. Run the

command that

applies to your ESM.

• RACF

• ACF2

• Top Secret

Granting users permission to access z/OSMF

Each TSO user ID that logs on to Zowe and uses Zowe services that use z/OSMF requires permission to access these

z/OSMF services. It is necessary that every user ID be added to the group with the appropriate z/OSMF privileges,

IZUUSER or IZUADMIN (default).

REQUIRED ROLE: SECURITY ADMINISTRATOR

https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-an-icsf-cryptographic-services-environment
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-an-icsf-cryptographic-services-environment
https://www.ibm.com/docs/en/zos/2.2.0?topic=ssl-racf-csfserv-resource-requirements
https://www.ibm.com/docs/en/zos/2.3.0?topic=ssl-racf-csfserv-resource-requirements
https://www.ibm.com/docs/en/zos/2.4.0?topic=ssl-racf-csfserv-resource-requirements
https://www.ibm.com/docs/en/zos/2.5.0?topic=ssl-racf-csfserv-resource-requirements
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L329
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L560
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L780

This step is not included in the provided Zowe JCL because it must be done for every TSO user ID who wants to access

Zowe's z/OS services. The list of those user IDs will typically be the operators, administrators, developers, or anyone else

in the z/OS environment who is logging in to Zowe.

NOTE

You can skip this section if you use Zowe without z/OSMF. Zowe can operate without z/OSMF but services that use

z/OSMF REST APIs will not be available, specifically the USS, MVS, and JES Explorers and the Zowe Command Line

Interface files, jobs, workflows, tso, and console groups.

To grant permissions to the user ID to access z/OSMF, issue the command(s) that corresponds to your ESM.

If you use RACF, issue the following command:

If you use ACF2, issue the following commands:

If you use Top Secret, issue the following commands:

Next step

After you complete assigning security permissions, the next step is to configure certificates.

Click here for command details for RACF.

Click here for command details for ACF2.

Click here for command details for Top Secret.

https://docs.zowe.org/stable/user-guide/configure-certificates

Version: v3.3.x LTS

Configuring certificates

Review this article to learn about the key concepts of Zowe certificates, and options for certificate configuration.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

Zowe uses digital certificates for secure, encrypted network communication over Secure Sockets Layer/Transport Layer

Security (SSL/TLS) and HTTPS protocols. Communication in Zowe can be between Zowe servers, from Zowe to another

server, or even between Zowe's servers and Zowe's client components.

Zowe's certificates are stored in its keystore. Verification of these certificates and any incoming certificates from other

servers or clients is done by using certificates of certificate authorities (CAs) within Zowe's truststore.

Zowe supports using either file-based (PKCS12) or z/OS key ring-based (when on z/OS) keystores and truststores, and

can reuse compatible stores if they exist. Zowe can assist in creating the stores by either generating certificates or by

allowing users to import their own compatible certificates via the zwe init certificate command.

Certificate concepts

Certificate verification

Zowe certificate requirements

Certificate setup type

Next steps: Creating or importing certificates to Zowe

NOTE

If you are already familiar with certificate concepts and how Zowe uses certificates and are ready to get started, see

the options under the section Next steps: Creating or importing certificates to Zowe at the end of this article.

Certificate concepts

Before you get started with configuring certificates, it is useful to familiarize yourself with the following key concepts:

Keystore

Truststore

PKCS12

z/OS key ring

Server certificate

Client certificate

Self-signed certificates

Keystore

The keystore is the location where Zowe stores certificates that Zowe servers present to clients and other servers. In the

simplest case, the keystore contains one private key and a certificate pair, which can then be used by each Zowe server.

When you are using a key ring, a single key ring can serve both as a keystore and as a truststore if desired.

Truststore

The truststore is used by Zowe to verify the authenticity of the certificates that Zowe encounters. The authenticity is

required when Zowe is communicating with another server, with one of Zowe's own servers, or with a client that

presents a certificate. A truststore is composed of Certificate Authority (CA) certificates that are compared against the

CAs that an incoming certificate claims to be signed by. To ensure a certificate is authentic, Zowe must verify that the

certificate's claims are correct. Certificate claims include that the certificate was sent by the host that the certificate was

issued to, and that the cryptographic signature of the authorities the certificate claims to have been signed by match

those found within the truststore. This process helps to ensure that Zowe only communicates with hosts that you trust

and have verified as authentic. When using a key ring, a single key ring can be both a keystore and a truststore if

desired.

PKCS12

PKCS12 is a file format that allows a Zowe user to hold many crytopgrahic objects in one encrypted, passworded file.

This file format is well supported across platforms but because it is just a file, you can prefer to use z/OS key rings

instead of PKCS12 certificates for ease of administration and maintenance.

z/OS key ring

z/OS provides an interface to manage cryptographic objects in "key rings". As opposed to PKCS12 files, using z/OS key

rings allows the crypto objects of many different products to be managed in a uniform manner. z/OS key rings are still

encrypted, but do not use passwords for access. Instead, SAF privileges are used to manage access. Java's key ring API

requires that the password field for key ring access to be set to "password", so despite not needing a password, you can

see this keyword.

Use of a z/OS keystore is the recommended option for storing certificates if system programmers are already familiar

with the certificate operation and usage. Creating a key ring and connecting the certificate key pair requires elevated

permissions. When the TSO user ID does not have the authority to manipulate key rings and users want to create a Zowe

sandbox environment or for testing purposes, the USS keystore is a good alternative.

One option for certificate setup for key rings is to copy the JCL ZWEKRING member of Zowe's SAMPLIB and customize its

values.

Server certificate

Servers need a certificate to identify themselves to clients. Every time that you go to an HTTPS website, for example,

your browser checks the server certificate and its CA chain to verify that the server you reached is authentic.

Client certificate

Clients do not always need certificates when they are communicating with servers, but sometimes client certificates can

be used wherein the server verifies authenticity of the client similar to how the client verifies authenticity for the server.

When client certificates are unique to a client, the certificate can be used as a form of authentication to provide

convenient yet secure login.

Self-signed certificates

A self-signed certificate is one that is not signed by a CA at all – neither private nor public. In this case, the certificate is

signed with its own private key, instead of requesting verification from a public or a private CA. It means that there is no

chain of trust to guarantee that the host with this certificate is the one you wanted to communicate with. Note that

these certificates are not secure against other hosts masquerading as the one you want to access. As such, it is highly

recommended that certificates be verified against the truststore for production environments.

Certificate verification

When you configure Zowe, it is necessary to decide whether Zowe verifies certificates against its truststore.

In the Zowe configuration YAML, the property zowe.verifyCertificates controls the verification behavior. It can be

DISABLED , NONSTRICT , or STRICT .

You can set this property either before or after certificate setup, but it is recommended to set

zowe.verifyCertificates before certificate setup because it affects the automation that Zowe can perform during

certificate setup.

DISABLED verification

If you set zowe.verifyCertificates to DISABLED , certificate verification is not performed. It is not recommended for

security reasons, but may be used for proof of concept or when certificates within your environment are self-signed.

If you set DISABLED before certificate setup, Zowe does not automate putting z/OSMF trust objects into the Zowe

truststore. This action can result in failure to communicate with z/OSMF if later you enable verification. As such. It is

recommended to either set verification on by default, or to reinitialize the keystore if you choose to turn on verification

at a later point.

NON-STRICT verification

If you set zowe.verifyCertificates to NONSTRICT , certificate verification is performed except for hostname validation.

Using this setting, the certificate Common Name or Subject Alternate Name (SAN) is not checked. Skipping hostname

validation facilitates deployment to environments where certificates are valid but do not contain a valid hostname. This

configuration is for development purposes only and should not be used for production.

STRICT verification

STRICT is the recommended setting for zowe.verifyCertificates . This setting performs maximum verification on all

certificates Zowe sees, and uses Zowe truststore.

Zowe certificate requirements

If you do not yet have certificates, Zowe can create self-signed certificates for you. The use of self-signed certificates for

production is not recommended, so you should bring your own certificates. Note that the certificates must be valid for

use with Zowe.

Extended key usage

Zowe server certificates must either not have the Extended Key Usage (EKU) attribute, or have both the TLS Web

Server Authentication (1.3.6.1.5.5.7.3.1) and TLS Web Client Authentication (1.3.6.1.5.5.7.3.2) values

present within.

Some Zowe components act as a server, some as a client, and some as both - client and server. The component

certificate usage for each of these cases is controlled by the Extended Key Usage (EKU) certificate attribute. The Zowe

components use a single certificate (or the same certificate) for client and server authentication, so it is required that

this certificate is valid for the intended usage/s of the component - client, server, or both. The EKU certificate extension

attribute is not required, however, if it is specified, it must be defined with the intended usage/s. Otherwise, connection

requests will be rejected by the other party

Supported algorithm

The server certificate could be used to sign JWT tokens when one of the following conditions is valid:

The token provider is set as SAF (see apiml.security.auth.provider=saf)

The token provider is set as z/OSMF (see apiml.security.auth.provider=zosmf), but the z/OSMF is not configured

to support JWT tokens

Personal access token (PAT) are enabled

The supported algorithm is: RSASSA-PKCS1-v1_5 using SHA-256 signature algorithm as defined by RFC 7518, Section

3.3. This algorithm requires a 2048-bit key.

Hostname validity

The host communicating with a certificate should have its hostname match one of the values of the certificate's

Common Name or Subject Alternate Name (SAN). If this condition is not true for at least one of the certificates that are

seen by Zowe, then you may wish to set NON-STRICT verification within Zowe's configuration.

z/OSMF access

The z/OSMF certificate is verified according to Zowe's Certificate verification setting, as is the case with any certificate

that is seen by Zowe. However, Zowe will also set up a trust relationship with z/OSMF within Zowe's truststore during

certificate setup automation if the certificate setting is set to any value other than DISABLED.

Certificate setup type

Whether importing or letting Zowe generate certificates, the setup for Zowe certificate automation and the configuration

to use an existing keystore and truststore depends upon the content format: file-based (PKCS12) or z/OS key ring-based.

File-based (PKCS12) certificate setup

Zowe is able to use PKCS12 certificates that are stored in USS. Zowe uses a keystore directory to contain its certificates

primarily in PKCS12 (.p12 , .pfx) file format, but also in PEM (.pem) format. The truststore is in the truststore

directory that holds the public keys and CA chain of servers that Zowe communicates with (for example z/OSMF).

z/OS key ring-based certificate setup

Zowe is able to work with certificates held in a z/OS key ring.

The JCL member .SZWESAMP(ZWEKRING) contains security commands to create a SAF key ring. By default, this key ring is

named ZoweKeyring . You can use the security commands in this JCL member to generate a Zowe certificate authority

https://www.ibm.com/docs/en/zos/3.1.0?topic=configurations-enabling-json-web-token-support
https://www.ibm.com/docs/en/zos/3.1.0?topic=configurations-enabling-json-web-token-support
https://docs.zowe.org/stable/user-guide/getting-started/zowe-security-authentication.md/#authentication-with-personal-access-token-pat

(CA) and sign the server certificate with this CA. The JCL contains commands for all three z/OS security managers: RACF,

TopSecret, and ACF2.

There are two ways to configure and submit ZWEKRING :

Copy the JCL ZWEKRING member and customize its values.

Customize the zowe.setup.certificate section in zowe.yaml and use the zwe init certificate command.

You can also use the zwe init certificate command to prepare a customized JCL member by using ZWEKRING as a

template.

A number of key ring scenarios are supported:

Creation of a local certificate authority (CA) which is used to sign a locally generated certificate. Both the CA and the

certificate are placed in the ZoweKeyring .

Import of an existing certificate that is already held in z/OS to the ZoweKeyring for use by Zowe.

Import of an existing certificate already held in z/OS to the ZoweKeyring for use by Zowe.

Next steps: Creating or importing certificates to Zowe

Review the following options and choose which best applies to your use case:

Take our Certificates Configuration Questionnaire to assist with determining which configuration scenario and

associated zowe.yaml format best suits your use case.

To review the various zowe.yaml files to see which certificate configuration applies to your specific use case, see

Certificate configuration scenarios.

If you have an existing certificate, you can import this certificate to the keystore. For more information, see Import

and configure an existing certificate.

If you do not have an existing certificate, you can create one. For more information, see Generate a certificate.

When your certificate is already in the keystore, it is ready for use. For more information about how to use it, see Use

certificates.

If you run into any error when configuring certificates, see Troubleshooting the certificate configuration.

https://docs.zowe.org/stable/user-guide/certificates-configuration-questionnaire
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios
https://docs.zowe.org/stable/user-guide/import-certificates
https://docs.zowe.org/stable/user-guide/import-certificates
https://docs.zowe.org/stable/user-guide/generate-certificates
https://docs.zowe.org/stable/user-guide/use-certificates
https://docs.zowe.org/stable/user-guide/use-certificates
https://docs.zowe.org/stable/troubleshoot/troubleshoot-zos-certificate

Version: v3.3.x LTS

Zowe certificates configuration questionnaire

To properly configure Zowe to use certificates for server-side component installation, review the certificate setup options

presented in this article. Understanding these options makes it possible to select the best certificate configuration

scenario that fits your Zowe deployment use case.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

If you know that you will be using certificates in a production deployment environment, and that you will be using

an external certificate authority (CA), we recommend you consult with your organization's security administrator

before you start certificate configuration.

Review the Configure Zowe Certificates diagram and answer the questions presented in the questionnaire at the end of

this article.

TIP

Before determining which scenario best suits your use case, it is practical to have a general understanding of the

certificate configuration basics and Zowe certificates configuration overview. For more information, see the

following articles:

Certificates concepts in the Zowe Security Glossary

Zowe certificates overview

The numerated decision blocks (yellow diamonds) in the following diagram correspond to the questions in the

questionnaire. Follow this sequence of questions to determine which certificate configuration scenario best suits your

certificate use case.

https://docs.zowe.org/stable/appendix/zowe-security-glossary#certificate-concepts
https://docs.zowe.org/stable/appendix/zowe-security-glossary
https://docs.zowe.org/stable/getting-started/zowe-certificates-overview

Each of the following certificate configuration scenarios are available in the article Certificate configuration scenarios.

Scenario 1: Use a file-based (PKCS12) keystore with Zowe generated certificates

Scenario 2: Use a file-based (PKCS12) keystore and import a certificate generated by another CA

Scenario 3: Use a z/OS keyring-based keystore with Zowe generated certificates

Scenario 4: Use a z/OS keyring-based keystore and connect an existing certificate

Scenario 5: Use a z/OS keyring-based keystore and import a certificate stored in a data set

Certificate configuration questionnaire

Answer each question and find which scenarios are relevant for the selected option:

Question 1: What is your target deployment environment?

Depending on your target environment type (DEV/TEST or PROD), you can create your certificates (self-signed option),

acquire new ones from a trusted CA, or use existing certificates.

Question 2: Do you need to use a certificate signed by the CA of the company or by an external CA?

If you plan to use Zowe generated self-signed certificates and your target environment is production, we strongly

recommend that you acquire new certificates from your trusted CA.

https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios#scenario-1-use-a-file-based-pkcs12-keystore-with-zowe-generated-certificates
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios#scenario-2-use-a-file-based-pkcs12-keystore-and-import-a-certificate-generated-by-another-ca
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios#scenario-3-use-a-zos-keyring-based-keystore-with-zowe-generated-certificates
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios#scenario-4-use-a-zos-keyring-based-keystore-and-connect-to-an-existing-certificate
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios#scenario-5-use-a-zos-keyring-based-keystore-and-import-a-certificate-stored-in-a-data-set

Question 3: Do you plan to use a keyring?

Decide if you want to store the certificate in a z/OS keyring or to a file based keystore/truststore.

TIP

While using a keystore/truststore pair is possible to store your certificates, we recommend that you use z/OS

keyrings for production deployments.

Question 4: Do you plan to use an existing certificate from another keyring or from a dataset?

If you have an existing certificate, you can import or connect this certificate to the planned z/OS keyring based storage.

Before you import your certificates, check to make sure that the certificate format, type, and properties correspond to

the required protection and acceptability depending on the planned deployment environment (DEV, TEST, PROD). For

example, use Zowe generated self-signed certificates only with development or testing environments and not with

production environments.

For more information, see Import and configure an existing certificate.

Next steps

After you select your applicable certificate configuration scenario and review the certificate configurate sample in the

article Certificate configuration scenarios, you can continue to Configure Zowe Certificates.

TIP

If you encounter issues when configuring your certificate, see Troubleshooting the certificate configuration, to find

resolution of errors.

https://docs.zowe.org/stable/user-guide/import-certificates
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios
https://docs.zowe.org/stable/user-guide/configure-certificates
https://docs.zowe.org/stable/troubleshoot/troubleshoot-zos-certificate

Version: v3.3.x LTS

Certificate configuration scenarios

After you complete the Zowe certificates configuration questionnaire to determine your specific configuration use case,

choose from the five scenarios presented in this article to configure Zowe for automatic certificate setup. Examples of

the zowe.yaml files are provided for each scenario.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

TIP

To assist you with determining the specific certificate configuration scenario that applies to your use case, see Zowe

certificates configuration questionnaire. This questionnaire guides you through questions that lead to a specific

configuration scenario presented in this article.

Zowe servers require both a keystore to store the certificates and a truststore to validate certificates.

For use of Zowe on z/OS, the keystore and truststore can either be Unix file-based (PKCS12) or z/OS keyring-based.

Both the keystore and truststore can automatically be created by Zowe regardless of which storage type is used.

Keystores and truststores can be populated either with certificates that the user chooses, or with self-signed certificates

generated by Zowe. This automation can be performed by defining and customizing the zowe.setup.certificate

section of your Zowe YAML configuration. Zowe can then automate the certificate setup via the zwe init certificate

command.

NOTE

Automated generation of certificates is an option, but is not required. If you already have a keystore that contains a

valid certificate *, and the corresponding private key of the certificate, along with a truststore which validates the

certificate and any other certificates you expect to encounter, then you also have the option to directly define the

parameter zowe.certificate , which specifies the location of each of these certificates and their storage objects.

Note that this parameter should not be confused with the parameter zowe.setup.certificate .

* What is a valid certificate in Zowe?

A valid certificate for use in Zowe conforms to one of the following two options:

The certificate does not contain the Extended Key Usage section.

The certificate does contain the Extended Key Usage section, and also includes the Server and Client

authentication fields.

Considerations for certificate scenario selection

Consider the scenario that best suits your use case:

Do you plan to use a file-based (PKCS12) certificates, or z/OS keyrings?

https://docs.zowe.org/stable/user-guide/certificates-configuration-questionnaire
https://docs.zowe.org/stable/user-guide/certificates-configuration-questionnaire

Do you plan to enable Zowe to create self-signed certificates, or will Zowe be using pre-made certificates which you

are providing?

If you are providing certificates to Zowe and using a keyring, does the certificate already exist in your security

database, or are you importing it via a dataset?

There are five scenarios/use cases for configuring certificates. Use the applicable certificate configuration scenario

according to your needs.

Each scenario described in this article provides the configuration details via code snippets which you can use to edit

your Zowe YAML configuration within the zowe.setup.certificate section.

Scenario 1: Use a file-based (PKCS12) keystore with Zowe generated certificates

Scenario 2: Use a file-based (PKCS12) keystore and import a certificate generated by another CA

Scenario 3: Use a z/OS keyring-based keystore with Zowe generated certificates

Scenario 4: Use a z/OS keyring-based keystore and connect an existing certificate

Scenario 5: Use a z/OS keyring-based keystore and import a certificate stored in a data set

NOTE

Ensure that all alias values for all scenarios use only lower-case.

Scenario 1: Use a file-based (PKCS12) keystore with Zowe

generated certificates

Use this procedure to configure the zowe.setup.certificate section in your yaml file to enable Zowe to use generated

PKCS12 certificates to be used with a keystore directory to store your certificates.

1. Set the type of the certificate storage to PKCS12 .

2. Customize the keystore directory in the following format:

3. Lock the keystore directory so it is accessible only to the Zowe runtime user and group:

4. Customize the certificate alias name. The default value is localhost .

5. Set the keystore password. The default value is password .

6. Set the alias name of self-signed certificate authority. The default value is local_ca .

7. Set the password of the keystore stored self-signed certificate authority. The default value is

local_ca_password .

8. (Optional) Specify the distinguished name for Zowe generated certificates.

9. Set the validity in days for the Zowe generated certificates

Click here for details.

10. Set the domain names and IPs specified in nested subsection SAN . If this field is not defined, the zwe init

command uses the value zowe.externalDomains .

NOTE

A bug in Java SDK 8.0.8.10 has been discovered that makes configuration scenario 1 non-operational. If you see

the following message when running the zwe init certificate command, upgrade or downgrade your Java

version:

For more information, see this article in IBM Support.

Example zowe yaml for scenario 1:

Your yaml file is now configured to enable Zowe to use generated PKCS12 certificates.

For more information about using a file-based PKCS12 certificate in Zowe services, see the video tutorials on

YouTube. More information about this certificate configuration scenario is also availabe in this Medium blog post.

Scenario 2: Use a file-based (PKCS12) keystore and import a

certificate generated by another CA

Use this procedure to configure the zowe.setup.certificate section in your yaml file to enable Zowe to use a file-based

PKCS12 keystore to import a certificate generated by another CA.

1. Set the type of the certificate storage to PKCS12 .

2. Customize the keystore directory in the following format:

3. Lock the keystore directory so it is accessible only to the Zowe runtime user and group:

4. Customize the certificate alias name. The default value is localhost .

5. Set keystore password. The default value is password .

6. Set the existing PKCS12 keystore which holds the certificate issued by an external CA.

7. Set the password of the keystore set in step 6.

8. Specify the alias of the certificate to be imported.

9. Set the path to the certificate authority that signed the certificate to be imported.

NOTE

PEM format certificate authorities can be imported and trusted.

Example zowe yaml for scenario 2 (PKCS12):

Click here for details.

https://www.ibm.com/support/pages/apar/IJ48749
https://www.youtube.com/playlist?list=PL8REpLGaY9QERUmM--1USMF8yOG-Awzwn
https://medium.com/zowe/step-by-step-guide-use-a-pkcs12-file-based-keystore-with-zowe-generated-certificate-365dc48eea29

Your yaml file is now configured to enable Zowe to use a file-based PKCS12 keystore to import a certificate generted

by another CA.

Scenario 3: Use a z/OS keyring-based keystore with Zowe

generated certificates

Use this procedure to configure the zowe.setup.certificate section in your yaml file to enable Zowe to use a z/OS

keyring-based keystore with Zowe generated certificates.

1. Set the type of the certificate storage to one of the following keyring types:

JCEKS

JCECCAKS

JCERACFKS

JCECCARACFKS

JCEHYBRIDRACFKS

2. Add the parameter createZosmfTrust and set to true.

3. Under the nested subsection keyring: , specify the following keyring values:

keyring name

Label of Zowe certificate. The default value is localhost .

Label of Zowe CA certificate. The default value is localca .

The distinguished name for Zowe generated certificates.

4. Set the validity in days for the Zowe generated certificates

5. Set the domain names and IPs specified in the certificate SAN. If this field is not defined, the zwe init

command uses the value zowe.externalDomains .

NOTE

Due to the limitation of the RACDCERT command, this field should contain exactly two entries with the domain

name and IP address.

Example zowe yaml for scenario 3:

Your yaml file is now configured to enable Zowe to use a z/OS keyring-based keystore with Zowe generated

certificates.

Click here for details.

Scenario 4: Use a z/OS keyring-based keystore and connect to an

existing certificate

Use this procedure to configure the zowe.setup.certificate section in your yaml file to use a z/OS keyring-based

keystore and connect to an existing certificate.

1. Set the type of the certificate storage to one of the following keyring types:

JCEKS

JCECCAKS

JCERACFKS

JCECCARACFKS

JCEHYBRIDRACFKS

2. Under keyring: , specify the keyring name:

3. Under the nested subsection connect: , specify the following parameters:

The current owner of the certificate. Possible values can be SITE or a user ID.

The label of the existing certificate to be connected to the Zowe keyring.

All certificate authorities you want to be trusted in the Zowe keyring.

NOTE

Due to the limitation of RACDCERT command, this field should contain a maximum of 2 entries.

The following example uses an existing JCERACFKS certificate for Zowe's z/OS components. For more information

about configuration in this scenario, see this Medium blog post, or the video tutorials in this YouTube playlist.

Example zowe yaml for scenario 4:

If you would like to use this example in your Zowe configuration YAML file, replace the following four fields with your

own values:

Replace ZoweKeyringZOSMF with the your own key ring name.

Replace IZUSVR with the user name who is the owner of the existing certificate.

Replace DefaultzOSMFCert.IZUDFLT with the label of the existing certificate you are connecting to (which is

owned by the previously referenced user ID).

Replace zOSMFCA with the certificate authority that is used to sign the certificate.

Your yaml file is now configured to use a z/OS keyring-based keystore and connect to an existing certificate.

Click here for details.

https://medium.com/zowe/master-zowe-certificates-use-an-existing-jceracfks-certificate-for-zowes-z-os-components-975ffa0d9f2f
https://www.youtube.com/playlist?list=PL8REpLGaY9QEHLNA81DRgGqWcgOYC0PDX

Scenario 5: Use a z/OS keyring-based keystore and import a

certificate stored in a data set

Use this procedure to configure the zowe.setup.certificate section in your yaml file to use a z/OS keyring-based

keystore and import a certificate stored in a data set.

1. Set the type of the certificate storage to one of the following keyring types:

JCEKS

JCECCAKS

JCERACFKS

JCECCARACFKS

JCEHYBRIDRACFKS

2. Under keyring: , specify the following keyring values:

keyring name

Label of Zowe certificate. The default value is localhost .

3. Under the nested subsection import: specify the following parameters:

The name of the data set holds the certificate issued by another CA. This data set should be in PKCS12

format and contain private key.

The password for the PKCS12 data set.

Example zowe yaml for scenario 5:

Your yaml file is now configured to use a z/OS keyring-based keystore and import a certificate stored in a data set.

Click here for details.

Version: v3.3.x LTS

Importing and configuring a certificate

One option to use certificates in Zowe is to import and configure existing certificates. Use the procedure that applies to

the type of certificate you wish to import.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

Choose from the following certificate importing options:

Importing a file-based PKCS12 certificate

Importing a JCERACFKS certificate

Importing a certificate stored in an MVS data set into a Zowe key ring.

Importing an existing PKCS12 certificate

To import a PKCS12 certificate, it is first necessary to import a certificate authority (CA). There are two options for

importing a CA:

Manually importing a certificate authority into a web browser

Importing a local CA certificate on Linux

Once you have imported your CA, you can configure the zowe.yaml according to Scenario 2: Use a file-based (PKCS12)

keystore and import a certificate generated by another CA described in the article Certificate configuration scenarios.

For PKCS12 certificate users, specify the following parameters in the zowe.yaml file:

Parameter Description

zowe.setup.certificate.pkcs12.import.keystore

Specify this parameter if you acquired one or more certificates

from another CA, stored them in PKCS12 format, and now want

to import the certificate(s) into the Zowe PKCS12 keystore.

zowe.setup.certificate.pkcs12.import.password
Specify this password value for the keystore defined in

zowe.setup.certificate.pkcs12.import.keystore .

zowe.setup.certificate.pkcs12.import.alias
This value is the original certificate alias defined in

zowe.setup.certificate.pkcs12.import.keystore .

zowe.setup.certificate.pkcs12.name The imported certificate is saved under the alias specified in it.

Configure zowe.yaml for a PKCS12 certificate:

NOTE

https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios#scenario-2-use-a-file-based-pkcs12-keystore-and-import-a-certificate-generated-by-another-ca
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios#scenario-2-use-a-file-based-pkcs12-keystore-and-import-a-certificate-generated-by-another-ca

Due to the limitation of the RACDCERT command, the importCertificateAuthorities field can contain a maximum

of two entries.

You can now use your imported PKCS12 certificate. See next steps.

Importing a certificate Authority (CA)

Importing a certificate authority (CA) is a prerequisite to importing a PKCS12 certificate. Use the method that applies to

your use case.

Manually importing a certificate authority into a web browser

Importing a local CA certificate on Linux

Manually importing a certificate authority into a web browser

To avoid the browser untrusted CA challenge, import Zowe certificates into the browser.

Trust in the API ML server is a necessary precondition for secure communication between the browser or API Client

application. Ensure this trust by installing a Certificate Authority (CA) public certificate. By default, API ML creates a local

CA. Import the CA public certificate to the truststore for REST API clients and to your browser. You can also import the

certificate to your root certificate store.

TIP

If a SAF keyring is used and set up with ZWEKRING JCL, the procedure to obtain the certificate does not apply. In this

case, we recommended that you work with your security system administrator to obtain the certificate.

The public certificate in PEM format is stored in a USS directory a defined in the zowe.yaml configuration file in the

section zowe.certificate.pem.certificateAuthorities . The certificate is stored in UTF-8 encoding so you need to

transfer the certificate as a binary file. Since this is the certificate to be trusted by your browser, it is recommended to

use a secure connection for transfer.

NOTE

Windows currently does not recognize the PEM format. For Windows, use the P12 version of the local_cer .

Importing commands according to your operating system

To import the certificate to your root certificate store and trust it, follow the applicable procedure based on your

operating system.

Note: Ensure that you open the terminal as administrator. This operation installs the certificate to the Trusted

Root Certification Authorities.

For Windows, click here for command details.

https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail

Manually import your root certificate via the Firefox settings, or force Firefox to use the Windows truststore. As a

default, Firefox uses its own certificate truststore.

Create a new Javascript file firefox-windows-truststore.js at C:\Program Files (x86)\Mozilla

Firefox\defaults\pref with the following content:

TIP

To avoid requiring each browser to trust the CA that signed the Zowe certificate, you can use a public certificate

authority to create a certificate. Optional public certificate authorities include Symantec, Comodo, Let's Encrypt, or

GoDaddy. Certificates generated by such public CAs are trusted by all browsers and most REST API clients. This

option, however, requires a manual process to request a certificate and may incur a cost payable to the publicly

trusted CA.

After successfully manually importing a certificate authority into a web browser, you can now import an existing PKCS12

certificate.

Importing a local CA certificate on Linux

Zowe also supports importing certificates to make REST HTTPS curl request from the command line.

Follow these steps to import local_ca.cer from the path .../zowe/keystore/local_ca .

NOTE

Steps are verified with Ubuntu 20.04.6 LTS.

1. Rename local_ca.cer with local_ca.crt and copy to the shared ca-certificates path.

$ cp local_ca.cer /usr/local/share/ca-certificates/zowe_local_ca.crt

2. Execute a ca-certificate store update by running the following command:

$ sudo update-ca-certificates

3. Verify that the new expected certificate was added (the newest will be at the bottom of the list which contains an

extended list of concatenated CAs).

$ cat /etc/ssl/certs/ca-certificates.crt

4. Run a basic curl HTTPS request from the command line. For example, run the following command:

For macOS, click here for command details.

For Firefox, click here for command deails.

After successfully importing your local CA certificate on Linux, you can now import an existing PKCS12 certificate.

Importing an existing JCERACFKS certificate

To import a JCERACFKS certificate, use the example yaml according to Scenario 4: Use a z/OS keyring-based keystore

and connect to an existing certificate in the article Certificate configuration scenarios.

To use a JCERACFKS certificate, specify the following parameters in the zowe.yaml file:

Parameter Description

zowe.setup.certificate.keyring.connect.user
This is a required parameter that specifies the owner of existing

certificate. This field can have value of SITE or a user ID.

zowe.setup.certificate.keyring.connect.label
This is a required parameter that sets the label of an existing

certificate.

Configure zowe.yaml for a JCERACFKS certificate:

NOTE

Due to the limitation of the RACDCERT command, the importCertificateAuthorities field can contain a maximum

of two entries.

You can now use your imported JCERACFKS certificate. See next steps.

Importing a certificate stored in an MVS data set into a Zowe key

ring

To import a certificate that is stored in a data set into a key ring, configure the zowe.yaml according to the example yaml

in Scenario 5: Use a z/OS keyring-based keystore and import a certificate stored in a data set

To use a JCERACFKS certificate, specify the following parameters in the zowe.yaml file.

Parameter Description

zowe.setup.certificate.keyring.connect.dsName
This is a required parameter which specifies the data set

where the certificate stored.

zowe.setup.certificate.keyring.connect.password
This parameter specifies the password when importing the

certificate.

zowe.setup.certificate.keyring.label
This parameter specifies that label of the certificate that is

imported.

Configure zowe.yaml for a JCERACFKS certificate stored in an MVS data set:

https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios#scenario-4-use-a-zos-keyring-based-keystore-and-connect-to-an-existing-certificate
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios#scenario-4-use-a-zos-keyring-based-keystore-and-connect-to-an-existing-certificate
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios#scenario-5-use-a-zos-keyring-based-keystore-and-import-a-certificate-stored-in-a-data-set

The configuration of zowe.setup.certificate populates information to be used by the subcommand zwe init

certificate of zwe init .

Next steps

Once your certificate is successfully imported, review the documentation about how to use certificates in a Zowe

production environment.

https://docs.zowe.org/stable/user-guide/use-certificates

Version: v3.3.x LTS

Generating a certificate

If you do not have a certificate, follow the procedure in this article that corresponds to the certificate type you choose to

generate.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

Choose from the following certificate types:

Creating a PKCS12 certificate

Creating a JCERACFKS certificate

Both certificate types are self-signed certificates.

Creating a PKCS12 keystore

Use can create PKCS12 certificates that are stored in USS. This certificate is used for encrypting TLS communication

between Zowe clients and Zowe z/OS servers, as well as intra z/OS Zowe server to server communcation. Zowe uses a

keystore directory to contain its external certificate, and a truststore directory to hold the public keys of servers it

communicate with (for example z/OSMF).

Follow these steps to generate a PKCS12 keystore:

1. Configure the PKCS12 setup section in zowe.yaml

2. Run the command to generate a PKCS12 keystore

Configure the PKCS12 setup section in zowe.yaml

To assist with updating zowe.yaml , see the example yaml for scenario 1: Use a file-based (PKCS12) keystore with Zowe

generated certificates in the article Certificate configuration scenarios.

For PKCS12 certificate users, customize the following parameters in the zowe.yaml file:

Parameter Description

zowe.setup.certificate.pkcs12.directory

Specifies the directory where you plan to store the PKCS12 keystore

and truststore. This is required if zowe.setup.certificate.type is

PKCS12.

zowe.setup.certificate.pkcs12.lock

Is a boolean configuration to tell if we should lock the PKCS12

keystore directory only for Zowe runtime user and group. Default

value is true.

zowe.setup.certificate.pkcs12 (Optional) Defines name, password, caAlias and caPassword to customize the

keystore and truststore. It is recommended to update these values

https://docs.zowe.org/stable/user-guide/generate-certificates/certificate-configuration-scenarios.md/#scenario-1-use-a-file-based-pkcs12-keystore-with-zowe-generated-certificates
https://docs.zowe.org/stable/user-guide/generate-certificates/certificate-configuration-scenarios.md/#scenario-1-use-a-file-based-pkcs12-keystore-with-zowe-generated-certificates

Parameter Description

from the default values. Note: Alias names should be all in lower

case.

dname (Optional)

Specifies the distinguished name. Domain names and IPs should be

added into certificate SAN. If the field san is not defined, the zwe

init command uses zowe.externalDomains .

Configuring the zowe.yaml file for a PKCS12 certificate

The following zowe.yaml example generates the following artifacts:

A PKCS12 certificate, specified in zowe.setup.certificate.type .

A keystore directory /var/zowe/keystore , specified in zowe.setup.certificate.pkcs12.directory .

A certificate name (or alias) localhost , specified in zowe.setup.certificate.pkcs12.name .

A certificate authority name local_ca , specified in zowe.setup.certificate.certificate.pkcs12.caAlias .

Example zowe.yaml using PKCS12:

TIP

To get the san IP address, run ping dvipa.my-company.com in your terminal.

Run the command to generate a PKCS12 keystore

After you configure the zowe.yaml , use the following procedure to generate the PKCS12 certificate.

1. Log in to your system. In this example, run ssh dvipa.my-company.com with your password.

2. Run the following command in the directory with this zowe.yaml in the terminal to generate the certificate and

update the configuration values in the zowe.yaml file.

zwe init certificate -c <path-to-your-zowe-configuration-yaml> --update-config

The following command output shows the generation of a PKCS12 keystore using the default values, and has the

following associated artifacts. (Note that some detailed output messages have been omitted.)

The CA is created.

The keystore is created and the CA is added to the keystore.

The certificate is created and is added to the keystore.

The truststore is created.

Directory permissions are changed to restrict access to the private key.

Command output:

The zwe init certificate command generates a certificate based on zowe.yaml values in the

zowe.setup.certificate section. The certificate values used at runtime are referenced in the zowe.certificate

section in the zowe.yaml file. The command zwe init certificate -c <path-to-your-zowe-configuration-yaml> --

update-config updates the runtime zowe.certificate section to reference the generated certificate generated from

the zowe.setup.certificate .

3. Open the zowe.yaml file to check the references to the newly generated certificate values as shown in the following

code snippet:

Updated zowe.certificate section in zowe.yaml :

4. (Optional) For details about the certificate you generated, run the following command:

keytool -v -list -keystore localhost.keystore.p12 -storetype PKCS12

You completed the procedure to generate a PKCS12 keystore.

For more information about additional commands to manage a keystore, see the keytool documentation.

Next steps after PKCS12 setup

When using a Zowe-generated certificate, you will be challenged by your browser when logging in to Zowe to accept

Zowe's untrusted certificate authority. Depending on the browser you are using, there are different ways to proceed. See

next steps about how to import the PKCS12 certificate to your browser.

Creating a JCERACFKS certificate

You can create a JCERACFKS certificate for use in a z/OS keystore. JCERACFKS uses SAF and RACF services to protect key

material and certificates.

Use the following procedure to configure the zowe.yaml file for JCERACFKS certificates:

1. Configure the JCERACFKS setup section in zowe.yaml

2. Run the command to generate a JCERACFKS certificate

To assist with updating zowe.yaml , see the example yaml in Scenario 3: Use a z/OS keyring-based keystore with Zowe

generated certificates in the article Certificate configuration scenarios.

Configure the JCERACFKS setup section in zowe.yaml

For JCERACFKS certificate (z/OS key ring) users, customize the following parameters in the zowe.yaml file:

Parameter Description

zowe.setup.certificate.keyring.owner

The key ring owner. This parameter is optional and the default value is

zowe.setup.security.users.zowe . If this parameter is not defined, the

default value is ZWESVUSR.

zowe.setup.certificate.keyring.name
Specifies the key ring name to be created on z/OS. This parameter is

required if zowe.setup.certificate.type is JCERACFKS .

The following zowe.yaml example generates the following artifacts:

A JCERACFKS certificate, specified in zowe.setup.certificate.type .

https://docs.oracle.com/en/java/javase/11/tools/keytool.html
https://docs.zowe.org/stable/user-guide/import-certificates
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios#scenario-3-use-a-zos-keyring-based-keystore-with-zowe-generated-certificates
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios#scenario-3-use-a-zos-keyring-based-keystore-with-zowe-generated-certificates

A key ring named ZoweKeyring specified in zowe.setup.certificate.keyring.name .

A certificate with the label localhost specified in zowe.setup.certificate.keyring.label .

A certificate authority with the label localca specified in zowe.setup.certificate.keyring.caLabel with a

common name Zowe Service CA .

Example zowe.yaml file using a JCERACFKS certificate:

NOTES:

Alias names should be all lower cases.

The name and lables shown above are the default value in zowe.yaml .

dname for distinguished name is all optional.

Domain names and IPs should be added to the certificate SAN. If the field san is not defined, the zwe init

command will use zowe.externalDomains . The value for the san parameter presented in the example is for

demonstration purposes.

Run the command to generate a JCERACFKS certificate

After you configure the zowe.yaml , use the following procedure to generate a JCERACFKS certificate.

1. Log in to your system. In this example, run ssh dvipa.my-company.com with your password.

2. Run the following command in the directory with this zowe.yaml in terminal to generate the certificate and update

the configuration values in zowe.yaml .

zwe init certificate -c <path-to-your-zowe-configuration-yaml> --update-config

When the command is run, a customized JCL member name is created in the CUST.JCLLIB data set. The PDS name

is defined in the zowe.setup.dataset.jcllib property. In the following example output, the PDS member

USER.ZWE3.CUST.JCLLIB(ZW101431) is created that contains the security manager commands, and then submitted

as a job ID: ZWEKRING(JOB03054) .

The following command output shows the generation of a JCERACFKS certificate using the default values. Note that some

detailed output messages have been omitted.

Command output:

TIP

As shown in the example, the job ends with code 0 . There may, however, be failures in the individual steps. It is

advised to check the job output. The security manager commands in the job are generated based on the value of

zowe.security.product . Job steps for each product can be determined by the security manager.

3. Open the zowe.yaml file to check the references to the newly generated certificate values. Because the --update-

config parameter was specified, the runtime configuration section of zowe.yaml is updated to match the values to

the generated keystore, certificate, and certificate authority. The updated section is shown in the following code

snippet:

Updated zowe.certificate section in zowe.yaml :

NOTE

zowe.certificate.keystore.password has a hardcoded password value. If you are using type: PKCS12 , the

password field must be the real password.

You completed the procedure to generate a JCERACFKS certificate.

Next steps after JCERACFKS setup

For more information about how to use your JCERACFKS certificate, see Use JCERACFKS certificates.

https://docs.zowe.org/stable/user-guide/use-certificates

Version: v3.3.x LTS

Using certificates

Once you have generated or imported your certificates, you can now use the certificates with Zowe. Use the procedure

descibed in this article that corresponds to the type of certificates you generated or imported.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

Choose from the following procedures:

Use PKCS12 certificates

Use JCERACFKS certificates

Use PKCS12 certificates

To use PKCS12 certificates, run the command zwe start -c ./zowe.yaml in the directory with the zowe.yaml file to

start Zowe.

Details about the PKCS12 certificate used when Zowe is launched are specified in the zowe.yaml section certificates .

This section contains information about the certificate name and the location of the certificate, together with the

truststore location.

The two most common scenarios for using a PKCS12 certificate are:

You have an existing certificate and wish to configure Zowe to use the certificate.

You do not have a certificate and wish to generate a new certificate.

The zwe init certificate command supports both scenarios. The input parameters that control certificate

configuration are specified in the section zowe.setup.certificates .

To troubleshoot issues during Zowe startup, see Troubleshooting startup of Zowe z/OS components.

Use JCERACFKS certificates

Details about the JCERACFKS certificate used when Zowe is launched are specified in the zowe.yaml section

certificates . This section contains information about the certificate name and location, together with the truststore

location.

The two most common scenarios for using a JCERACFKS certificate are:

You have been given an existing certificate and wish to configure Zowe to use it.

You do not have a certificate and wish to generate a new one.

The zwe init certificate command supports both scenarios. The input parameters that control certificate

configuration are specified in the section zowe.setup.certificates . See the example of connecting a JCERACFKS

certificate below.

https://docs.zowe.org/stable/user-guide/generate-certificates
https://docs.zowe.org/stable/troubleshoot/troubleshoot-zos-startup

Example:

Note: In this example, the command zwe init certificate -c ./zowe.yaml --security-dry-run allows the JCL to be

inspected before submission, as well as handed off to a security administrator who has privileges to submit the JCL

under their user ID. By default, the JCL id submitted immediately. For details about this example, see this playlist.

https://youtube.com/playlist?list=PL8REpLGaY9QEHLNA81DRgGqWcgOYC0PDX

Use an existing JCERACFKS certificate 1 - Identify your certUse an existing JCERACFKS certificate 1 - Identify your cert……

https://www.youtube.com/watch?list=PL8REpLGaY9QEHLNA81DRgGqWcgOYC0PDX&v=2vAT70hcXxs

Version: v3.3.x LTS

Setting up Zowe certificates using workflows

Zowe can use certificates that are held in z/OS Keyring.

You can use four z/OSMF workflows that enable you to manage keyring setup, certificates, certificate sign requests, and

signatures, and load certificates to a keyring.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

Use the following workflows to set up certificates for Zowe in your environment:

1. Set up a Zowe certificate and keyring using ZWEKRING.xml

The ZWEKRING.xml workflow sets up a Zowe certificate and keyring. The workflow helps you set up the certificate

and keyring and has the following features:

Generates a Zowe certificate that is signed by the Zowe local CA

Imports an existing certificate that is held in z/OS to the keyring for Zowe

Imports an external Zowe certificate from a data set in PKCS12 format

Connects a z/OSMF certificate authority to the Zowe keyring

The workflow includes the steps that you can see on the following image:

Based on the variable setup from the first step, the workflow can perform various certificate configurations and

connect certificates to a keyring in RACF, TSS, and ACF2 security systems.

2. Create a certificate sign request (CSR) using ZWECRECR.xml

The ZWECRECR.xml workflow creates a CSR request and has the following features:

Based on a variable setup, generates a certificate sign request.

You must define variables.

A CSR request is stored into a data set. Then the data set is automatically converted into a USS file.

You must specify the USS file path.

The workflow includes the steps that you can see on the following image:

Note: You can find links to the specific security systems (BCM, IBM) official documentation in the instructions section

of the workflow in related steps.

3. Sign a CSR request using ZWESIGNC.xml

The ZWESIGNC.xml workflow signs a CSR request.

After the successful workflow execution, the certificate is signed by the specified certificate authority and is stored in

USS.

The workflow includes the steps that you can see on the following image:

Fill in the fields, that you can see on the following image, to sign a CSR request. Ensure that the workflow includes

the following information:

A USS location path of the CSR file

A USS location path where a signed certificate is stored in pem format

4. Load the Signed Client Authentication Certificate into ESM using ZWELOADC.xml

The ZWELOADC.xml workflow loads a signed client authentication certificate into a specific ESM under your ACID.

The workflow can load ASCII- or EBCDIC-encoded certificate into a data set. Then, based on the variable setup, the

workflow loads the certificate into a specific ESM.

The workflow includes the steps that you can see on the following image:

When you complete setting up Zowe certificate using workflows, you are ready to start the cross memory server

ZWESISTC on z/OS.

https://docs.zowe.org/stable/user-guide/start-zowe-zos
https://docs.zowe.org/stable/user-guide/start-zowe-zos

Version: v3.3.x LTS

Customizing Native TLS

Zowe's servers have built-in TLS support to enable HTTPS connections.

This support is the default, and an alternative to using AT-TLS. For information about using AT-TLS, see Configuring AT-TLS

for Zowe Server.

REQUIRED ROLE: SECURITY ADMINISTRATOR

Server Parameters

Each Zowe server can be customized by defining attributes within the zowe.network.server object of the Zowe YAML

configuration file. Alternatively, the same object can be put within an individual component's configuration, such as

components.zss.zowe.network.server for ZSS. This option allows you to customize each component separate from

other components.

Extensions are recommended to adhere to the specific configuration. Ensure that you review the documentation for your

extension.

IP Addresses

Zowe's servers by default use the TCP IP address 0.0.0.0 which assigns the servers to be available on all network

interfaces available to the jobs.

If this default is not desired, you can either change the configuration either within Zowe or by setting TCPIP port

assignment statements. For more information, see IP Addresses in the article Addressing network requirements.

To customize IP addresses within Zowe, define the parameter zowe.network.server.listenAddresses . For example, to

have all Zowe servers use IP 1.2.3.4 , except for App Server which will use IP 2.3.4.5 , set the following section in your

Zowe YAML:

TLS Versions

By default, Zowe servers use TLSv1.3.

To customize the version, you use the parameters zowe.network.server.tls.minTls and

zowe.network.server.tls.maxTls . The following values are allowed:

TLSv1.2

TLSv1.3

Zowe defaults to the following configuration:

TLS Ciphers

Zowe is always updating the ciphers used to follow industry best practice.

https://docs.zowe.org/stable/user-guide/configuring-at-tls-for-zowe-server
https://docs.zowe.org/stable/user-guide/configuring-at-tls-for-zowe-server
https://docs.zowe.org/stable/user-guide/address-network-requirements#ip-addresses

Usually, the ciphers used by Zowe will match Mozilla's recommendations:

https://wiki.mozilla.org/Security/Server_Side_TLS

To customize which ciphers Zowe uses, you can define a list of IANA cipher names within the Zowe YAML parameter

zowe.network.server.tls.ciphers . A list of IANA ciphers can be found here.

Client parameters

The properties within zowe.network.server.tls can also be specified within zowe.network.client.tls .

Default and example

The default TLS configuration changes regularly as needed for industry standards, however the following yaml file

section is an example of the defaults:

Example:

https://wiki.mozilla.org/Security/Server_Side_TLS
https://testssl.sh/openssl-iana.mapping.html

Version: v3.3.x LTS

Enabling AT-TLS

Zowe's core components use TLS networking as well as support AT-TLS as an alternative. The built-in TLS networking is

enabled by default. To learn more, see configuring the built-in TLS.

You can configure parameters in Zowe servers to switch to AT-TLS. Review this article for information about AT-TLS

inbound and outbound rules, and the required configuration to use AT-TLS in high availability. You can also find

troubleshooting tips as well as security recommendations.

ROLE: SECURITY ADMINISTRATOR

AT-TLS configuration for Zowe

Follow these steps to configure Zowe to support AT-TLS:

While TLS is not handled by the Zowe Server components with AT-TLS enabled on their own, the API Mediation Layer (API

ML) requires information about the server certificate that is defined in the AT-TLS rule. Ensure that the server certificates

provided by the AT-TLS layer are trusted in the configured Zowe keyring. We strongly recommend that AT-TLS be

configured with the same Zowe keyring.

NOTES

As the API ML Gateway is a core component of API ML, other components that need to interact with the

Gateway, such as Zowe App Server, also require AT-TLS configuration.

Do not set attls: true together with minTls or maxTls . Zowe does not handle TLS in AT-TLS aware mode.

IMPORTANT SECURITY CONSIDERATION

Configuring AT-TLS for Zowe requires careful consideration of security settings. These security settings apply to the

Client Certificate authentication feature in Zowe API Mediation Layer components, as well as for onboarded services

that support the x.509 client certificates authentication scheme.

Outbound AT-TLS rules (i.e. to make a transparent https call through http) that are configured to send the server

certificate should be limited to the services that require service to service authentication. If an API ML-onboarded

southbound service needs to support X.509 client certificate authentication, we recommend to use the integrated

TLS handshake capabilities of API ML. Do not configure an outbound AT-TLS rule for these services.

The Discovery Service endpoints are not reachable by standard API Gateway routing by default.

Zowe v3 includes a new component named ZAAS (Zowe Authentication and Authorization Service). In AT-TLS-aware

mode, calls to this service are all internal between API ML components. These must include the X.509 Client

Certificate.

Limitations when using AT-TLS with ICSF Hardware keyring

https://docs.zowe.org/stable/user-guide/tls-configuration

API ML cannot currently read private keys if they reside in a hardware module. When using AT-TLS with a z/OS Keyring

with private keys stored or managed by ICSF, use one of the following options:

Prevent API Mediation Layer from reading the private key

Use an alternative non-hardware keyring

Prevent API ML from reading the private key

Set environments.APIML_ATTLS_LOAD_KEYRING: true in zowe.yaml to prevent API ML from loading the keyring. The only

supported configuration is Zowe with the z/OSMF authentication provider in JWT mode. This mode requires both server

and client AT-TLS enabled in the zowe.yaml with full coverage of Inbound and Outbound rules.

NOTE

The z/OSMF LTPA token, SAF native authentication provider, and Personal Access Tokens (PAT) cannot be used in this

configuration as there is not a private key.

Use an alternative non-hardware keyring

Since handshakes are handled by AT-TLS, API ML only requires access to the private key to sign API ML's own tokens

when the configuration requires it. The following scenarios require a private key so that API ML is able to sign API ML's

own tokens:

Personal Access Tokens

SAF native provider (API ML signs its own JWT in this scenario)

z/OSMF in LTPA mode: in this scenario z/OSMF does not issue a JWT. API ML signs the JWT that contains the LTPA

token.

AT-TLS rules

This section describes suggested AT-TLS settings, and serves as guidelines to set your AT-TLS rules.

Inbound rules

A generic inbound rule can be set for all Zowe services:

The PortRange of this inbound rule is taken from the list of API Mediation Layer components in the zowe.yaml file. The

PortRange should cover the following components:

Port number Category Component Default Jobname

7552 API Mediation Layer api-catalog ZWE1AC

7553 API Mediation Layer discovery ZWE1AD

7554 API Mediation Layer gateway ZWE1AG

7555 API Mediation Layer Caching Service ZWE1CS

Port number Category Component Default Jobname

7556 App Framework app-server ZWE1DS & ZWE1SV

7557 App Framework zss ZWE1SZ

7558 API Mediation Layer zaas ZWE1AZ

More information on each component's networking requirements can be found at Addressing network requirements.

Follow this step:

Replace ZoweKeyring with the keyring configured for your installation. Follow the SAF keyring instructions in the article

Zowe Certificates overview to configure keyrings for your Zowe instance.

Note the setting HandshakeRole . This setting applies to core services which authenticate through certificates with each

other. This setting allows the API Gateway to receive and accept X.509 client certificates from API Clients.

For more granularity in the AT-TLS rules, separate the rules that need to support Client Certificate authentication

(Discovery Service, Gateway Service) from the rules that do not need to support Client Certificate authentication (for

example a rule covering API Gateway to an onboarded service).

Outbound rules

Outbound rules in this section allow Zowe services to communicate with each other and to other southbound services

using HTTP.

IMPORTANT:

Careful consideration needs to be made regarding which rules are to be configured to send a Client Certificate.

Since configuration cannot be performed on a per-request basis, it is essential not to configure the rule to send the

Zowe Server certificate to the API Gateway or to a southbound service that supports X.509 Client Certificate

authentication. Doing so will result in unintentionally authenticating the server ACID.

Example:

Outbound rule for z/OSMF

This example rule covers the connection between the API Gateway and ZAAS and the z/OSMF instance. This connection

is made to authenticate users in z/OS.

If zowe.network.client.tls.attls is true , this rule is assumed set. The requests to z/OSMF are issued using http .

NOTE

Jobname is defined explicitly for the API Gateway and ZAAS component and is formed with the zowe.job.prefix

setting from zowe.yaml plus AG (Gateway) and AZ (ZAAS) suffixes. Choosing ZWE1A* as a jobname pattern

captures both servers.

Outbound rule for communication between Zowe core components

https://docs.zowe.org/stable/user-guide/address-network-requirements
https://docs.zowe.org/stable/getting-started/zowe-certificates-overview#saf-keyring

Use the example in this section as a template for internal connections between Zowe core services.

IMPORTANT

The outbound connection from the Gateway Service to the Discovery Service must be configured without a

CertificateLabel . Ensure that the certificate label is not included (but keep the CertificateLabel field) to avoid

sending the certificate in case routing would be possible to the Discovery Service. Note that this route is disabled by

default.

Outbound rule for communication between API Gateway and extensions' servers

In this example, the rule covers all outbound connections originating from the API Gateway to a server that is not part of

Zowe, such as an extension's server, listening on port 8080. Such a rule can apply to any remote destination, as seen in

the ApimlClientRule for Zowe core servers in the section Outbound rule for communication between Zowe core

components.

This example covers routing scenarios.

IMPORTANT

Outbound connections from the Gateway to southbound services (onboarded services) must not send the

server certificate if the service accepts X.509 Client Certificate authentication. If the server certificate is sent,

the server user is subsequently authenticated.

Outbound rule for services that validate tokens against the API Mediation Layer

In this scenario, the services issue a request against the API Gateway to validate the received authentication token.

This scenario includes services that set zoweJwt as the authentication scheme, those that require an Open ID Connect

(OIDC) token, or forwarded X.509 certificates.

In this case, it is necessary to have an Outbound rule from the service to the API Gateway.

These services also already have an outbound rule set for the onboarding process against the Discovery Service.

Ensure these rules are followed:

Outbound rule to Discovery Service: Sends X.509 Client Certificate to authorize the onboarding.

Outbound rule to API Gateway: Do not set a Client Certificate.

Ciphers

NOTE

This list of ciphers is provided as an example only. Actual ciphers should be customized according to your specific

configuration.

Click here for the example of a rule covering API Gateway to extension servers

https://docs.zowe.org/stable/user-guide/configuring-at-tls-for-zowe-server#outbound-rule-for-communication-between-zowe-core-components
https://docs.zowe.org/stable/user-guide/configuring-at-tls-for-zowe-server#outbound-rule-for-communication-between-zowe-core-components

The list of supported ciphers should be constructed according to the TLS supported versions. Ensure that the cipher list

has matches with non-AT-TLS-aware clients.

Using AT-TLS for API ML in High Availability

AT-TLS settings for a Zowe installation configured in High Availability mode do not differ extensively. Changes need to be

made to the previously described rules to allow for cross-lpar communication:

Ensure that the RemoteAddr setting in the rules accounts for the following connections:

Discovery Service to Discovery Service. This is the replica request.

Gateway Service to southbound services (including app-server and ZSS) running in another LPAR.

Gateway Service to ZAAS running in another LPAR.

Southbound services to Discovery Service. This applies during onboarding.

All outbound connections need to account for all LPARs including the same where the rules are applied.

Multi-tenancy deployment

For a specific scenario when Central API ML is running on z/OS with AT-TLS enabled, it is important to override the

protocol for the external URL. This information is used by the Central API ML to call domain API ML and needs to reflect

the outbound AT-TLS rule. In this case, update your domain API ML configuration:

AT-TLS Troubleshooting

This section describes some common issues when using AT-TLS with Zowe and how to resolve these issues.

The message This combination of port requires SSL is thrown when accesing an API

ML service through a Browser

Make sure the URL starts with https:// . This message indicates that AT-TLS rules are in place and it is trying to connect

on an unsecured port to the API Gateway, however the latter is still only listening on a application-controlled secured

port.

Solution: Review settings in the API Gateway. Ensure that the changes described in AT-TLS configuration for Zowe are

applied.

AT-TLS rules are not applied

If the application is responding in http, the application may not be properly configured to support http-only calls. AT-TLS

is not correctly configured.

Solution:

Click here for an example of Cipher parameters.

Ensure the rules are active and that the filters on port range and job names are properly set.

Non matching ciphers / protocols

An error can occur if the list of ciphers or the TLS protocol does not match between the ones configured in the AT-TLS

rules and the ones used by non AT-TLS-aware clients.

Solution: Review the supported TLS versions and ciphers used in both the client and the server.

Additional troubleshooting

When asking for support make sure to follow IBM guides for troubleshooting AT-TLS problems. This is covered in the

"Diagnosing Application Transparent Transport Layer Security (AT-TLS)" article on IBM documentation.

Ensure you collect the logs and current configurations when contacting support.

Full example of AT-TLS configuration

Review a full working example of an AT-TLS configuration file on z/OS, specifically used for defining secure

communication between different services in a mainframe environment. All port values are examples. The example is

commented for convenience.

Click here to display the full AT-TLS configuration file.

Version: v3.3.x LTS

Configuring the Zowe cross memory server (ZIS)

The Zowe cross memory server (ZIS) provides privileged cross-memory services to the Zowe Desktop and runs as an

APF-authorized program. The same cross memory server can be used by multiple Zowe desktops. The cross memory

server is required to log on to the Zowe desktop and operate the desktop apps such as the Code Editor. If you wish to

start Zowe without the desktop (for example bring up just the API Mediation Layer), you do not need to install and

configure a cross memory server and can skip this step.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

IMPORTANT

This article describes how to configure the cross server manually. However, most of this configuration should

already be performed during Zowe configuration. If you have already successfully run the zwe init command, the

load modules are already installed, and APF authorization and SAF configuration is complete.

In this case, the final step is to configure the load modules to run in key 4 non-swappable.

To install and configure the cross memory server, it is necessary to define APF-authorized load libraries, program

properties table (PPT) entries, and a parmlib. Performing these steps requires familiarity with z/OS.

Configuring the Zowe cross memory server (ZIS)

PDS sample library and PDSE load library

Load module

APF authorize

Configuring using zwe init apfauth

Key 4 non-swappable

PARMLIB

PROCLIB

SAF configuration

Zowe auxiliary service

Installing the auxiliary service

Zowe Auxiliary Address space

Summary of cross memory server installation

Starting and stopping the cross memory server on z/OS

Troubleshooting

Next step

PDS sample library and PDSE load library

The cross memory server runtime artifacts, the JCL for the started tasks, the parmlib, and members containing sample

configuration commands are found in the SZWESAMP PDS sample library.

The load modules for the cross memory server and the corresponding auxiliary server are found in the SZWEAUTH PDSE.

https://docs.zowe.org/stable/user-guide/configuring-overview

Convenience Build

The location of SZWESAMP and SZWEAUTH for a convenience build depends on the value of the

zowe.setup.dataset.prefix parameters in the zowe.yaml file used to configure the zwe install command, see

Install the MVS data sets.

SMP/E

For an SMP/E installation, SZWESAMP and SZWEAUTH are the SMP/E target libraries whose location depends on the

value of the #thlq placeholder in the sample member AZWE001.F1(ZWE3ALOC) .

The cross memory server is a long running server process that, by default, runs under the started task name ZWESISTC

with the user ID ZWESIUSR and group of ZWEADMIN .

The ZWESISTC started task serves the Zowe desktop that is running under the ZWESLSTC started task, and provides it

with secure services that require elevated privileges, such as supervisor state, system key, or APF-authorization.

The user ID ZWESIUSR that is assigned to the cross memory server started tasks must have a valid OMVS segment and

read access to the load library SZWEAUTH and PARMLIB data sets. The cross memory server loads some functions to LPA

for its PC-cp services.

To install the cross memory server, enable the PROCLIB, PARMLIB, and load module. This topic describes the steps to do

this manually.

Load module

The cross memory server load module ZWESIS01 is installed by Zowe into a PDSE SZWEAUTH . For the cross memory

server to be started, the load module needs to be APF-authorized and the program needs to run in key(4) as non-

swappable.

APF authorize

APF authorizes the PDSE SZWESAUTH . This allows the SMP/E APPLY and RESTORE jobs used for applying maintenance to

be operating on the runtime PDSE itself when PTF maintenance is applied.

Do not add the SZWEAUTH data set to the system LNKLIST or LPALST concatenations.

To check whether a load library is APF-authorized,issue the following command:

where the value of DSNAME is the name of the SZWEAUTH data set as created during Zowe installation that contains the

ZWESIS01 load module.

Issue one of the following operator commands to dynamically add the load library to the APF list (until next IPL), where

the value of DSNAME is the name of the SZWEAUTH data set, as created during Zowe installation.

If the load library is not SMS-managed, issue the following operator command, where volser is the name of the

volume that holds the data set:

If the load library is SMS-managed, issue the following operator command:

Configuring using zwe init apfauth

https://docs.zowe.org/stable/user-guide/install-zowe-zos-convenience-build#step-5-install-the-mvs-data-sets

If you are using the zwe init command to configure your z/OS system, the step zwe init apfauth can be used to

generate the SETPROG commands and execute them directly. The generation of SETPROG commands and their execution

takes the input parameters zowe.setup.mvs.authLoadLib for the SZWEAUTH PDS location, and

zowe.setup.mvs.authPluginLib for the location of the PDS that is used to contain plugins for the cross memory server.

For more information on zwe init apfauth see, Performing APF Authorization of load libraries.

Key 4 non-swappable

The cross memory server load module ZWESIS01 and the auxiliary (AUX) address space load module ZWESAUX must run

in key 4 and be non-swappable. For the server to start in this environment, add the following PPT entries for the server

and address spaces to the SCHEDxx member of the system PARMLIB.

The PDS member SZWESAMP(ZWESISCH) contains the PPT lines for reference.

Then, issue the following command to make the SCHEDxx changes effective:

PARMLIB

The ZWESISTC started task must find a valid ZWESIPxx PARMLIB member in order to be launched successfully. The

SZWESAMP PDS created at installation time contains the member ZWESIP00 with default configuration values. You can

copy this member to another data set, for example your system PARMLIB data set, or else leave it in SZWESAMP .

If you choose to leave ZWESIPxx in the installation PDS SZWESAMP used at installation time, this has advantages for

SMP/E maintenance because the APPLY and RESTORE jobs will be working directly against the runtime library.

Wherever you place the ZWESIP00 member, ensure that the data set is listed in the PARMLIB DD statement of the started

task ZWESISTC .

PROCLIB

For the cross memory server to be started, you must move the JCL PROCLIB ZWESISTC member from the installation PDS

SAMPLIB SZWESAMP into a PDS that is on the JES concatenation path.

You need to update the ZWESISTC member in the JES concatenation path with the location of the load library that

contains the load module ZWESIS01 by editing the STEPLIB DD statement of ZWESISTC . Edit the PARMLIB DD statement

to point to the location of the PDS that contains the ZWESIP00 member.

For example, the sample JCL below shows ZWESISTC where the APF-authorized PDSE containing ZWESIS01 is

IBMUSER.ZWEV3.SZWEAUTH(ZWESIS01) and the PDS PARMLIB containing ZWESIP00 is IBMUSER.ZWEV3.SZWESAMP(ZWESIP00) .

SAF configuration

Because the ZIS server makes z/OS security calls it restricts which clients are able to use the services, by requiring them

to have READ access to a security profile ZWES.IS in the FACILITY class.

The Zowe launcher started task ZWESLSTC needs to be able to access the ZIS server, which requires that the user ID

ZWESVUSR has access to ZWES.IS . The steps to do this are described in Configure the cross memory server for SAF.

https://docs.zowe.org/stable/user-guide/apf-authorize-load-library
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-the-cross-memory-server-for-saf

Zowe auxiliary service

In some situations when a Zowe extension is supported, the cross memory server starts, controls, and stops an auxiliary

address space. This is run as a ZWESASTC started task that runs the load module ZWESAUX .

NOTE

When to configure the auxiliary service

Under normal Zowe operation, no auxiliary address spaces are started. However, if you have installed a vendor

product running on top of Zowe, this product may use an auxiliary address space. In this case, the auxiliary service

requires configuration to be launchable. The vendor product documentation will specify whether the Zowe auxiliary

service requires configuration. Verify that the auxiliary service configuration is required before performing

configuration steps.

If you are using just core Zowe functionality, configuring the auxiliary service is not required. Even with the Zowe

auxiliary service configured, there is no situation under which you should manually start the ZWESASTC started task.

Installing the auxiliary service

To install the auxiliary service to allow this service to run, perform the steps to install and configure the cross memory

server as described previously. Note that this procedure will use a different JCL PROBLIC member and a different load

module. There is no PARMLIB for the auxiliary service.

JCL member ZWESASTC is copied from SZWESAMP installation PDS to a PDS on the JES concatenation path.

The PDSE load library SZWEAUTH is APF-authorized, or load module ZWESAUX is copied to an existing APF Auth LoadLib.

The load module ZWESAUX must run in key 4 and be non-swappable by adding a PPT entry to the SCHEDxx member

of the system PARMLIB PPT PGMNAME(ZWESAUX) KEY(4) NOSWAP .

Zowe Auxiliary Address space

The cross memory server runs as a started task ZWESISTC that uses the load module ZWESIS01 .

In some use cases, the Zowe cross memory server has to spawn child address spaces, which are known as auxiliary

(AUX) address spaces. The auxiliary address spaces run as the started task ZWESASTC using the load module ZWESAUX

and are started, controlled, and stopped by the cross memory server.

An example of when an auxiliary address space is used is for a system service that requires a supervisor state but

cannot run in cross-memory mode. The service can be run in an AUX address space which is invoked by the Cross

Memory Server acting as a proxy for unauthorized users of the service.

Do not install the Zowe auxiliary address space unless a Zowe extension product's installation guide explicitly asks for it

to be done. This will occur if the extension product requires services of Zowe that cannot be performed by the cross

memory server and an auxiliary address space needs to be started.

A default installation of Zowe does not require auxiliary address spaces to be configured.

IMPORTANT

The cross memory ZWESISTC task starts and stops the ZWESASTC task as needed. Do not start the ZWESASTC task

manually.

Summary of cross memory server installation

You can start the cross memory server using the command /S ZWESISTC once the following steps have been completed.

JCL members STC - ZWESISTC and ZWESASTC are copied from SZWESAMP installation PDS to a PDS on the JES

concatenation path.

The PDSE Load Library SZWEAUTH is APF-authorized, or Load modules ZWESIS01 and ZWESAUX are copied to an

existing APF Auth LoadLib.

The JCL member ZWESISTC DD statements are updated to point to the location of ZWESIS01 and ZWESIP00 .

The load modules ZWESIS01 and ZWESAUX must run in key 4 and be non-swappable by adding a PPT entry to the

SCHEDxx member of the system PARMLIB

Starting and stopping the cross memory server on z/OS

The cross memory server is run as a started task from the JCL in the PROCLIB member ZWESISTC . It supports reusable

address spaces and can be started through SDSF with the operator start command with the REUSASID=YES keyword:

The ZWESISTC task starts and stops the ZWESASTC task as needed. Do not start the ZWESASTC task manually.

To end the Zowe cross memory server process, issue the operator stop command through SDSF:

NOTE

The starting and stopping of the ZWESLSTC started task for the main Zowe servers is independent of the ZWESISTC

cross memory server, which is an angel process. If you are running more than one ZWESLSTC instance on the same

LPAR, then these will be sharing the same ZWESISTC cross memory server. Stopping ZWESISTC will affect the

behavior of all Zowe servers on the same LPAR that use the same cross-memory server name, for example

ZWESIS_STD. The Zowe Cross Memory Server is designed to be a long-lived address space. There is no requirement

to recycle regularly. When the cross-memory server is started with a new version of its load module, it abandons its

current load module instance in LPA and loads the updated version.

Troubleshooting

To diagnose problems that may occur with the Zowe ZWESLSTC not being able to attach to the ZWESISTC cross memory

server, a log file zssServer-yyyy-mm-dd-hh-mm.log is created in the log directory each time ZIS is started. More details

on diagnosing errors can be found in Zowe Application Framework issues.

If the crossMemoryServerName is changed in zowe.yaml and the default name is not applied, manually update the NAME

in the corresponding PROCLIB .

For example, the ZIS server name is changed from its default of ZWESIS_STD to be ZWESIS_02 . The PROCLIB member line

1 is updated from //ZWESIS01 PROC NAME='ZWESIS_STD',MEM=00,RGN=0M to //ZWESIS_01 PROC

NAME='ZWESIS_02',MEM=00,RGN=0M . And the zowe.yaml file is updated to use the ZWESIS_02 instance:

https://docs.zowe.org/stable/troubleshoot/app-framework/app-troubleshoot#cannot-log-in-to-the-zowe-desktop

Next step

After you complete the configuration of the Zowe cross memory server, you may configure Zowe for High Availability, or

proceed to starting Zowe.

https://docs.zowe.org/stable/user-guide/zowe-ha-overview
https://docs.zowe.org/stable/user-guide/start-zowe-zos

Version: v3.3.x LTS

Configuring high availability (optional)

Zowe has a high availability feature built-in. For Zowe in a high availability configuration, one workspace directory is

required. This workspace directory must be created on a shared file system (zFS directory) which all LPARs in a Sysplex

can access. Review this article and the following articles in this section for the configuration steps to enable the high

availability feature. Note that configuring high availability is optional.

REQUIRED ROLE: SYSTEM PROGRAMMER

Enable high availability when Zowe runs in Sysplex

Sysplex is required to make sure multiple Zowe instances can work together. Check Configuring Sysplex for high

availability for more details.

z/OSMF is an optional prerequisite of Zowe. If your Zowe instance works with z/OSMF, it's recommended to configure

z/OSMF for high availability in Sysplex.

The haInstances section must be defined in the Zowe YAML configuration. Check Zowe YAML Configuration File

Reference for more details.

Zowe caching service is required to convert stateful component to stateless component. Check Configuring the

Caching Service for HA for details.

Known limitations

To allow Sysplex Distributor to route traffic to the Gateway, you can only start one Gateway in each LPAR within the

Sysplex. All Gateways instances should be started on the same port configured on Sysplex Distributor.

Zowe App Server should be accessed through the Gateway with a URL like https://<dvipa-domain>:<external-

port>/zlux/ui/v1 .

Enable high availability when Zowe runs in Kubernetes

If you deploy Zowe into Kubernetes, all components can also achieve high availability if you enable more than one

replicas for each component.

HorizontalPodAutoscaler is recommanded to let Kubernetes scales the component based on workdload.

PodDisruptionBudget is recommended to let Kubernetes automatically handles disruptions like upgrade.

https://docs.zowe.org/stable/user-guide/configure-sysplex
https://docs.zowe.org/stable/user-guide/configure-sysplex
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-ha
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-ha
https://docs.zowe.org/stable/appendix/zowe-yaml-configuration
https://docs.zowe.org/stable/appendix/zowe-yaml-configuration
https://docs.zowe.org/stable/user-guide/configure-caching-service-ha
https://docs.zowe.org/stable/user-guide/configure-caching-service-ha
https://docs.zowe.org/stable/user-guide/k8s-config#horizontalpodautoscaler
https://docs.zowe.org/stable/user-guide/k8s-config#poddisruptionbudget

Version: v3.3.x LTS

Configuring Sysplex for high availability

To deploy Zowe high availability, you must set up the Parallel Sysplex® environment. A Parallel Sysplex is a collection of

z/OS® systems that cooperatively use certain hardware and software components to achieve a high-availability

workload processing environment.

Sysplex environment requirements

Zowe high availability instances require a Sysplex environment that consists of the following:

One or more central processor complexes (CPCs) that can attach to a coupling facility

At least one coupling facility

At least one Sysplex timer

Connection to shared DASD

Shared SAF database, see Sharing a database with sysplex communication in data sharing mode

Sysplex Distributor with configured Dynamic VIPA TCP/IP address, see Configuring Sysplex Distributor for instructions

USS Shared file system, see How to share file systems in a Sysplex

JESPlex/JES2 Multi-Access Spool (MAS) environment

z/OSMF high availability, see Configuring z/OSMF high availability in Sysplex

Node.js v16.x or higher, required in case you enable Zowe Desktop

NOTE

It is highly recommended that Node.js is installed on a shared file system.

Configuring Sysplex Distributor

The following example DVIPA configuration ensures the availability of Zowe in Hot-Standby mode. For example, suppose

that you have a Sysplex of two z/OS systems: A, B.

1. Enable dynamic XCF on each host by adding the following TCP/IP definitions:

IPCONFIG SYSPLEXROUTING DYNAMICXCF x.x.x.A 255.255.255.0 1 for SYSA

IPCONFIG SYSPLEXROUTING DYNAMICXCF x.x.x.B 255.255.255.0 1 for SYSB

2. Define a DVIPA for both systems:

where,

x.x.x.A

Specifies the home address for SYSA.

x.x.x.B

Specifies the home address for SYSB.

https://www.ibm.com/docs/en/zos/2.1.0?topic=sd-sharing-database-sysplex-communication-in-data-sharing-mode
https://www.ibm.com/docs/en/zos/2.4.0?topic=planning-sharing-file-systems-in-sysplex
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-ha

x.x.x.V

Specifies the Dynamic VIP Address.

7554

Specifies the port number of you Zowe API Mediation Layer Gateway. This should be the same port number you

configured for zowe.externalPort in zowe.yaml . See Zowe YAML configuration file reference to learn more

about zowe.yaml .

The VIPADISTRIBUTE statement with PREFERRED and BACKUP settings is used to enable automatic dynamic VIPA takeover

to occur, if needed.

All Zowe instances are bound to the DVIPA x.x.x.V. With both z/OS systems active in the Sysplex, the preferred Zowe

instance, SYSA receives all new incoming requests. If SYSA fails, new work requests to Zowe are routed to the server on

SYSB. When SYSA resumes normal operations, new work requests for Zowe are routed to SYSA again. This is the default

behavior because the AUTOSWITCHBACK parameter of the VIPADISTRIBUTE statement is in effect by default.

If you do not want the distributor to switch back to the preferred target when it becomes available, you can specify the

NOAUTOSWITCHBACK parameter for the VIPADISTRIBUTE statement.

https://docs.zowe.org/stable/appendix/zowe-yaml-configuration

Version: v3.3.x LTS

Configuring z/OSMF for high availability in

Sysplex

z/OSMF high availability (HA) should be configured in Hot Standby mode to ensure availability of REST services. The goal

of this configuration is to ensure that one z/OSMF server is always available to provide the REST services.

In Hot Standby mode, there is at least one backup (hot-standby) server and a preferred target server. Both targets are

active, and both z/OSMF servers are bound to the DVIPA. The preferred z/OSMF server receives all new incoming

requests. When the preferred z/OSMF server fails or the system becomes down, new requests are routed to the backup

(hot-standby) server. The distributing DVIPA does not perform load balancing of requests across multiple systems. For

more information, read the following articles in IBM Documentation:

Configuring z/OSMF for availability

Configuring z/OSMF for high availability

Sysplex environment requirements

Before you begin, ensure that the Sysplex environment meets the following requirements for z/OSMF REST services:

Shared SAF database. See Sharing a database with sysplex communication in data sharing mode in IBM

Documentation.

USS Shared file system. See How to share file systems in a Sysplex in IBM Documentation.

JESPlex/JES2 Multi-Access Spool (MAS) environment

Sysplex distributor, configured Dynamic VIPA TCP/IP address

Extended MCS console (EMCS)

Setting up z/OSMF nucleus

This information is intended for a first-time z/OSMF setup. Follow these high-level steps to create a z/OSMF

nucleus on your system.

For detailed information about each step, see Create a z/OSMF nucleus on your system in IBM Documentation.

1. Create the z/OSMF security authorizations by running the sample JCL SYS1.SAMPLIB(IZUSEC). z/OSMF security

authorizations will be used by all z/OSMF servers across multiple systems.

2. Create a shared file system per z/OSMF server by running the sample JCL SYS1.SAMPLIB(IZUMKFS). It holds

configuration settings and the persistence data.

3. Copy the Sample Parmlib Member SYS1.SAMPLIB(IZUPRM00) to PARMLIB and modify it according to requirements

of z/OSMF HA parmlib member in Sysplex. Each system uses a different IZUPRMxx member. For example, IZUPRM0A

and IZUPRM0B.

4. Copy the following z/OSMF procedures from SYS1.PROCLIB into your JES concatenation:

IZUSVR1 (Each z/OSMF server should use the different started procedure. For example, IZUSVRA and IZUSVRB.)

https://www.ibm.com/docs/en/zos/2.2.0?topic=environment-configuring-zosmf-availability
https://www.ibm.com/docs/en/zos/2.4.0?topic=configurations-configuring-zosmf-high-availability
https://www.ibm.com/docs/en/zos/2.1.0?topic=sd-sharing-database-sysplex-communication-in-data-sharing-mode
https://www.ibm.com/docs/en/zos/2.4.0?topic=planning-sharing-file-systems-in-sysplex
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.izua300/izulite_CreateTheNucleus.htm

IZUANG1

IZUFPROC

5. Define different STARTED profiles for z/OSMF servers.

Requirements of z/OSMF HA parmlib member in Sysplex

AUTOSTART_GROUP, more than one z/OSMF server (independent z/OSMF instances) is to be autostarted in a Sysplex.

For instance, System A will autostart a server and similarly, System B will autostart the second z/OSMF server.

z/OSMF has a default autostart group (IZUDFLT) which is used in monoplex or single z/OS image. To have more

z/OSMF servers autostarted in a Sysplex, you must associate each server and the systems it serves with a unique

autostart group name. For example, AUTOSTART_GROUP('IZUDFLA') for System A and AUTOSTART_GROUP('IZUDFLB')

for System B

AUTOSTART(LOCAL) should be used by all z/OSMF instances.

HOSTNAME, the DVIPA address will be used as the z/OSMF host name for all instances.

HTTP_SSL_PORT, all servers are listening on the same port.

KEYRING_NAME, all servers should use the same key ring such as IZUKeyring.IZUDFLT .

SERVER_PROC, each z/OSMF server should use the different started procedure. For example, IZUSVRA and IZUSVRB.

ANGEL_PROC, all z/OSMF servers can connect to the same z/OSMF angel process such as IZUANG1.

SAF_PREFIX, they should use the same SAF profile prefix such as IZUDFLT.

USER_DIR, each instance uses a shared file system with a unique mount point for each AUTOSTART group that be

automatically started. For example, /global/zosmf/zosmfa and /global/zosmf/zosmfb .

Configuring z/OSMF for high availability

The following DVIPA configuration ensures the availability of z/OSMF for Hot-Standby. For example, suppose that you

have a Sysplex of two z/OS systems: A, B.

1. Enable dynamic XCF on each host by adding the following TCP/IP definitions:

IPCONFIG SYSPLEXROUTING DYNAMICXCF x.x.x.A 255.255.255.0 1 for SYSA

IPCONFIG SYSPLEXROUTING DYNAMICXCF x.x.x.B 255.255.255.0 1 for SYSB

2. Define a dynamic VIPA (DVIPA) for both systems:

where,

x.x.x.A is the home address for SYSA.

x.x.x.B is the home address for SYSB.

x.x.x.V is Dynamic VIP Address.

The VIPADISTRIBUTE statement with PREFERRED and BACKUP settings is used to enable automatic dynamic VIPA takeover

to occur, if needed.

Both z/OSMF servers are bound to the DVIPA x.x.x.V. With both z/OS systems active in the Sysplex, the preferred z/OSMF

server, SYSA receives all new incoming requests. If SYSA fails, new work requests for z/OSMF are routed to the server on

SYSB. When SYSA resumes normal operations, new work requests for z/OSMF are routed to SYSA again. This is the

default behavior because the AUTOSWITCHBACK parameter of the VIPADISTRIBUTE statement is in effect by default.

If you do not want the distributor to switch back to the preferred target when it becomes available, you can specify the

NOAUTOSWITCHBACK parameter for the VIPADISTRIBUTE statement.

Version: v3.3.x LTS

Configuring the Caching Service for high

availability

Zowe can work in a high availability (HA) configuration where multiple instances of the Zowe launcher are started, either

on the same LPAR, or different LPARs connected through sysplex distributor. If you are only running a single Zowe

instance on a single LPAR you do not need to create a caching service so you may skip this step.

In an HA setup the different Zowe API Mediation Gateway servers share the same northbound port (by default 7554),

and client traffic to this port is distributed between separate gateways that in turn dispatch their work to different

services. When any of the services individually become unavailable the work can be routed to available services, which

means that the initial northbound request will be fulfilled.

Zowe uses the Caching Service to centralize the state data persistent in high availability (HA) mode. If you are runnning

the caching service on z/OS there are three storage methods: inMemory , infinispan or VSAM . If you are running the

caching service off platform, such as a Linux or Windows container image, it is also possible to specify redis or

infinispan .

To learn more about how the Caching Service can be used, see Using the Caching Service.

NOTE

To enable Personal Access Token support when using the Caching Service, Infinispan is the required storage

solution. Infinispan is part of Zowe installation. No additional software or installation is required when using this

storage solution. Infinispan is the recommended storage method to use in production.

inMemory

This storage method is designed for quick start of the service and should be used only for single instance scenario and

development or test purpose. Do not use it in production or high availability scenario.

To use this method, set the components.caching-service.storage.mode value to inMemory in the zowe.yaml

configuration file. When this method is enabled, the Caching Service will not persist any data.

Infinispan

NOTE

This is the recommended solution for on-prem z/OS production deployments

Infinispan is designed to be run mainly on z/OS since it offers good performance. To enable this method, set the value of

components.caching-service.storage.mode to infinispan in the zowe.yaml configuration file. Infinispan environment

variables are not currently following the v2 naming convention, so they must be defined into zowe.environments

section. For more information on these properties and their values see Infinispan configuration.

https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation-caching-service
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-infinispan#infinispan-configuration

VSAM (Deprecated)

NOTE

VSAM support in Caching Service will be removed in a future release

This storage method allows you tu use VSAM dataset as a storage for Caching service. You can use zwe init vsam

command to generate proper dataset.

The command zwe init vsam uses the template JCL in SZWESAMP(ZWECSVSM) . You can edit and submit this yourself, or

else if use zwe init vsam which will copy the source template member from zowe.setup.mvs.hlq.SZWESAMP(ZWECVCSM)

and create a target JCL member in zowe.setup.mvs.jcllib(ZWECVSCM) with values extracted from the zowe.yaml file.

components.caching-service.storage.vsam.name

This specifies the data set name that the ZWECSVSM JCL will create. This is used to replace all occurrences of #dsname

in the ZWECSVSM data set.

NOTE

The ZWECSVSM JCL defines the key length and record length of the VSAM instance. If the key length and record

length of this JCL is changed, zowe.environments.CACHING_STORAGE_VSAM_KEYLENGTH and

zowe.environments.CACHING_STORAGE_VSAM_RECORDLENGTH must be set to the new values.

components.caching-service.storage.mode

This specifies whether you would like to use Record Level Sharing (RLS) for your VSAM data set. RLS is

recommended for Sysplex deployment. NONRLS is also an allowed value.

zowe.setup.vsam.storageClass If you use the RLS mode, a storage class is required.

zowe.setup.vsam.volume

If you set to use the NONRLS mode, a storage volume is required.

To preview the member before submitting it, use the value --security-dry-run . Otherwise, the command automatically

submits the JCL and waits for its completion.

Redis

Redis is not available if you are running the API Mediation Layer on z/OS under Unix System Services. Usage of redis is

intended for when API ML is running off platform, such as in a Linux or Windows container as part of a hybrid cloud

deployment.

To enable this method, set the value of components.caching-service.storage.mode to redis in the zowe.yaml

configuration file. There are a number of values to control the redis nodes, sentinel and ssl properties that need to be set

in the zowe.yaml file. For more information on these properties and their values see Redis configuration.

https://www.ibm.com/support/pages/vsam-record-level-sharing-rls-overview
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-redis#redis-configuration

Version: v3.3.x LTS

Starting and stopping Zowe

The following article describes how to start and stop Zowe.

Zowe consists of three main started tasks:

ZWESISTC

Zowe cross memory server

ZWESASTC

Zowe cross memory auxiliary server

ZWESLSTC

Zowe main started task

Starting and stopping the cross memory server ZWESISTC on

z/OS

The cross memory server is run as a started task from the JCL in the PROCLIB member ZWESISTC , and supports reusable

address spaces. This task can be started through with the operator start command with the REUSASID=YES keyword:

NOTE

If using SDSF to start the cross memory server, enter / before S .

The ZWESISTC task starts and stops the ZWESASTC task as needed. Do not start the ZWESASTC task manually.

NOTE

Starting and stopping of the ZWESLSTC started task for the main Zowe servers is independent of the ZWESISTC cross

memory server, which is an angel process. If you are running more than one ZWESLSTC instance on the same LPAR,

the instances share the same ZWESISTC cross memory server. Stopping ZWESISTC affects the behavior of all Zowe

servers on the same LPAR that use the same cross-memory server name, for example ZWESIS_STD . The Zowe cross

memory server is designed to be a long-lived address space. There is no requirement to recycle regularly. When the

cross memory server is started with a new version of its load module, the cross memory server abandons its current

load module instance in LPA and loads the updated version.

To end the Zowe cross memory server process, issue the operator stop command:

NOTE

If using SDSF to stop the cross memory server, enter / before P .

Starting and stopping the cross memory auxiliary server

ZWESASTC on z/OS

Starting and stopping the cross memory auxiliary server ZWESASTC on z/OS is handled automatically by Zowe cross

memory server. It is not necessary to manually start or stop this started task.

Starting and stopping Zowe main server ZWESLSTC on z/OS with

zwe server command

Zowe ships zwe start and zwe stop commands to help you start and stop the Zowe main server.

To start Zowe, run the following command:

This command issues the S command to Zowe ZWESLSTC .

Example:

Job name ZWE1SV can be customized with zowe.job.name in your Zowe configuration file.

You can use zwe start command to start a Zowe high availability instance defined on other LPAR within the Sysplex.

Example:

The following information must be defined in the Zowe configuration file:

The zwe start command uses the ROUTE command to send the S ZWESLSTC command to the LPAR2 system.

To stop Zowe, run the following command:

This command issues the P command to the Zowe job.

Example:

Starting and stopping Zowe main server ZWESLSTC on z/OS

manually

To start Zowe main server, you can issue the S ZWESLSTC command. If required by internal policy, customize the

JOBNAME parameter.

Example:

If you have a Zowe high availability instance defined and want to start a specific HA instance, for example myinst1 , you

can pass with the HAINST parameter.

Example:

NOTE

The Zowe high availability instance name is case insensitive. HAINST=myinst1 and HAINST=MYINST1 are equivalent.

If you are starting a Zowe high availability instance for another LPAR in the Sysplex, you can use the ROUTE command to

route the S command to the target system.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-start
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-stop

Example: To start an HA instance myinst2 on LPAR2 when working on SYSNAME LPAR1 , issue the following command:

To stop the Zowe main server, issue the P <jobname> command.

IMPORTANT

With Zowe version 1, you can issue C command to stop Zowe main server. This command is no longer supported in

version 2 and later versions. The P command is now required to ensure that the Zowe components shut down

properly.

Stopping and starting a Zowe component without restarting

Zowe main server

You can restart a Zowe component with the MVS system command without restarting the whole Zowe main server.

Before issuing the MODIFY command consider the following points:

By default, your Zowe main server job name is configured as ZWE1SV . You can find your customized value by

checking the zowe.job.name defined in the Zowe configuration file.

Determine the component name you want to stop or start. For a full list of installed components, list the

<RUNTIME>/components directory and the Zowe extension directory.

The following components from the <RUNTIME>/components directory can be stopped or started:

api-catalog

app-server

caching-service

discovery

gateway

zaas

zss

To stop a running Zowe component, issue the following command:

Example:

To stop app-server , issue the following command:

To start a stopped Zowe component, issue the following command:

Example:

To start app-server , issue the following command:

NOTE

Not all components can be restarted with this method. Some components may rely on other components. It may be

necessary to restart affected components.

Version: v3.3.x LTS

Verifying Zowe installation on z/OS

After the Zowe™ started task ZWESLSTC is running, follow the procedures applicable to your installation to verify that the

components are functional.

Verifying Zowe Application Framework installation

Verifying API Mediation Layer installation

Verifying z/OS Services installation

NOTE

Not all components may have been started. Which components have been started depends on your setting of the

component enabled status in Zowe configuration file (usually zowe.yaml).

Examples:

If you set enabled to be true for gateway , discovery and api-catalog , the API Mediation Layer and z/OS

Services are started.

If you set enabled to be true for app-server and zss , the Zowe Application Framework (Zowe desktop) are

started.

Configurations that use containerization may only have ZSS started.

For more information, see YAML configurations - components.

Verifying Zowe Application Framework installation

If the Zowe Application Framework is installed correctly, you can open the Zowe Desktop from a supported browser.

From a supported browser, open the Zowe Desktop at https://myhost:httpsPort

where:

myHost

is the host on which you installed the Zowe Application Server.

httpsPort

is the port number value components.app-server.port in zowe.yaml . For more information, see Configure

component app-server.

For example, if the Zowe Application Server runs on host myhost and the port number that is assigned to

components.app-server.port is 12345, you specify https://myhost:12345 . The web desktop uses page direct to

the actual initial page which is https://myhost:12345/ZLUX/plugins/org.zowe.zlux.bootstrap/web/index.html . If

the redirect fails, try the full URL.

If the desktop appears but you are unable to log on, check Cannot log into the Zowe desktop for troubleshooting tips.

Verifying API Mediation Layer installation

https://docs.zowe.org/stable/appendix/zowe-yaml-configuration#yaml-configurations---components
https://docs.zowe.org/stable/appendix/zowe-yaml-configuration#configure-component-app-server
https://docs.zowe.org/stable/appendix/zowe-yaml-configuration#configure-component-app-server
https://docs.zowe.org/stable/troubleshoot/app-framework/app-troubleshoot#cannot-log-in-to-the-zowe-desktop

Use your preferred REST API client to review the value of the status variable of the API Catalog service that is routed

through the API Gateway using the following URL:

where:

myHost

is the host on which you installed the Zowe API Mediation Layer.

httpsPort

is the port number value zowe.externalPort in zowe.yaml . For more information, see Domain and port to access

Zowe.

Example:

The following example illustrates how to use the curl utility to invoke an API Mediation Layer endpoint and the grep

utility to parse out the response status variable value. The curl command is a powerful tool used for making HTTP

requests from the command line. It allows you to send and receive data from various protocols, including HTTP, HTTPS,

FTP, and more.

-v

The -v option stands for "verbose." When you include this option, curl provides more detailed information during the

request and response process. It displays additional information such as the request headers, response headers, and

other debugging details.

-k

The -k option stands for "insecure" or "insecure SSL." When you include this option, curl allows insecure

connections and bypasses SSL certificate verification. It is useful when making requests to HTTPS URLs with self-

signed certificates or when dealing with SSL certificate issues. However, it is important to note that using -k

removes security checks and may expose you to potential security risks. Exercise caution when using this option,

especially in production environments.

The response UP confirms that API Mediation Layer is installed and is running properly. For more instructions about curl

command, see the tutorial.

Verifying z/OS Services installation

Zowe z/OS services usually are registered with Zowe API ML Discovery and exposed with a certain service url like

/<service>/api/v1 .

To verify a service is necessary to call any available endpoint, for example:

where:

gatewayPort

is the port number that is assigned to zowe.externalPort in the zowe.yaml file used to launch Zowe. For more

information, see Domain and port to access Zowe.

The path serviceId/api/v1/version depends on a specific service. You can also use API Catalog to verify a registered

service.

https://docs.zowe.org/stable/appendix/zowe-yaml-configuration#domain-and-port-to-access-zowe
https://docs.zowe.org/stable/appendix/zowe-yaml-configuration#domain-and-port-to-access-zowe
https://curl.se/docs/manual.html
https://docs.zowe.org/stable/appendix/zowe-yaml-configuration#domain-and-port-to-access-zowe

Version: v3.3.x LTS

Advanced API Mediation Layer Configuration

There are multiple options for customizing Zowe API Mediation Layer according to your specific use case. Review the

various use cases presented in this section, and follow the links to the corresponding documentation that describes how

to perform your specific customization. API ML customization can be performed in the following areas:

Enabling Single Sign On for Clients

Enabling single sign on for clients via client certificate configuration

Enabling single sign on for clients via Personal Access Token configuration

Enabling single sign on for clients via JWT token configuration

Enabling Single Sign On for Extending Services

Enabling single sign on for extending services via JWT token configuration

Enabling single sign on for extending services via PassTicket configuration

Customizing routing behavior

Configuring routing in a multi-tenant environment

Customizing Cross-Origin Resource Sharing (CORS)

Using encoded slashes

Customizing Gateway retry policy

Configuring a unique cookie name for a specific API ML instance

Retrieving a specific service within your environment

Distributing the load balancer cache

Setting a consistent service ID

Customizing management of API ML load limits

Customizing connection limits

Customizing Gateway timeouts

Customizing Java Heap sizes

Configuring authorization of API ML

Limiting access to information or services in the API Catalog

Configuring SAF resource checking

Configuring an authentication provider for API Mediation Layer

Configuring storage for the Caching service

Using Infinispan as a storage solution through the Caching service

Using VSAM as a storage solution through the Caching service

Using Redis as a storage solution through the Caching service

Customizing the API Catalog UI

Configuring AT-TLS for Zowe server

Customizing logging for API Mediation Layer

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-single-sign-on-user
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-client-certificates
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-personal-access-token
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-jwt
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-enable-single-sign-on-extenders
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-jwt
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-passtickets
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-routing
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-multi-tenancy-routing
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-cors
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-url-handling
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-gateway-retry-policy
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-unique-cookie-name-for-multiple-zowe-instances
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-access-specific-instance-of-service
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-distributed-load-balancer-cache
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-set-consistent-service-id
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-customizing-management-of-apiml-load-limits
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-connection-limits
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-gateway-timeouts
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-customizing-java-heap-sizes
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-authorization
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-limiting-access-to-info-or-services-in-api-catalog
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-saf-resource-checking
https://docs.zowe.org/stable/user-guide/authentication-providers-for-apiml
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-infinispan
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-vsam
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-redis
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-customizing-the-api-catalog-ui
https://docs.zowe.org/stable/user-guide/configuring-at-tls-for-zowe-server
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-logging

Version: v3.3.x LTS

Enabling Single-Service deployment of API

Mediation Layer

Zowe version 3.3.0 introduces, as a technical preview, the option to switch the execution mode for API Mediation Layer

(API ML) configuration from the current multiple services scheme to a single-service option.

INFO

Required roles: System Programmer, Network Administrator

This single-service deployment mode alternative to the multi-service scheme brings the following performance

benefits and simplification in configuration for new installations:

Performance Improvements

Enhanced performance, faster startup times, reduced CPU and memory consumption

Operational Efficiency

Simplified deployment processes, a single JVM process, decreased network traffic

Unified configuration options

Simplified debugging

Tracking communication between the API ML services to determine the cause and source of issues not required

Architecture

Review the following architecture of API ML single-service deployment mode.

Limitations

The following features are not supported in the technical preview release of API ML single-service deployment mode:

Multi-tenancy deployment

Docker container deployments

Breaking Changes

NOTE

The following single-service deployment procedure assumes the default address space prefix ZWE1 . Update this

prefix according to the zowe.job.prefix parameter from your zowe.yaml file.

To run API ML as a single-service deployment, a system programmer is required to make configuration changes in the

following areas:

Update network configuration

In single-service deployment mode, all API ML components run in a single address space.

Update log prefixes to a unified prefix

In single-service deployment mode, a single log prefix applies to all API ML components. Prefixes for individual

components require manual updates to unify prefixes under a single prefix.

Update AT-TLS rules

In single-service deployment mode, jobname filters require updating, and rules applying to handling require deletion.

Update network configuration

Single-service deployment mode runs all API ML components in a single JVM process. For backward compatibility

reasons, this single JVM process handles connections to both the Gateway Service and the Discovery Service ports.

The single-service API ML address space uses ports defined in components.gateway.port and

components.discovery.port (defaults 7554 and 7553).

Update the network permissions to reflect this change. Ensure that both ports are under z/OS address space ZWE1AG .

The remaining ports described under the API Mediation Layer category in the article Address Network Requirements

(defaults 7552, 7555, and 7558) are no longer used in single-service deployment mode.

NOTE

The Caching Service is enabled in single-service deployment mode and the default is infinispan . Note that the

infinispan storage solution requires additional ports. For more information, see Caching Service Infinispan ports.

Update log prefix

In single-service deployment mode, logs from internal API ML components such as the Discovery Service, API Catalog,

and Caching Service appear under the prefix ZWE1AG .

Example:

In multi-service deployment, the following message is printed under ZWE1AC :

In single-service deployment mode, the message is printed under ZWE1AG :

Note that the message code ZWEAM000I remains unchanged.

NOTE

This change affects only logs printed to spool or USS files. WTOs remain unchanged.

Update AT-TLS rules

If your installation is configured with AT-TLS, rules need to be updated. Perform the following updates to the PAGENT

rules:

1. Update job name filters to use ZWE1AG .

Verify if the outbound rule for z/OSMF is set in your system. Update the rule to apply to jobname ZWE1AG instead of

ZWE1AZ as authentication may not work by default in single-service deployment mode.

2. Remove unneeded rules that handle communication between core components in multi-service deployment.

Remove rules that apply to communication between Gateway, Discovery Service, API Catalog, and Caching

Service.

Remove all rules that apply to the core components except for rules that apply to the Gateway Service (ZWE1AG).

Note: In High Availability scenarios, TCP communication still exists between LPARs for the Discovery Service port.

https://docs.zowe.org/stable/user-guide/address-network-requirements#component-ports
https://docs.zowe.org/stable/user-guide/address-network-requirements#caching-service-infinispan-ports
https://docs.zowe.org/stable/user-guide/configuring-at-tls-for-zowe-server/#outbound-rule-for-zosmf

::note Notes:

In general, rules for AT-TLS in single-service deployment are now simplified, wherein API ML uses a single z/OS

address space prefix and uses only two ports. Update rules to remove ports no longer used.

TCP HTTP calls are still in use for high availability scenarios to maintain synchronization between instances accross

LPARs. :::

Once you complete updates to your ports, log prefixes, and AT-TLS rules (if applicable), you have enabled single-service

deployment mode.

Enable single-service deployment of API Mediation Layer

To enable single-service deployment mode for API ML, perform the following changes to the installation's zowe.yaml file:

1. Add the component apiml and enable it:

Note: If the Caching Service is not configured on your system, follow the steps described in Using the Caching

Service to configure the Caching Service. The Caching Service is enabled by default in the single-service deployment

of API Mediation Layer.

2. Start the Zowe started task.

Roll back changes from single to multi-service deployment

It is possible to revert to the original multi-service deployment by reverting changes in the zowe.yaml file:

1. Disable the apiml component: Set components.apiml.enabled to false .

2. Start the Zowe started task.

Planned updates to single-service deployment mode

Single-service deployment is planned to be the default mode in Zowe v3.4.0

The option to roll back to multi-service deployment will remain for the duration of the Zowe v3 lifecycle.

https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation-caching-service
https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation-caching-service

Version: v3.3.x LTS

Enabling single sign on for clients

ROLES: SYSTEM PROGRAMMER, SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

As a system programmer or system administrator, you can customize the way API ML handles authentication towards

clients such as CLI and/or users. Each of the following methods limits the frequency the user is reqired to enter

credentials to access API Mediation Layer:

One method to minimize the frequency of re-entering credentials is via Gateway client certificate authentication,

whereby you can use a client certificate as the method of authentication for the API Mediation Layer Gateway.

For more information, see Enabling single sign on for clients via client certificate configuration

Another method to minimize the frequency of entering credentials is to use API Mediation Layer to generate,

validate, and invalidate a Personal Access Token (PAT). This method enables access to tools such as VCS without

having to use credentials of a specific person. The use of PAT does not require storing mainframe credentials as part

of the automation configuration on a server during application development on z/OS.

For more information, see Enabling single sign on for clients via personal access token configuration.

Minimizing re-entering user credentials can also be performed via the JWT token refresh endpoint. Enabling the

refresh endpoint allows you to exchange a valid JWT token for a new token with a new expiration date.

For more information, see Enabling single sign on for clients via JWT token configuration.

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-client-certificates
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-personal-access-token
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-jwt

Version: v3.3.x LTS

Enabling single sign on for clients via X.509

client certificate configuration

ROLES: SYSTEM PROGRAMMER, SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

In Zowe you can authenticate against API ML onboarded APIs. This functionality is disabled by default. Follow the steps in

this article to enable authentication against API ML onboarded APIs.

There are two methods to enable X.509 client certificate functionality integrated with the SAF:

The default and recommended method via the Internal Mapper component of API Mediation Layer

Note: The Internal API ML Mapper is simpler to configure and provides more functionality than ZSS.

The older and deprecated method via ZSS

Review this article to learn about the required configuration to authenticate with either method.

For information about the usage of the client certificate when this feature is enabled, see Authenticating with client

certificates.

General prerequisites

Zowe has correct TLS setup

The trust store, which is configured in the config file, needs to contain the CA certificates of all incoming client

certificates.

IMPORTANT:

The Zowe runtime user must be enabled to perform identity mapping in SAF. For more information about

identity mapping in SAF, see Configure main Zowe server to use client certificate identity mapping.

Configure Internal API ML Mapper

Use the following procedure to enable the zowe.yaml file to use a X.509 client certificate as the method of

authentication for the API Mediation Layer Gateway. Note that the use of the Internal API ML Mapper is the recommended

method.

1. Open the zowe.yaml configuration file.

2. Configure the following properties, or add these properties if not present in your configuration yaml file:

components.gateway.apiml.security.x509.enabled

This property is the global feature toggle. Set the value to true to enable client certificate functionality.

components.gateway.apiml.security.useInternalMapper

This property is the global feature toggle. Set the value to true to enable the Internal API ML Mapper.

https://docs.zowe.org/stable/user-guide/authenticating-with-client-certificates
https://docs.zowe.org/stable/user-guide/authenticating-with-client-certificates
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-distributed-identity-mapping

3. Restart Zowe.

Configure ZSS

For information about configuring ZSS, see Configure components zss in Zowe YAML server configuration file references.

Prerequisites for ZSS

When using ZSS for authentication, ensure that you satisfy the following prerequisites before you set up client certificate

authentication:

1. Set the password for the Zowe runtime user. The user is created with the NOPASSWORD parameter by the Zowe

installer. It is necessary to change this password.

For RACF, issue the following TSO command:

ALTUSER <ZOWE_RUNTIME_USER (ZWESVUSR by default)> PASSWORD(<NEWPASSWORD>)

For other security systems, refer to the documentation for an equivalent command.

2. Verify that the Zowe runtime user is allowed to log in to z/OSMF. (Check that the user is a member of the default

IZUUSER group.)

NOTE

Ensure that you have the Issuer certificate imported in the truststore or in the SAF keyring. If you define a certificate

using openssl on Linux, import the CA. Certificates can also be generated in SAF.

IMPORTANT:

PassTicket generation must be enabled for the Zowe runtime user. The user must be able to generate a

PassTicket for the user and for the APPLID of z/OSMF. For more information, see Configuring Zowe to use

PassTickets.

TIP

There is a limitation with respect to performing authentication using Z Secure Services (ZSS) with ACF2 systems. If

you are using ACF2, use the recommended Internal API ML Mapper.

Enabling zowe.yaml to use an X.509 client certificate

Use the following procedure to enable the zowe.yaml file to use a client certificate as the method of authentication for

the API Mediation Layer Gateway.

1. Open the zowe.yaml configuration file.

2. Configure the following properties:

components.gateway.apiml.security.x509.enabled

This property is the global feature toggle. Set the value to true to enable client certificate functionality.

https://docs.zowe.org/stable/appendix/zowe-yaml-configuration#configure-component-zss
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-passtickets#configuring-zowe-to-use-passtickets
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-passtickets#configuring-zowe-to-use-passtickets

components.gateway.apiml.security.zosmf.applid

When z/OSMF is used as an authentication provider, provide a valid APPLID to allow for client certificate

authentication. The API ML generates a passticket for the specified APPLID and subsequently uses this

passticket to authenticate to z/OSMF. The default value in the installation of z/OSMF is IZUDFLT .

NOTE

The following steps are only required if the ZSS hostname or default Zowe user name are altered:

3. Change the following property if user mapping is provided by an external API:

NOTE

Skip this step if user mapping is not provided by an external API.

components.gateway.apiml.security.x509.externalMapperUrl

The API Mediation Gateway uses an external API to map a certificate to the owner in SAF. This property informs the

Gateway about the location of this API. ZSS is the default API provider in Zowe. You can provide your own API to

perform the mapping. In this case, it is necessary to customize this value.

The following URL is the default value for Zowe and ZSS:

4. Add the following property if the Zowe runtime userId is altered from the default ZWESVUSR :

NOTE

Skip this step if the Zowe runtime userId is not altered from the default ZWESVUSR .

components.gateway.apiml.security.x509.externalMapperUser

To authenticate to the mapping API, a JWT is sent with the request. The token represents the user that is configured

with this property. The user authorization is required to use the IRR.RUSERMAP resource within the FACILITY class.

The default value is ZWESVUSR . Permissions are set up during installation with the ZWESECUR JCL or workflow.

If you customized the ZWESECUR JCL or workflow (the customization of zowe runtime user: // SET ZOWEUSER=ZWESVUSR *

userid for Zowe started task) and changed the default USERID, create the

components.gateway.apiml.security.x509.externalMapperUser property and set the value by adding a new line as in

the following example:

Example:

5. Restart Zowe.

You enabled zowe.yaml to use an X.509 client certificate.

Version: v3.3.x LTS

Enabling single sign on for clients via Personal

Access Token configuration

ROLES: SYSTEM PROGRAMMER, SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

Review this article for steps that enable single sign on via Personal Access Tokens.

Prerequisite using the Caching Service

To enable Personal Access Token support when using the Caching Service, Infinispan is the required storage solution.

Infinispan is part of Zowe installation. No additional software or installation is required when using this storage solution.

To enable this storage method, set the value of components.caching-service.storage.mode to infinispan in the

zowe.yaml configuration file. For more information on other properties for infinispan and their values see Infinispan

configuration.

Enabling Personal Access Tokens

Use the following procedure to enable Personal Access Tokens.

1. Open the file zowe.yaml .

2. Find or add the property with the value components.gateway.apiml.security.personalAccessToken.enabled: true .

3. Restart Zowe.

For more information about using Personal Access Tokens, see Authenticating with a Personal Access Token.

NOTE

To enable Personal Access Token support when using the Caching Service, Infinispan is the required storage

solution. Infinispan is part of Zowe installation. No additional software or installation is required when using this

storage solution.

https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-infinispan#infinispan-configuration
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-infinispan#infinispan-configuration
https://docs.zowe.org/stable/user-guide/api-mediation/authenticating-with-personal-access-token

Version: v3.3.x LTS

Enabling single sign on for clients via JSON Web

Token (JWT) configuration

ROLES: SYSTEM PROGRAMMER, SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

As a system programmer, you can customize how JSON Web Token (JWT) authentication is performed, the service that

provides the JWT authentication token, the possiblity to refresh JWT, and other characteristics of JWT for consumption.

Enabling single sign on for clients via JSON Web Token (JWT) configuration

Using SAF as an authentication provider

Enabling a JWT refresh endpoint

Authorization

Additional customizable properties when using JWTs

Using SAF as an authentication provider

By default, the API Gateway uses z/OSMF as an authentication provider. It is possible to switch to SAF as the

authentication provider instead of z/OSMF. The intended usage of SAF as an authentication provider is for systems

without z/OSMF. If SAF is used and the z/OSMF is available on the system, the created tokens are not accepted by

z/OSMF. Use the following procedure to switch to SAF.

1. Open the zowe.yaml configuration file.

2. Find or add the following property, and set the value to saf :

3. Restart Zowe.

Authentication requests now utilize SAF as the authentication provider. API ML can run without z/OSMF present on the

system.

Enabling a JWT refresh endpoint

Enable the /gateway/api/v1/auth/refresh endpoint to exchange a valid JWT for a new token with a new expiration

date. Call the endpoint with a valid JWT and trusted client certificate. When using the z/OSMF authentication provider,

enable API Mediation Layer for PassTicket generation and configure the z/OSMF APPLID.

For more information, see Configure PassTickets.

1. Open the file zowe.yaml .

2. Configure the following properties:

components.gateway.apiml.security.allowtokenrefresh: true

Add this property to enable the refresh endpoint.

components.gateway.apiml.security.zosmf.applid

If you use z/OSMF as an authentication provider, provide a valid APPLID . The API ML generates a PassTicket for the

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-passtickets

specified APPLID and subsequently uses this PassTicket to authenticate to z/OSMF. The default value in the

installation of z/OSMF is IZUDFLT .

NOTE

Problems have been noted with the functionality of the property

components.gateway.apiml.security.allowtokenrefresh . For more information about the bug, see issue #3468 in

the api-layer repo.

We recommend you use the following workaround:

1. Configure the following parameter in environments :

2. Restart Zowe.

Authorization

Authorization is used to set the access rights of an entity.

In the API ML, authorization is performed by any of the following z/OS security managers:

ACF2

IBM RACF

Top Secret.

An authentication token is used as proof of valid authentication. The authorization checks, however, are always

performed by the z/OS security manager.

Additional customizable properties when using JWTs

You can also customize the following properties when authenticating with a JWT:

components.gateway.apiml.security.auth.zosmf.ServiceId

This parameter specifies the z/OSMF service id used as authentication provider. The service id is defined in the static

definition of z/OSMF. The default value is ibmzosmf .

components.gateway.apiml.security.auth.tokenProperties.expirationInSeconds

This property is relevant only when the JWT is generated by the API Mediation Layer and specifies to the time before

expiration.

API ML generation of the JWT occurs in the following cases:

z/OSMF is only available as an older version which does not support JWTs

The SAF provider is used

To use a custom configuration for z/OSMF which changes the expiration of the LTPA token, it is necessary to also set

the expiration in this parameter.

https://github.com/zowe/api-layer/issues/3468
https://github.com/zowe/api-layer/issues/3468
https://www.broadcom.com/products/mainframe/identity-access/acf2
https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zsecurity/zsecc_042.htm
https://www.broadcom.com/products/mainframe/security/top-secret

Version: v3.3.x LTS

Enabling single sign on for extending services

ROLES: SYSTEM PROGRAMMER, API SERVICE EXTENDER

Enabling Single Sign On (SSO) in Zowe involves configuring JWT tokens or PassTickets for secure authentication. The JWT

token configuration requires setting up a custom HTTP header to store the token, thereby enhancing secure

communication with southbound services.

For more information, see Enabling single sign on for extending services via JWT token configuration.

PassTicket configuration, alternatively, allows services that do not natively support JWT tokens or client certificates to

authenticate via the API Gateway. This authentication process requires the activation of PassTicket support, recording the

APPLID, and configuring the Zowe started task user ID. Additionally, custom HTTP headers can be set up for PassTickets

and user IDs, ensuring secure and streamlined access within the Zowe ecosystem.

For more information, see Enabling single sign on for extending services via PassTicket configuration.

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-jwt
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-passtickets

Version: v3.3.x LTS

Enabling single sign on for extending services

via JSON Web Token (JWT) configuration

ROLE: SYSTEM PROGRAMMER

Adding a custom HTTP Auth header to store Zowe JWT

If a southbound service needs to consume the Zowe JSON Web Token (JWT) from an HTTP request header to participate

in the Zowe SSO, you can define a custom HTTP header name as part of the Gateway configuration. The southbound

service must use the zoweJwt scheme in order to leverage this functionality. Once the HTTP header name is defined,

each request to the southbound service contains the JWT in the custom header.

Use the following procedure to add the custom HTTP header.

1. Open the file zowe.yaml .

2. Find or add the property components.gateway.apiml.security.auth.jwt.customAuthHeader and set the value which

represents the header's name.

3. Restart Zowe.

Requests through the Gateway towards the southbound service now contain the custom HTTP header with the JWT.

Version: v3.3.x LTS

Enabling single sign on for extending services

via PassTicket configuration

One option to enable single sign-on (SSO) to your extending REST API services is to configure Zowe API ML PassTickets.

Passtickets are encoded and encrypted and are only valid for a few minutes after you generate them. PassTickets enable

z/OS components and products to authenticate a user ID without storing or caching z/OS passwords or sending the

passwords through the network. Follow the procedures described in this article to configure Zowe to use PassTickets, and

to enable Zowe to use PassTickets to authenticate towards specific extending services.

REQUIRED ROLE: SECURITY ADMINISTRATOR

Overview of PassTickets

API clients can use various supported methods to access an API service such as a Zowe JWT token or a client certificate

even if the API service itself does not support the JWT token or a client certificate. An intermediary for support of JWT or

a client certificate can be through the use of PassTickets.

When an API client provides a valid authentication method to API ML, the API Gateway generates a valid PassTicket for

any API service that supports PassTickets. A PassTicket is a one-time only password that is generated for a specific user

ID. The API Gateway uses the PassTicket to access that API service. The API Gateway provides the user ID and password

in the Authorization header which serves as basic authentication in HTTP requests using the Basic authentication

scheme.

Configuring Zowe to use PassTickets

Configuring Zowe to use PassTickets involves two processes:

1. Enabling the use of PassTickets in your External Security Manager (ESM)

2. Configuring security to allow the Zowe API Gateway to generate PassTickets for an API service

Enabling the use of PassTickets in your External Security Manager (ESM)

This section applies to users who do not already have PassTickets enabled in the system, or users who need to define a

PassTicket for a new APPLID. If you already have an APPLID that you intend to use to define your API service, skip to the

section Configuring security to allow the Zowe API Gateway to generate PassTickets for an API service.

TIP

To validate if a PassTicket is already defined, list the APPL and PTKTDATA with a command corresponding to your

ESM. Output indicates if a PassTicket is already defined. No results after issuing an ESM command indicates that a

PassTicket is not defined. If a PassTicket is defined, the access of the ZWESVUSR can be determined.

Validating an existing PassTicket for ACF2

https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication#Basic_authentication_scheme
https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication#Basic_authentication_scheme

In your ESM command line interface or other security environment, perform the following steps:

1. Issue a SHOW CLASMAP command in TSO ACF to verify if the APPL resource is defined in the GSO. Note the 3

character type code associated with APPL. If APPL does not appear in the SHOW CLASMAP listing, run the

following commands:

2. Replace 'APL' with the type code listed in the SHOW CLASMAP output:

3. Verify if PTKTDATA is defined, by executing the following commands:

-

A wildcard symbol that lists all resources

<applid>-

Lists everything related to specified applid in a resource (in this case, SAF), or specified in a profile (in this

case, PTKTDATA)

Validating an existing PassTicket for Top Secret

1. In your ESM command line interface or other security environment, execute the following commands:

2. If APPL and PTKTDATA are not yet defined, follow the steps to create them as described in the Enabling

PassTickets with Top Secret section.

.

A wildcard symbol that lists all resources

IRRPTAUTH.<applid>.

Returns everything about the specified applid for IRRPTAUTH

Validating an existing PassTicket for RACF

In your ESM command line interface or other security environment, execute the following commands:

Ensure that you validate PTKTDATA access for APPL.

*

A wildcard symbol that resturns all resources

RLIST PTKTDATA <applid> SSIGNON ALL

Validates all applid for PTKDATA class

Click here for procedure details about validating an existing PassTicket for ACF2.

Click here for command details about validating an existing PassTicket for Top Secret.

Click here for command details about validating an existing PassTicket for RACF.

RLIST PTKTDATA IRRPTAUTH.<applid>.* ALL

Validates all applid permissions for PTKDATA class

Follow these steps to enable PassTicket Support specific to your ESM.

Enabling PassTickets with ACF2

1. Issue the SHOW CLASMAP command in TSO ACF to identity the 3 character type code associated with APPL.

Replace 'APL' with the type code listed in the SHOW CLASMAP output:

2. In your ESM command line interface or other security environment, define the application session key by

entering the following commands if the session key is not already defined.

applid

Specifies the application ID used for PassTicket validation to authenticate connections to the server.

key-description

Specifies the secured sign-on hexadecimal application key of 16 hexadecimal digits (8-byte or 64-bit key). Each

application key must be the same on all systems in the configuration and the values must be kept secret and

secured.

3. Complete the PassTicket setup by entering the following commands:

The PassTicket record is now active in the system.

4. Enable the started task user ID to generate PassTickets for the application by entering commands similar to the

following:

userid

Specifies the Zowe server user ID

You configured Zowe to use PassTickets for single sign on using ACF2.

Enabling PassTickets with Top Secret

Before you begin this procedure, verify that the PTKTDATA class and ownership for the PassTicket resource

(IRRPTAUTH) have not already been defined as described in the previous tip.

1. Update the resource descriptor table (RDT) to define the PTKTDATA class by entering the following commands:

NOTE

The PTKTDATA resource is not a predefined class.

Click here for command details about configuring Zowe to use PassTickets using ACF2.

Click here for command details about configuring Zowe to use PassTickets using Top Secret.

The PTKTDATA resource is added to the RDT.

NOTE

Include RESCODE(n) in the range of 101 to 13F to make PTKTDATA a prefixed resource class.

2. Assign ownership for the PassTicket resource (IRRPTAUTH). Execute the following commands:

department

Specifies the department for PTKTDATA(IRRPTAUTH) . The default department is TSODEPT1 .

3. Define PassTicket for application ID applid without replay protection:

applid

Specifies the application ID used for PassTicket validation to authenticate connections to the server.

key-description

Specifies the secured sign-on hexadecimal application key of 16 hexadecimal digits (8-byte or 64-bit key). Each

application key must be the same on all systems in the configuration and the values must be kept secret and

secured.

4. Permit access to the PassTicket resource defined in the previous step for the LDAP Server by executing the

following command:

stc-userid

Specifies the Accessor ID (ACID) that you created when you created LDAP Server started task User IDs.

Default: CALDAP

You configured Zowe to use PassTickets using Top Secret.

Enabling PassTickets with RACF

1. Activate the PTKTDATA class, which encompasses all profiles containing PassTicket information.

In your ESM command line interface or other security environment, execute the following command:

2. Specify the application ID requiring access through PassTicket for the Zowe server with the following commands:

applid

Specifies the application ID used for PassTicket validation to authenticate connections to the server. (One to 8

characters)

NOTE

This name is usually provided by the site security administrator.

3. Define the profile for the application with the following command:

Click here for command details about configuring Zowe to use PassTickets using RACF.

key-description

Specifies the secured sign-on hexadecimal application key of 16 hexadecimal digits (8-byte or 64-bit key). Each

application key must be the same on all systems in the configuration and the values must be kept secret and

secured.

4. Replace key-description with the application name defined previously.

IMPORTANT

PassTickets for the API service must have the replay protection switched off. This links a secured sign-on

application key with the application.

5. Define the profile IRRPTAUTH in PTKTDATA class for the <applid>

6. Allow the application ID (applid) to use PassTickets:

userid

Specifies the value of the LDAP Server started task.

7. Refresh the RACF PTKTDATA definition with the new profile:

You configured Zowe to use PassTickets using RACF.

Configuring security to allow Zowe API Gateway to generate PassTickets for an API

service

As a security administrator, you can issue security commands to allow the Zowe started task user ID to generate

PassTickets for the API service.

Specify the following variables when generating PassTickets for the API service to enable the Zowe started task user ID:

applid

The APPLID value used by the API service for PassTicket support (for example, OMVSAPPL)

zowe-user-id

The Zowe started task user ID used during the Zowe installation

In the following examples of ESM configuration, replace these variables with actual values.

Use the configuration format that corresponds to your ESM as presented in the following examples.

Generating PassTickets using ACF2

Grant the Zowe started task user ID permission to generate PassTickets for users of the API service.

Example:

Click here for command details about generating PassTickets using ACF2.

Generating PassTickets using Top Secret

Grant the Zowe started task user ID permission to generate PassTickets for users of the API service.

Example:

Generating PassTickets using RACF

Grant the Zowe started task user ID permission to generate PassTickets for users of the API service.

Example:

Verifying your PassTicket Application

In your ESM command line interface or other security environment, execute the commands that correspond to your ESM:

Verifying PassTickets using ACF2

ACF2:

Replace 'APL' with the type code listed in the SHOW CLASMAP output:

applid

Specifies the application ID used for PassTicket validation to authenticate connections to the server

Successful execution of this validation command shows your application and the specific access of the application.

Verifying PassTickets using Top Secret

TSS:

Verifying PassTickets using RACF

Click here for command details about generating PassTickets using Top Secret.

Click here for command details about generating PassTickets using RACF.

Click here for command details for ACF2.

Click here for command details for Top Secret.

Click here for command details for RACF

RACF:

Output example:

(Optional) Adding custom HTTP Auth headers to store user ID

and PassTicket

If a downstream (southbound) service needs to consume the PassTicket as well as the user ID from custom headers to

participate in the Zowe SSO, you can define the custom HTTP headers names as part of the Gateway configuration. The

southbound service must use the httpBasicPassTicket scheme in order to leverage this functionality. Once the HTTP

headers names are defined, each request to the southbound service contains the PassTicket and the user ID in the

custom headers.

Use the following procedure to add the custom HTTP headers.

1. Open the file zowe.yaml .

2. Find or add the property components.gateway.apiml.security.auth.passticket.customAuthHeader and set the

value which represents the name of the header.

3. Find or add the property components.gateway.apiml.security.auth.passticket.customUserHeader and set the

value which represents the name of the header.

4. Restart Zowe.

Requests through the Gateway towards the southbound service now contain the custom HTTP headers with the

PassTicket and the user ID.

Version: v3.3.x LTS

Customizing routing behavior

ROLES: SYSTEM PROGRAMMER, SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

The Zowe API Mediation Layer offers a range of routing configurations for enhanced functionality and security.

You can customize your configuration for how API ML manages both northbound and southbound load limits in single

instances, including changing the number of concurrent connections per route passing through the API Gateway, and

changing the global Gateway timeout value for the API ML instance.

To change the number of concurrent connections per route passing through the API Gateway, see Customizing

connection limits.

To change the global Gateway timeout value for the API ML instance, see Customizing Gateway timeouts.

Also see the following properties in API Gateway configuration parameters:

server.maxTotalConnections

server.maxConnectionsPerRoute

Customizing CORS enables the Gateway to handle Cross-Origin Resource Sharing requests, while settings for encoded

slashes and unique cookie names cater to specific operational needs of onboarding applications and multiple Zowe

instances.

For more information, see Customizing Cross-Origin Resource Sharing (CORS)

To onboard applications which expose endpoints that expect encoded slashes, see Using encoded slashes

The Gateway retry policy, customizable through zowe.yaml, optimizes request handling, which can be especially useful

in high availability scenarios.

To customize the Gateway retry policy, see Customizing Gateway retry policy.

Additionally, API ML supports specific instance access and load balancer cache distribution, improving service

identification and scalability. These configurations, including service ID adjustments for compatibility with Zowe v2,

demonstrate Zowe's adaptability and robustness in API management.

To configure a unique cookie name for each instance to prevent overwriting of the default cookie name in the case of

multiple Zowe instances, or for more complex deployment strategies, see Configuring a unique cookie name for a

specific API ML instance.

To determine which service instance is being called, you can customize the Gateway to output a routed instance header.

For more information, see Retrieving a specific service within your environment.

To distribute the load balancer cache between instances of the API Gateway, see Distributing the load balancer cache.

To modify the service ID to ensure compatibility of services that use a non-conformant organization prefix with Zowe v2,

see Setting a consistent service ID.

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-connection-limits
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-connection-limits
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-gateway-timeouts
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-cors
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-url-handling
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-gateway-retry-policy
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-unique-cookie-name-for-multiple-zowe-instances
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-unique-cookie-name-for-multiple-zowe-instances
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-access-specific-instance-of-service
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-distributed-load-balancer-cache
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-set-consistent-service-id

Version: v3.3.x LTS

Configuring routing in a multi-tenant

environment

In a multi-sysplex environment, both the domain-specific Discovery Service as well as one or more additional Discovery

Services may require registration with the Discovery Service in the domain which gathers information about all installed

API Gateways in isolated sysplex environments.

The domain-specific Discovery Service is typically in the same LPAR in a multi-sysplex environment. However, the API

Gateway in API ML in one domain (for example in Domain API ML 2) may also need to register with the API ML Discovery

Service in a separate domain (for example in Domain API ML 1), which gathers information about all installed API

Gateways in isolated sysplex environments. After registration, data from the Discovery Service in Domain API ML 1 can

be used by the Gateway in Domain API ML 2 for routing to individual API Gateways.

Follow these steps to register with additional Discovery Services:

1. Open the zowe.yaml configuration file.

2. Add the property components.gateway.apiml.service.additionalRegistration and set the value to a list of

Discovery service clusters to additional Disovery Services.

Example:

NOTE

Ensure that each API ML instance is defined in a separated record. Do not combine multiple API ML instances in

a single record. In the case of a high availability setup, the value discoveryServiceUrls may contain multiple

URLs. We highly recommend to provide all available Discovery URLs in the value discoveryServiceUrls .

Always provide the direct address to the system. Do not use the DVIPA address. Using this address could lead to

unexpected behaviour.

3. Add property components.gateway.apimlId and set the value to a unique string to identify gateway for routing.

Example:

4. Restart Zowe.

You completed the procedure to register with additional Discovery Services.

Version: v3.3.x LTS

Customizing Cross-Origin Resource Sharing

(CORS)

ROLE: SYSTEM PROGRAMMER

As a system programmer, you can enable the Gateway to terminate CORS requests for itself and also for routed

services. By default, Cross-Origin Resource Sharing (CORS) handling is disabled for Gateway routes gateway/api/v1/**

and for individual services. After enabling the feature as stated in the following procedure, API Gateway endpoints start

handling CORS requests. Individual services can control whether they want the Gateway to handle CORS for them

through the Custom Metadata parameters.

When the Gateway handles CORS on behalf of the service, the Gateway sanitizes the following defined headers from the

communication (upstream and downstream) in the following comma -separated list:

The resulting request to the service is not a CORS request. No additional specification of the service is required. The list

can be overridden by specifying a different comma-separated list in the property

components.gateway.apiml.service.ignoredHeadersWhenCorsEnabled in zowe.yaml .

Additionally, the Gateway handles the preflight requests on behalf of the service when CORS is enabled in Custom

Metadata, replying with CORS headers:

Access-Control-Allow-Methods: GET,HEAD,POST,PATCH,DELETE,PUT,OPTIONS

Access-Control-Allow-Headers: origin, x-requested-with

Access-Control-Allow-Credentials: true

Access-Control-Allow-Origin: *

Alternatively, list the origins as configured by the service, associated with the value

customMetadata.apiml.corsAllowedOrigins in Custom Metadata. You can configure the list of allowed HTTP methods

by adding the property components.gateway.apiml.service.corsAllowedMethods in zowe.yaml and setting the value to

a comma-separated list of allowed HTTP methods.

If CORS is enabled for Gateway routes but not in Custom Metadata, the Gateway does not set any of the previously listed

CORS headers. As such, the Gateway rejects any CORS requests with an origin header for the Gateway routes.

Use the following procedure to enable CORS handling.

1. Open the file zowe.yaml .

2. Find or add the property components.gateway.apiml.service.corsEnabled and set the value to true .

3. Restart Zowe.

Requests through the Gateway now contain a CORS header.

https://docs.zowe.org/stable/extend/extend-apiml/onboard-spring-boot-enabler#custom-metadata

Version: v3.3.x LTS

Using encoded slashes

ROLE: SYSTEM PROGRAMMER

By default, the API Mediation Layer accepts encoded slashes in the URL path of the request. If you are onboarding

applications which expose endpoints that expect encoded slashes, it is necessary to keep the default configuration. We

recommend that you change the property to false if you do not expect the applications to use the encoded slashes.

Use the following procedure to reject encoded slashes.

1. Open the file zowe.yaml .

2. Find or add the property components.gateway.apiml.service.allowEncodedSlashes and set the value to false .

3. Restart Zowe.

Requests with encoded slashes are now rejected by the API Mediation Layer.

Version: v3.3.x LTS

Customizing Gateway retry policy

Use the following procedure to change the Gateway retry policy.

ROLE: SYSTEM PROGRAMMER

All requests are disabled as the default configuration for retry with one exception: the server retries GET requests that

finish with status code 503 .

1. Open the zowe.yaml configuration file.

2. Configure the following properties:

components.gateway.ribbon.retryableStatusCodes

This property provides a list of status codes, for which the server should retry the request.

Example: components.gateway.ribbon.retryableStatusCodes: "503, 404"

components.gateway.ribbon.OkToRetryOnAllOperations

Specifies whether to retry all operations for this service. The default value is false . In this case, only GET requests

are retried if they return a response code that is listed in ribbon.retryableStatusCodes . Setting this parameter to

true enables retry requests for all methods which return a response code listed in ribbon.retryableStatusCodes .

NOTE

Enabling retry can impact server resources due to request body buffering.

components.gateway.ribbon.MaxAutoRetries

Specifies the number of times a failed request is retried on the same server. This number is multiplied with

ribbon.MaxAutoRetriesNextServer . The default value is 0 .

components.gateway.ribbon.MaxAutoRetriesNextServer

Specifies the number of additional servers that attempt to make the request. This number excludes the first server.

The default value is 5 .

3. Restart Zowe.

Version: v3.3.x LTS

Configuring a unique cookie name for a specific

API ML instance

ROLE: SYSTEM PROGRAMMER

By default, in the API Gateway, the cookie name is apimlAuthenticationToken . To prevent overwriting of the default

cookie name in the case of multiple Zowe instances, a unique cookie name can be configured for each instance.

Follow this procedure to configure a unique cookie name for the instances:

1. Open the Zowe YAML configuration file.

2. Find or add the property components.gateway.apiml.security.auth.uniqueCookie , and set it to true .

3. Find the property zowe.cookieIdentifier and set it to any word or number that you wish to identify your Zowe

instance.

4. Restart Zowe.

This sets a suffix for the API Gateway's cookie name based upon the value of zowe.cookieIdentifier .

Example:

If the components.gateway.apiml.security.auth.uniqueCookie parameter is set to true and zowe.cookieIdentifier

is 1 , the cookie name is apimlAuthenticationToken.1 .

If this property is not set to true , the cookie name remains the default value apimlAuthenticationToken .

Version: v3.3.x LTS

Retrieving a specific service within your

environment

ROLES: SYSTEM PROGRAMMER, SYSTEM ADMINISTRATOR

Output a routed instance header

The API Gateway can output a special header that contains the value of the instance ID of the API service that the

request has been routed to. This is useful for understanding which service instance is being called.

The header name is X-InstanceId , and the sample value is discoverable-client:discoverableclient:10012 . This is

identical to instanceId property in the registration of the Discovery service.

Use the following procedure to output a special header that contains the value of the instance ID of the API service.

1. Open the file zowe.yaml .

2. Find or add the property with value components.gateway.apiml.routing.instanceIdHeader:true .

3. Restart Zowe.

Version: v3.3.x LTS

Distributing the load balancer cache

ROLE: SYSTEM PROGRAMMER

You can choose to distribute the load balancer cache between instances of the API Gateway. To distribute the load

balancer cache, it is necessary that the caching service is running. Gateway service instances are required to have the

same DN (Distinguished name) on the server certificate. This may be relevant for the HA setups.

Use the following procedure to distribute the load balancer cache between instances of the API Gateway.

1. Open the file zowe.yaml .

2. Find or add the property with value components.gateway.apiml.loadBalancer.distribute: true .

3. Restart Zowe.

Version: v3.3.x LTS

Setting a consistent service ID

ROLE: API SERVICE EXTENDER

As an API service extender you can modify the service ID to ensure compatibility of services that use a non-conformant

organization prefix.

For more information, see the following parameter in the article Discovery Service configuration parameters:

components.discovery.apiml.discovery.serviceIdPrefixReplacer

This parameter is used to modify the service ID of a service instance, before it registers to API ML. Using this

parameter ensures compatibility of services that use a non-conformant organization prefix with.

Version: v3.3.x LTS

Customizing management of API ML load limits

ROLE: SYSTEM PROGRAMMER

As a system programmer, you can customize your configuration for how API ML manages both northbound and

southbound load limits in single instances:

To change the number of concurrent connections per route passing through the API Gateway, see Customizing

connection limits.

To change the global Gateway timeout value for the API ML instance, see Customizing Gateway timeouts.

To change the number of concurrent requests an application should support and its impact on the size of the Java

memory heap, see Customizing Java Heap sizes.

To customize the rate limit for each service, see Customizing Gateway rate limiter.

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-connection-limits
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-connection-limits
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-gateway-timeouts
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-customizing-java-heap-sizes
https://docs.zowe.org/stable/user-guide/api-mediation/customizing-gateway-rate-limiter

Version: v3.3.x LTS

Customizing connection limits

ROLE: SYSTEM PROGRAMMER

TCP/IP Connection Limits

By default, the API Gateway accepts up to 100 concurrent connections per route, and 1000 total concurrent connections.

Any further concurrent requests are queued until the completion of an existing request. The API Gateway is built on top

of Apache HTTP components that require these two connection limits for concurrent requests.

Use the following procedure to change the number of concurrent connections:

1. Open the file zowe.yaml .

2. Find or add the property components.gateway.server.maxConnectionsPerRoute and set the value to an appropriate

positive integer. Defaults to 100 max reusable connections per route.

3. Find or add the property components.gateway.server.maxTotalConnections and set the value to an appropriate

positive integer. Defaults to 1000 max total concurrent connections.

Websocket Limits

The API Mediation Layer supports Websocket connections. It is possible to configure the limits around timeouts. All the

values are in milliseconds. Customizing this limit may be practical if you see problems such as with the usage of the

TN3270 terminal in Virtual Desktop.

Use the following procedure to change the limits:

1. Open the file zowe.yaml .

2. Find or add the property components.gateway.server.websocket.connectTimeout , and set the value to an

appropriate positive integer. This timeout limits how long the API Gateway waits until it drops connection if it cannot

reach the target server. The default is 45 seconds (45000 milliseconds).

3. Find or add the property components.gateway.server.websocket.asyncWriteTimeout , and set the value to an

appropriate positive integer. This timeout handles how long it takes before the server fails with unsuccessful

response when trying to write a message to the Websocket connection. The default is 60 seconds (60000

milliseconds).

4. Find or add the property components.gateway.server.websocket.maxIdleTimeout , and set the value to an

appropriate positive integer. This timeout handles how long the Websocket connection remains open if there is no

communication happening over the open connection. The default is one hour (3600000 milliseconds).

5. Find or add the property components.gateway.server.websocket.requestBufferSize and set the value to an

appropriate positive integer. This property handles the max request size allowed in WebSocket handshake requests.

The default is 8K.

Version: v3.3.x LTS

Customizing Gateway timeouts

ROLE: SYSTEM PROGRAMMER

Use the following procedure to change the global timeout value for an API Mediation Layer instance.

1. Open the file zowe.yaml .

2. Configure the following properties:

components.gateway.apiml.connectTimeout

Specifies the value in milliseconds which corresponds to the period in which API ML should establish a single, non-

managed connection with the service. If omitted, the default value specified in the API ML Gateway service

configuration is used.

components.gateway.apiml.connection.idleConnectionTimeoutSeconds

components.gateway.apiml.connection.timeToLive

Example:

3. Restart Zowe.

You completed customization of Gateway timeouts.

Version: v3.3.x LTS

Customizing Gateway rate limiter

ROLE: SYSTEM PROGRAMMER

The API Gateway offers a way to customize the rate limit for each service via a configurable rate limiter, which prevents

individual users from overloading the system with excessive requests. Configuring the rate limiter helps ensure that a

user's activity does not negatively impact the experience of other users by mitigating the risk of Distributed Denial-of-

Service (DDoS) attacks and other automated exploit attempts.

Use the following procedure to customize the Gateway rate limiter:

1. In the zowe.yaml, set the following rate limiting properties in api/gateway:

rateLimiterCapacity

Defines the total number of requests that can be allowed at one time per user. The default value is set to 20.

rateLimiterTokens

Defines the number of requests that are added to the service’s allowance at regular intervals. This property

controls how quickly requests are replenished after being consumed. The default value is set to 20.

rateLimiterRefillDuration

Sets the time interval (in minutes) at which new requests (or tokens) are added. The default value is set to 1.

2. Define the services to limit:

Use servicesToLimitRequestRate to specify a list of services to limit. In the following example, this property applies

to the API Catalog.

Example configuration:

You configured the properties of the rate limiter for the API Catalog, thereby improving user accessibility and overall

system stability.

Version: v3.3.x LTS

Customizing Java Heap sizes

ROLE: SYSTEM PROGRAMMER

The Zowe API Mediation Layer is a Java-based application. As such, one of the main performance considerations is the

size of the Java memory heap, where all objects are stored. The Java heap size has a direct impact on the available

capacity of the applications. Aspects to consider when defining the size are, for example, how many concurrent requests

the application should support, and the expected size of average requests. As a systems programmer, you can

customize the available Java memory heap size for API Mediation Layer components.

By default, all services (Gateway, Discovery, API Catalog, Caching Service) have a Java heap size of 32 MB as the initial

size, and a maximum heap size of 512 MB.

To change the default settings, set components.<component>.heap.init and components.<component>.heap.max

component

Specifies one of the following services:

gateway

discovery

caching-service

api-catalog

zaas

Example with Gateway Service:

The unit is megabytes and cannot be changed. The new values are 1 GB.

Recommendation

It is recommended to have a fixed heap size in a production environment.

Version: v3.3.x LTS

Configuring authorization for API ML

ROLE: SYSTEM ADMINISTRATOR

In Zowe's API Mediation Layer, system administrators can limit access to services and information in the API Catalog by

hiding sensitive data like service instance URLs, configurable via the apiml.catalog.hide.serviceInfo property in

zowe.yaml. Additionally, SAF resource checking for user authorization on specific endpoints is facilitated through various

providers, such as Endpoint, Native, and Dummy. These configurations, modifiable in the zowe.yaml file, enhance

security by controlling service exposure and ensuring proper authorization checks within the Zowe ecosystem.

Limiting access to information or services in the API Catalog

Configuring SAF resource checking

Configurint Health Endpoint Protection

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-limiting-access-to-info-or-services-in-api-catalog
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-saf-resource-checking
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-health-endpoint-protection

Version: v3.3.x LTS

Limiting access to information or services in the

API Catalog

ROLE: SYSTEM ADMINISTRATOR

As a system administrator, you can limit access to information and/or services available within the API Catalog and

through the API Mediation Layer and check for the authorization of the user on certain endpoints.

Choose from the following use cases:

Use the property apiml.catalog.hide.serviceInfo to hide the instance URL value of all services registered to the

API ML in the API Catalog.

See the section Hide service information.

The API ML can check for the authorization of the user on certain endpoints. Access to a SAF resource is checked via

an External Security Manager (ESM).

See the article SAF Resource Checking.

Hide service information

1. Open the file zowe.yaml .

2. Configure the following properties:

apiml.catalog.hide.serviceInfo

This parameter is used to hide the instance URL value of all services registered to the API ML in the API Catalog.

This customization can be useful when the service owner does not want to expose sensitive information such as

the hostname.

Set the value of the *apiml.catalog.hide.serviceInfo parameter to true to hide the instance URL for all

services registered to the API Catalog.

In your Zowe YAML configuration (typically zowe.yaml), set this parameter by defining

configs.apiml.catalog.hide.serviceInfo .

Follow this example to define this parameter globally.

Example:

An alternative is to define this parameter only for a high availability instance on lpar1.

Example:

3. Restart Zowe.

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-saf-resource-checking

Version: v3.3.x LTS

Configuring SAF resource checking

ROLES: SYSTEM PROGRAMMER, SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

You can use various SAF resource providers depending on your use case to handle the SAF authorization check. Follow

the procedure in this article that applies to your specific configuration use case.

SAF Resource Checking Providers

API ML can check for the authorization of the user on certain endpoints. Access to a SAF resource is checked with your

External Security Manager (ESM).

Verification of the SAF resource is possible by any of the following three providers:

native

The Native JZOS classes from Java are used to determine SAF resource access. This is the default provider.

Note: This provider cannot be used off-platform.

endpoint

The endpoint provider relies on APIs such as through a REST endpoint call (for example ZSS). This option is disabled

by default. In Zowe, ZSS provides the API to check for SAF resource authorization.

dummy

The dummy provider is the lowest priority provider. This is the dummy implementation and is defined in a file.

NOTE

Verification of the SAF resource uses the first available provider based on the specified priority. The default

configuration resolves to the native provider.

Setting the native provider to perform SAF resource check (Default setting)

The Native provider is the easiest approach to use the SAF resource checking feature on the mainframe.

1. Open the file zowe.yaml .

2. Find or add the following property with the value set as native :

3. Restart Zowe.

TIP

Enable this provider when classes com.ibm.os390.security.PlatformAccessControl and

com.ibm.os390.security.PlatformReturned are available on the classpath. This approach uses the method

described in Class PlatformAccessControl in the IBM documentation.

https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zsecurity.api.80.doc/com.ibm.os390.security/com/ibm/os390/security/PlatformAccessControl.html?view=kc#checkPermission-java.lang.String-java.lang.String-java.lang.String-int-

NOTE

Ensure that your system uses the same version of Java as the classes and method signatures.

Setting the endpoint provider to perform SAF resouce check

To use the endpoint provider it is necessary to enable the endpoint property and customize the URL corresponding to the

SAF resource authorization. By default, the ZSS API is configured and used.

1. Open the file zowe.yaml .

2. Find or add the following properties and their corresponding values:

components.gateway.apiml.security.authorization.provider: endpoint

components.gateway.apiml.security.authorization.endpoint.enabled: true

(Optional) components.gateway.apiml.security.authorization.endpoint.url: <endpoint_url>

When using ZSS, the default value of the property

components.gateway.apiml.security.authorization.endpoint.url is https://<haInstance_hostname>:

<gateway_port>/zss/api/v1/saf-auth

haInstance_hostname

Specifies the Zowe instance hostname from the configuration.

gateway_port

Specifies the Gateway port from the configuration.

3. Restart Zowe.

Setting the dummy provider to perform SAF resource check

Use the Dummy provider for testing purpose outside of the mainframe.

1. Open the file zowe.yml .

2. Find or add the following property with the value dummy :

3. Create the file saf.yml in the following folders where the application is running:

<zowe_installation_dir>/components/zaas/bin folder (V3)

The directory for the ZAAS application

<zowe_installation_dir>/components/gateway/bin folder (V3)

The directory for the Gateway

Alternatively, you can create the file mock-saf.yml in the test module (root folder).

4. Restart Zowe.

IMPORTANT:

It is necessary to read the file outside of the JAR. A file (inner or outside) has to exist.

The following YAML presents the structure of the file:

CLASS

Specifies the name of the SAF class.

RESOURCE

Specifies the name of the SAF resource.

NOTES

Classes and resources are mapped into a map with user IDs contained in a list.

The load method does not support formatting with periods (.), such as shown in the following example:

Example: {CLASS}.{RESOURCE}

Ensure that each element is separated.

The field safAccess is not required to define an empty file without a definition.

Classes and resources cannot be defined without the user ID list.

When a user has multiple definitions of the same class and resource only the most privileged access level loads.

Version: v3.3.x LTS

Configuring Health Check Protection

ROLE: SYSTEM PROGRAMMER

As a system programmer, you can disable the security setting for the health check endpoint of the API Gateway. This

setting determines whether the health check endpoint is accessible without authentication, or alternatively requires

authentication. In Zowe V2, authentication was not required. Disabling protection for the health check endpoint can limit

the security of the API Gateway by allowing access to sensitive status information about the Gateway.

Use the following procedure to set the value of the health check endpoint of the API Gateway:

1. Open the file zowe.yaml .

2. Configure the following property:

components.gateway.apiml.health.protected

This property defines whether the health check endpoint is accessible with or without authentication.

NOTE

The default value of this parameter is true .

Example:

In this example, setting protected to true protects the health check endpoint by requiring authentication. Only

authenticated users can access the health check endpoint. Requiring authentication ensures that sensitive information

about the status of the Gateway is not exposed to unauthenticated users.

To allow open access to the health check endpoint, set the parameter to false . Setting this parameter to false permits

access to this endpoint without authentication. In this case, anyone can access the health check endpoint and obtain

information about the status of the Gateway.

components.discovery.apiml.health.protected

This property defines whether the health check endpoint on Discovery service is accessible with or without

authentication.

components.apiCatalog.apiml.health.protected

This property defines whether the health check endpoint on API Catalog is accessible with or without authentication.

Environment Recommendations

When setting this parameter, we recommend applying the following values according to your environment:

In Production Environments

It is recommended to set components.*.apiml.health.protected to true to enhance security and protect sensitive

information about the API Gateway's health status. This is the default.

In Development/Testing Environments

setting components.*.apiml.health.protected to false can simplify the testing process, reduce development

overhead, and assist with debugging.

Version: v3.3.x LTS

Configuring an authentication provider for API

Mediation Layer

REQUIRED ROLES: SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

Choose from the following providers to handle authentication for the API Gateway:

Configuring an authentication provider for API Mediation Layer

z/OSMF Authentication Provider

SAF Authentication Provider

NOTE

For development purposes, a dummy authentication provider is also available. This provider is not intend for

production purposes. For more information, see Dummy Authentication Provider in Deploy API Mediation Layer

locally.

TIP

In most cases, we recommend you use the z/OSMF Authentication Provider. z/OSMF is part of z/OS. As such, this

provider is the best option for providing the authentication API.

When z/OSMF is not available, we recommend you use the SAF Authentication provider. With the SAF provider,

the API Gateway acts as the authentication service. The provided credentials are validated directly by API

Gateway via SAF APIs.

z/OSMF Authentication Provider

The z/OSMF Authentication Provider allows the API Gateway to authenticate with the z/OSMF service. The user needs

z/OSMF access in order to authenticate.

Use the following properties of the API Gateway to enable the z/OSMF Authentication Provider :

NOTE

z/OSMF is the required authentication provider for the following Zowe Desktop application plugins:

JES Explorer

MVS Explorer

USS Explorer

components.gateway.apiml.security.auth.provider: zosmf

https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-layer-development-setup#dummy-authentication-provider

SAF Authentication Provider

The SAF Authentication Provider allows the API Gateway to authenticate directly with the z/OS SAF provider that is

installed on the system. The user needs a SAF account to authenticate.

Use the following property of the API Gateway to enable the SAF Authentication Provider :

Version: v3.3.x LTS

Using Infinispan as a storage solution through

the Caching Service

REQUIRED ROLES: SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

You can configure Infinispan as a storage solution through the Caching Service, as well as configure Infinispan for high

availability (HA) to replicate data to provide data durability and availability.

Using Infinispan as a storage solution through the Caching Service

Understanding Infinispan

Infinispan replica instances

Infinispan configuration

Understanding Infinispan

Infinispan is a storage solution that stores data structures in key-value pairs. The API Caching Service uses hash sets,

where each service storing data via the Caching Service has its own hash, and each data entry is a key-value entry

within that service's Infinispan hash set.

For more information on Infinispan, see the official Infinispan documentation.

Infinispan replica instances

Infinispan can be used with both a standalone instance and high availability mode. When using multiple Caching Service

instances, it is necessary to specify all of the cluster nodes (members). Each Infinispan node is bound to a specific

Caching Service instance and runs on a different port and host, which can be configured. For more information about

configuring multiple Infinispan modes, see the Infinispan configuration.

For more information on Infinispan replication and how to configure a replica instance, see the Infinispan Cross-site

Replication documentation.

Infinispan configuration

Configure Infinispan as a storage solution through the Caching Service by setting the following configuration parameters

in the zowe.yaml .

components.caching-service.storage.infinispan.initialHosts

This property specifies the list of cluster nodes (members). In case of multiple instances, the value for each Caching

Service instance can be either a list of all the members, separated by a comma, or just the replica. The format is

${haInstance.hostname}[${components.caching-service.storage.infinispan.jgroups.port}] .

components.caching-service.storage.infinispan.jgroups.port

https://infinispan.org/documentation/
https://infinispan.org/docs/stable/titles/xsite/xsite.html
https://infinispan.org/docs/stable/titles/xsite/xsite.html

(Optional) The default value is 7600 . The port number used by Infinispan to synchronise data among Caching

Service instances.

NOTE

We recommend you define this value to avoid potential problems or errors in future Zowe upgrades.

components.caching-service.storage.infinispan.jgroups.host

(Optional) The default value is taken from zowe hostname. The hostname used by Infinispan to synchronise data

among Caching Service instances.

NOTE

We recommend you define this value to avoid potential problems or errors in future Zowe upgrades.

components.caching-service.storage.infinispan.keyExchange.port

(Optional) The default value is 7601 . The port number used by Infinispan to exchange encryption key among

Caching Service instances.

components.caching-service.storage.infinispan.jgroups.port

(Optional) The default value is 7600 . The port number is used by Infinispan to synchronise data among Caching

Service instances.

NOTE

We recommend you define this value to avoid potential problems or errors in future Zowe upgrades, for

example from version 2.x through v3.1 to v3.2 and newer versions.

components.caching-service.storage.infinispan.jgroups.host

(Optional) The default value is taken from zowe hostname. The hostname used by Infinispan to synchronise data

among Caching Service instances.

components.caching-service.storage.infinispan.jgroups.keyExchange.port

(Optional) The default value is taken from zowe hostname. The hostname used by Infinispan to synchronise data

among Caching Service instances.

components.caching-service.storage.infinispan.jgroups.keyExchange.port

(Optional) The default value is 7601 . The port number is used by Infinispan to exchange encryption key among

Caching Service instances.

NOTE

We recommend you define this value to avoid potential problems or errors in future Zowe upgrades, for

example from version 2.x through v3.1 to v3.2 and newer versions.

Example of Caching Service HA configuration using Infinispan:

Version: v3.3.x LTS

Using VSAM as a storage solution through the

Caching service **Deprecated**

REQUIRED ROLES: SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

IMPORTANT

VSAM as a storage solution is deprecated in Zowe V3. Please use Infinispan, which is packaged as part of the

Caching Service.

In Zowe v2 or previous versions, it is possible to configure VSAM as a storage solution through the Caching service.

Configuring VSAM ensures that you do not lose data if you need to restart. Configuring VSAM also makes it possible to

leverage multiple caching services concurrently, whereby clients can retreive data through VSAM.

Using VSAM as a storage solution through the Caching service Deprecated

Understanding VSAM

VSAM configuration

VSAM performance

Understanding VSAM

Virtual Storage Access Method (VSAM) is both a data set type, and a method for accessing various user data types.

Using VSAM as an access method makes it possible to maintain disk records in a unique format that is not

understandable by other access methods. VSAM is used primarily for applications, and is not used for source programs,

JCL, or executable modules. ISPF cannot be used to display or edit VSAM files. VSAM can be used to organize records into

four types of data sets: key-sequenced, entry-sequenced, linear, or relative record. The API Caching service supports

VSAM as a storage method to cache APIs, and uses the Key Sequence Data Set (KSDS) dataset. Each record has one or

more key fields, and a record can be retrieved (or inserted) by the key value, thereby providing random access to data.

Records are of variable length. IMS™ uses KDSDs.

For more information about VSAM, see the IBM documentation.

VSAM configuration

Configure VSAM as a storage solution through the Caching service by modifying the following configuration parameters

in components.caching-service in zowe.yaml .

storage.vsam.name

The ZFile filename. The ZFile is a wrapper around a z/OS file based on the supplied name and options. This method

calls the fopen() and fldata() C-library routines. The ZFile filename should follow the specific naming convention

//'DATASET.NAME' .

storage.vsam.keyLength

The VsamKey length. The default value is 128 bytes.

https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-infinispan
https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zconcepts/zconcepts_169.htm

storage.vsam.recordLength

The record length. The default value is 4096 bytes.

storage.vsam.encoding

The character encoding. The default value is IBM-1047.

VSAM performance

Accessing VSAM via java results in a performance limitation. The VSAM solution has been tested in a few scenarios.

The following sequence describes the test process:

1. Load 1000 records into the cache concurrently (5 threads).

2. Update all records for 120 seconds with increasing the thread count, up to <x> amount of threads.

3. Read all records for 120 seconds with increasing the thread count, up to <x> amount of threads.

4. Read and update all records for 120 seconds with increasing the thread count, up to <x> amount of threads.

5. Delete all loaded records from the cache concurrently (5 threads).

Tests were run with 3 scenarios:

Low load: 5 threads

Medium load: 15 threads

High load: 50 threads

Test subjects:

Single Caching Service with VSAM storage

Two Caching Services with shared VSAM storage

Results:

The most important operation is READ .

Two Caching Services achieve better READ performance than a single Caching Service.

Based on data from the testing results, the READ performance appears to be acceptable, ranging from 300 ms to

1000 ms.

With two Caching Services and a high load, READ performance significantly increased.

Response times of other operations are also acceptable, yet error rates increase with higher concurrency.

Two Caching Services produce higher load on shared resource (VSAM) and have higher error rate.

VSAM implementation appears to be sufficient for user-based workloads. For light automation workloads VSAM

implementation appears to be acceptable as well. For heavy workloads this implementation may not be sufficient.

VSAM does not scale well beyond 1000 RPM on a node.

Version: v3.3.x LTS

Using Redis as a storage solution through the

Caching service

REQUIRED ROLES: SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

You can configure Redis as a storage solution through the Caching service, as well as configure Redis for high availability

to replicate data to provide data durability and availability.

Understanding Redis

Redis configuration

Understanding Redis

Redis is an off-Z storage solution that stores data structures in key-value pairs. The API Caching service uses hash sets,

where each service storing data via the Caching service has its own hash, and each data entry is a key-value entry

within that service's Redis hash set.

For more information on Redis, see the official Redis documentation.

Redis replica instances

Redis can be used with one standalone instance. For data durability, however, a master/replica configuration is

recommended. Redis replicas automatically connect, and re-connect when necessary, to the master Redis instance and

attempt to be an exact copy of the master.

For more information on Redis replication and how to configure a replica instance, see the official Redis Replication

documentation.

Redis Sentinel

Redis Sentinel is a configuration that provides high availability for Redis master/replica instances. Sentinel instances are

used to monitor the master instance and use a quorum to automatically determine if a failover procedure needs to occur

from a master instance to one of its replicas.

For more information on Redis Sentinel and how to configure Sentinel instances with master/replica instances, see the

official Redis Sentinel documentation.

Redis SSL/TLS

Redis supports SSL/TLS starting in version 6. For information on enabled SSL/TLS with Redis, see the official Redis TLS

Support documentation.

Redis and Lettuce

The Lettuce library is used to connect to Redis. Lettuce uses Master or Sentinel node registration information to

automatically discover other instances. The IP address used to register between nodes is therefore what Lettuce uses to

https://redis.io/documentation
https://redis.io/topics/replication
https://redis.io/topics/replication
https://redis.io/topics/replication
https://redis.io/topics/replication
https://redis.io/topics/replication
https://lettuce.io/

connect to downstream replica instances. This means the IP address of replica instances, or the IP address of both

master and replica instances in the case of Sentinel topology, must be accessible to the Caching service. For example, in

a master/replica topology running in separate Docker containers, the replica container's IP address needs to be

accessible to the Caching service, rather than only exposing a port.

Redis configuration

Configure Redis as a storage solution through the Caching service by setting the following environment variables.

Environment variables can be set by adding them to the components.caching-service section of the zowe.yaml

configuration file.

storage.redis.masterNodeUri

The URI used to connect to the Redis master instance in the form username:password@host:port .

The host section of the URI is mandatory

The port section is optional and if not included defaults to 6379 .

The username section is optional and if not included defaults to the Redis default username default .

The password section is optional, but must be included if a username is included. If the password is not set a

username cannot be set.

storage.redis.timeout

The timeout duration in seconds for the Caching service when first connecting to Redis. Defaults to 60 seconds.

storage.redis.sentinel.enabled

A flag indicating if Redis is being used with Redis Sentinel instances. Defaults to false .

storage.redis.sentinel.masterInstance

The Redis master instance ID used by the Redis Sentinel instances. Required if Redis Sentinel is being used.

storage.redix.sentinel.nodes

The URI used to connect to a Redis Sentinel instance in the form username:password@host:port .

The host section of the URI is mandatory

The port section is optional and if not included defaults to 6379 .

The password section is optional and defaults to no password.

To supply multiple Redis Sentinel URIs, concatenate the URIs with a comma , .

storage.redix.ssl.enabled

A flag indicating if Redis is being used with SSL/TLS support. Defaults to true .

storage.redis.ssl.keystore

The keystore file used to store the private key. Defaults to the Caching Service's keystore.

storage.redis.ssl.keystorePassword

The password used to unlock the keystore. Defaults to the Caching Service's keystore password.

storage.redis.ssl.truststore

The truststore file used to keep other parties public keys and certificates. Defaults to the Caching Service's

truststore.

storage.redix.ssl.truststorePassword

The password used to unlock the truststore. Defaults to the Caching Service's truststore password.

Version: v3.3.x LTS

Customizing the API Catalog UI

ROLE: SYSTEM ADMINISTRATOR

As a system administrator, you can customize the API Catalog UI to have a similar interface to your organization's

service, or with your existing visualization portal.

To customize the logotype and selected syle options in the zowe.yaml file, see API Catalog branding.

To replace or remove the API Catolog service from the Gateway home page and health checks, see Replace or

remove the Catalog with another service.

API Catalog branding

It is possible to customize the logotype and selected style options directly in zowe.yaml .

1. Open the file zowe.yaml .

2. Configure the following properties by setting them under configs.apiml.catalog.customStyles :

logo

Specifies the location of the logo that will replace the default Zowe logo in the API Catalog header. The supported

image formats are: svg , png and jpg/jpeg .

titlesColor

Specifies the title color.

fontFamily

Specifies the font family to use across the API Catalog.

headerColor

Specifies the HTML color of the header element in the API Catalog home page

backgroundColor

Specifies the HTML color of the main background across the API Catalog

textColor

Specifies the HTML color of the main text across the API Catalog

docLink

Specifies a custom link to be displayed in the header. Use this property to refer to applicable documentation. The

format is <link_name>|<link_url>

Example: docLink: Custom Documentation|https://somedoc.com

Follow this example to define this parameter globally.

Example:

Properties in the example that are not set default to Zowe API Catalog css values.

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-customizing-the-api-catalog-ui#replace-or-remove-the-catalog-with-another-service
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-customizing-the-api-catalog-ui#replace-or-remove-the-catalog-with-another-service

3. Restart Zowe.

Replace or remove the Catalog with another service

By default, the API Mediation Layer contains the API Catalog as a service showing available services. As the API

Mediation Layer can be successfully run without this component it is possible to replace or remove the service from the

Gateway home page and health checks. The following section describes the behavior of the Gateway home page and

health checks.

The default option displays the API Catalog.

A value can also be applied to components.gateway.apiml.catalog.serviceId .

Examples:

none

Nothing is displayed on the Gateway home page and the Catalog is removed from /application/health

alternative-catalog

An alternative to the API Catalog is displayed

NOTES:

If the application contains the homePageUrl and statusPageRelativeUrl , then the full set of information is

displayed.

If the application contains the homePageUrl the link is displayed without the UP information.

If the application contains the statusPageRelativeUrl then UP or DOWN is displayed based on the statusPage

without the link.

Use the following procedure to change or replace the Catalog service.

1. Open the file zowe.yaml .

2. Find or add the property components.gateway.apiml.catalog.serviceId . Set the value with the following options:

Set the value to none to remove the Catalog service.

Set the value to the ID of the service that is onboarded to the API Mediation Layer.

3. Restart Zowe.

Version: v3.3.x LTS

Customizing Zowe API Mediation Layer logging

Zowe API Mediation Layer uses logback for its logging. You can customize the logging of Zowe API Mediation Layer by

specifying the customized logback.xml file in zowe.yaml for each service separately.

To change the default logback configuration file, set components.<component>.logging.config with a path to your

logback.xml .

component

Specifies one of the following services:

gateway

discovery

api-catalog

caching-service

zaas

Example with Gateway Service:

Default logging configuration file

The following logback.xml is an example of logging configuration file which is used by default in all API Mediation Layer

components:

NOTE

You can find the current default logging configuration file by following this link.

Customization example

One of the examples of possible customization is changing the pattern for the logged messages. The pattern is defined

in the apimlLogPattern property in logback.xml . By default, the API Mediation Layer prints log messages, as in the

following example:

In the following table you can see each part of the apimlLogPattern in the example of the message above:

Pattern part Message part

%d{yyyy-MM-dd HH:mm:ss.SSS,UTC} 2024-08-01 12:52:27.922

%clr<${logbackService:-${logbackServiceName}}:%thread:${PID:-

}> %magenta

<ZWEAGW1:DiscoveryClient-

InstanceInfoReplicator-0:33948829>

(%X{userid:-}) ZWESVUSR

%cyan(%-5level) INFO

https://github.com/zowe/api-layer/blob/v3.x.x/apiml-utility/src/main/resources/logback-spring.xml

Pattern part Message part

%clr\(\(%logger{15}\)\) (o.z.a.g.h.GatewayHealthIndicator)

%msg
ZWEAM001 API Mediation Layer

started

You can edit, move, remove, or add some parts in the pattern based on your requirements.

NOTE

The full documentation of Logback pattern are available on Logback site.

https://logback.qos.ch/manual/layouts.html#ClassicPatternLayout

Version: v3.3.x LTS

Configuring initial API Mediation Layer startup

message for SYSLOG

ROLE: SYSTEM PROGRAMMER

FUNCTIONALITY OF THIS FEATURE IS AVAILABLE FROM ZOWE 2.18.

Startup of the API Mediation Layer can be configured to present a message in the SYSLOG that the API Mediation Layer is

started and ready. This setup is typically used in combination with Workload Automation tools to manage the lifecycle of

Zowe.

This functionality requires the following changes to the zowe.yaml:

1. Validate whether the zowe.sysMessages property contains ZWEAM001I. If this property does not contain

ZWEAM001I, add the value - "ZWEAM001I" to this property.

This property change ensures that the message containing ZWEAM001I is presented in the SYSLOG.

Example of the message in the SYSLOG:

2024-09-30 10:17:53.814 <ZWEAGW1:DiscoveryClient-InstanceInfoReplicator-%d:3335> jb892003 INFO

((o.z.a.g.c.GatewayHealthIndicator)) ZWEAM001I API Mediation Layer started

2. Prepare custom logging configuration. The current default logging implementation starts with information about the

current time. This message content is unlike the message id which is typical in z/OS. To change this message

behavior, it is necessary to change the logback.xml configuration. The following example shows the custom

logback.xml which prepends the message with the first 9 characters of the message.

Example:

Custom configuration that changes the structure of the message to prepend 9 characters to the beginning is

prepared.

TIP

For detailed information about how to provide this changed configuration, see Customizing Zowe API Mediation

Layer logging.

3. Add the new configuration to the API Mediation Layer for the Gateway service, which issues the message that the

API Mediation Layer started.

4. Validate the configuration was properly applied. You successfully changed the structure of the log message if you see

the message ZWEAM001I in the SYSLOG when the API Mediation Layer fully starts and is ready to handle requests.

Message example: ZWEAM001I 2024-09-30 10:17:53.814 <ZWEAGW1:DiscoveryClient-InstanceInfoReplicator-

%d:3335> jb892003 INFO ((o.z.a.g.c.GatewayHealthIndicator)) ZWEAM001I API Mediation Layer started

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-logging
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-logging

Version: v3.3.x LTS

Zowe Configuration Manager

When you install the Zowe™ server components on z/OS, a utility called configmgr or "Configuration Manager" is

bundled within. It can be used directly in a few ways, or leveraged by the zwe command to empower it with several

abilities and even performance enhancements.

The purpose of Configuration Manager is to deliver unified, validated configuration data to programs without requiring

the programs to know where the configuration is stored or prove that the configuration is valid. This reduces the burden

on each Zowe component to support different data storage types such as both datasets AND files and also ensures that

all Zowe components have sufficient configuration validation to avoid silent or hard-to-troubleshoot errors.

Validation error reporting

Configuration Manager will not let Zowe servers start unless the configuration passes validation when checking it against

the Zowe configuration schema. This gives a degree of assurance that the servers will not encounter issues due to

typographical errors or missing required fields. It also avoids silent errors where a field might be an integer rather than a

string.

When a validation error occurs, the command you ran will end with output that shows what and where the error was.

Example

Consider the following Zowe configuration section about certificates:

In the example, the certificate type PCKS12 does not exist. It is a typo. Without schema validation, the servers might

start and then crash due to the typo.

With the schema file, you can see that there are listed choices for certificate types:

The type can only be one from the enum list. This allows you to not only detect this error but also see the options

available.

When zwe runs and fails schema validation due to the "PCKS12" typo, it will print out the following message:

This output shows that type has an issue. You can read the enum to see the choices before restarting Zowe.

JSON-Schema validation

Configuration Manager uses JSON Schema to validate a configuration. As a result, Zowe itself and all components and

extensions must have schema files for Configuration Manager to perform validation. Developers should read how to add

schemas to components as it is required in v2.

Zowe now publishes these schema files so that you can see all the configuration properties that are possible in Zowe,

see how they have changed between versions, and see what values are valid for them. Below is a list of some of these

schemas:

https://json-schema.org/
https://docs.zowe.org/stable/extend/server-schemas
https://docs.zowe.org/stable/extend/server-schemas

Component Name Purpose
Github

Link

Base server-base Validates zowe.yaml except components section link

Base server-common Common structures reusable by other schemas link

Base
server-component-

manifest
Validates each components' manifest.yaml link

Base
trivial-component-

schema
For copying as a starting point for developers link

app-server
appfw-plugin-

definition

Validates any components' pluginDefinition.json for zwe

components install
link

app-server component Validates components.app-server link

discovery component Validates components.discovery link

gateway component Validates components.gateway link

zss component Validates components.zss link

explorer-ip component Trivially validates components.explorer-ip link

From the GitHub links above, if you want to see changes between versions, you can compare by the GitHub tags.

Splitting configuration into multiple storage types

When zwe is using Configuration Manager, the CONFIG= parameter in the z/OS ZWESLSTC JCL and the --config

parameter in any zwe command that supports --configmgr can take a list of YAML locations as an alternative to the

backward-compatible single YAML file used in prior Zowe versions.

When using a single Unix file, the syntax is just the path to the file, such as CONFIG=/my/zowe.yaml . However, when

using multiple storage types, you must use the syntax FILE(file1):PARMLIB(DSN(MEMBER)):... where each storage

types is surrounded with FILE() or PARMLIB() and storage types are separated by the colon : character. An example of

using multiple configuration storage types would be as follows:

Note: Characters = , : , (and) are considered as reserved. It is highly recommended to avoid using of these

characters in the name of zowe.yaml file.

Each storage type in the list you provide must adhere to the same Zowe configuration schema, but the contents can be

any subset you want per storage types. Zowe will merge together the contents of all the storage types into one unified

configuration, so the collection of storage types must result in a configuration which is valid against the Zowe schema.

Schema validation occurs upon the merged result, not the individual storage type. There are a few reasons you may

want to split your Zowe configuration into multiple storage types, such as:

https://github.com/zowe/zowe-install-packaging/blob/v3.x/staging/schemas/zowe-yaml-schema.json
https://github.com/zowe/zowe-install-packaging/blob/v3.x/staging/schemas/server-common.json
https://github.com/zowe/zowe-install-packaging/blob/v3.x/staging/schemas/manifest-schema.json
https://github.com/zowe/zowe-install-packaging/blob/v3.x/staging/schemas/trivial-component-schema.json
https://github.com/zowe/zlux-app-server/blob/v3.x/staging/schemas/plugindefinition-schema.json
https://github.com/zowe/zlux-app-server/blob/v3.x/staging/schemas/app-server-config.json
https://github.com/zowe/api-layer/blob/v3.x.x/schemas/discovery-schema.json
https://github.com/zowe/api-layer/blob/v3.x.x/schemas/gateway-schema.json
https://github.com/zowe/zss/blob/v3.x/staging/schemas/zowe-schema.json
https://github.com/zowe/explorer-ip/blob/v3.x/master/schemas/trivial-schema.json

Having a Zowe configuration file that is very small and containing only what is not the default configuration of Zowe,

and then running Zowe with 2 configuration files: Your customizations, and the Zowe default such as

CONFIG=FILE(/home/me/zowe-customizations.yaml):FILE(/global/zowe/example-zowe.yaml)

Splitting the Zowe configuration among administrators with certain responsibilities. You could have a file about the

z/OSMF configuration, a file about the Java configuration, and so on. An example of this could look like

CONFIG=FILE(/home/me/zowe-customizations.yaml):FILE(/global/org/zosmf-zowe.yaml):FILE(/global/org/java-

zowe.yaml):FILE(/global/zowe/example-zowe.yaml)

Note: When specifying many storage types, you may reach the line length limit in your STC JCL. The default JCL contains

_CEE_ENVFILE_CONTINUATION=\ to allow you to continue the CONFIG parameter to multiple lines. An example of this is as

follows:

When you use multiple storage types, Zowe constructs the unified configuration by having the storage types listed on

the left override the values of storage types to their right in the list. This means the left-most storage type's values take

priority, and the right-most storage type should be treated as a set of defaults. Here is an example of splitting

configuration into multiple files:

Parmlib support

Zowe YAML content can be stored in PARMLIB as well. The structure is the same as in the unix files, so be sure to have

sufficient record length to fit the YAML content within the member. The syntax is PARMLIB(datasetname(member)) . In the

previous section, there was an example of using multiple files to split configuration into parts. This ability can be done

with PARMLIB, FILE, or any mix of the two. An example of using PARMLIB with Zowe configuration may look like this in

your STC JCL:

Configuration templates

Each Zowe configuration provided to Zowe when using Configuration Manager can contain values which are templates.

These templates are not the literal values of a parameter, but will be substituted for a real value by Configuration

Manager. This allows you to simplify complex or tedious configuration such as:

Replacing occurrences of the same path in the configuration with templates that reference that path. Instead of

needing to update every occurrence of a path when it changes, you would only need to update it once.

Having a value that is linked to another, such as that you may only want the gateway component to be enabled

when the discovery component is enabled.

Having a value that is derived from multiple other values, such as a URL that has many parts.

Having a value that is a set of multiple conditions, having many fallback behaviors so that your configuration is valid

for many environments.

Templates are resolved after merging files, but before schema validation occurs, so you can split up your configuration

into multiple files and template them however you'd like if the merged, resolved result is valid against the Zowe

configuration schema.

To make a template, you use the syntax ${{ assignment }} in which there must be a space after ${{ and before }} .

The assignment can be a ECMAScript 2020 statement, such as a JSON path or a conditional. Here are some examples of

templates that you can use to simplify your configuration:

Templated example using defined zowe.setup.dataset.prefix for other datasets:

Resolved output:

Template functions

Following examples demonstarates how to define the logging for zss component based on the crossMemoryServerName .

When the default name of ZWESIS_STD is used, the general logging is set to 2 . For other names the logLevels is set to

specific trace level(s) with the highest value of 5 .

Resolved template:

NOTE

The components.zss.agent.jwt.fallback was not defined in the template, but is is defined the defaults.yaml. That

is the reason to be included in the resolved template.

Using System Properties in Templates

"Global" objects and functions exist in configmgr templates that can be used base Zowe YAML values upon

environmental properties. This allows the YAML to be more portable and usable on many systems without modification.

The following is a list of useful functions organized by their global objects.

std

getenv(environment_variable_name: string)

Input: environment_variable_name (string): The name of an environment variable you wish to read.

Output: (string or undefined) The value of the environment variable, or undefined if the variable is not set.

https://github.com/zowe/zowe-install-packaging/blob/v3.x/staging/files/defaults.yaml

zos

getEsm()

Output: (string) The string value RACF , TSS , or ACF2 are returned corresponding to the ESM that is running on

the system.

getZosVersion()

Output: (string) A numerical representation of the z/OS version number of the system.

resolveSymbol(zos_symbol_name: string)

Input: zos_symbol_name (string): The name of a z/OS system symbol to load. The value must begin with & and

must not end with . .

Output: (string or undefined) The value of the symbol, or undefined if the symbol is not set.

An example for how to use these functions to make a Zowe YAML file more portable is as follows:

Configuration Manager Unix executable

configmgr is a file located within <zowe.runtimeDirectory>/bin/utils in the Zowe server component runtime for z/OS.

If you run it with no arguments, it prints a help command that details what you can do with it. configmgr commands

focus on providing input files and schemas, and then providing output such as validation success or printing the

configuration.

The configmgr executable needs the following as input:

A list of configuration locations. Each location can be a different type such as a Unix file or parmlib from a dataset,

but each must be YAML format. Every configuration object in the list must only contain data from the same schema

because the list will be merged together into a single configuration object during processing.

A list of json-schema Unix files separated by a colon : , with the top-level schema being the left-most in the list. The

unified configuration will be validated against this top-level schema and any references in the other schema files in

the list.

The configmgr executable can do the following with the input:

Report whether the configuration is valid against the schema. If invalid, a reason will be printed to help pinpoint

issues.

Validate and then output a list of environment variables in the syntax used by Zowe components that use

environment variables to consume Zowe configuration.

Validate and then output a specific property of the configuration when given a JSON path to the property desired.

The configmgr binary does not need to be used for Zowe configuration and Zowe schemas alone. It can validate any

YAML against any json-schema. However, its environment variable output list is in the Zowe format.

Version: v3.3.x LTS

Server Component and Extension Management

This page covers how to install and manage Zowe server components or extensions by using zwe components

commands.

Installing a component

Zowe ships the zwe components install command to help end-user to install any Zowe server extensions (extensions

are components that are not part of Zowe core). In order to be compatible with the command, components must follow

Zowe server component package format standard.

More information such as parameters and examples can be found on the zwe components install reference page

Note: The automatic tagging process is opinionated about which file extensions should be in which encoding. If this

does not fit in your needs, a pax format is recommended to include the tagging information into your package. This

option is only applicable for z/OS. The following list presents the allowed values:

yes

This option automatically tag the encoding of the files.

no

Do not automatically tag encoding of the files.

auto

Tag only when manifest is in ISO8859-1 encoding.

--log-dir|--log|-l

(String, Optional) Specifies the path to the log directory.

--debug|--verbose|-v

(Boolean, Optional) Enable debug level logging. This will help on troubleshooting issues.

--trace|-vv

(Boolean, Optional) Enable the most detail trace level logging. This will help on troubleshooting issues.

Enable and disable component

Each component and extension of Zowe can be enabled or disabled by changing the value of the enabled property of

their object in the Zowe configuration YAML. For example, to enable or disable the API Catalog, set this value to true or

false in the YAML:

Zowe ships zwe components enable and zwe components disable commands to help you enable and disable Zowe

server component (extension). In order to be compatible with these commands, components must follow Zowe server

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install
https://docs.zowe.org/stable/extend/packaging-zos-extensions#zowe-server-component-package-format
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-enable
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-disable
https://docs.zowe.org/stable/extend/packaging-zos-extensions#zowe-server-component-package-format

component package format standard.

Important these commands will update your zowe.yaml configuration file.

Note zwe components install command will enable the component globally if --skip-enable is not passed to it.

More information such as parameters and examples can be found on the zwe components enable reference page and

the zwe components disable reference page

Limiting Zowe to specific service groups

Zowe's server installation contains groups of components that are useful to run together, but often you do not need to

enable all parts of Zowe. You can save system resources by disabling the parts of Zowe that you do not use.

Category Component Purpose

API Mediation

Layer
api-catalog

Used to view API swagger / openAPI specifications for registered API services of

the API Mediation Layer.

API Mediation

Layer
discovery

This server is used to register API services and track the health of them for use in

the API Mediation Layer.

API Mediation

Layer
gateway

The gateway unifies all the services of Zowe under one proxied server for

improved security, management, and high availability.

API Mediation

Layer

caching-

service

The caching service is used to share state between different Zowe instances in a

high availability topology.

API Mediation

Layer
zaas ZAAS provides authentication services used by the API Mediation Layer.

App

Framework
app-server The App server powers the Zowe Desktop accessible via web browsers.

App

Framework
zss

Z Secure Services (ZSS) provides REST API services for file, dataset, and other

z/OS content. Its APIs are used by apps in the Desktop, such as the the File Editor.

Upgrading a component

zwe components install is only used for installing a component that is not yet installed. If you need to install a new

version of an existing component, you must use the zwe components upgrade command instead.

More information such as parameters and examples can be found on the zwe components install reference page

This command can be used to upgrade all components that have an upgrade available when using zwe with a

component package registry. More information can be found within the component package registry documentation

Uninstalling a component

https://docs.zowe.org/stable/extend/packaging-zos-extensions#zowe-server-component-package-format
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-enable
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-disable
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-upgrade
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install
https://docs.zowe.org/stable/extend/component-registries

zwe components uninstall can be used to remove a previously installed extension. It will not remove core components.

More information such as parameters and examples can be found on the zwe components uninstall reference page

Searching for a component

zwe components search helps you find components that are available for installation from your chosen component

package registry. This command requires that you have configured your Zowe instance for use with such a registry. Click

here for more information on how to set up and use a component package registry

More information such as parameters and examples can be found on the zwe components search reference page

Manual Component management

It's recommended to use zwe components for all component management. The information below is provided for

troubleshooting purposes.

Zowe core components

The Zowe runtime directory delivers its core components in the <RUNTIME_DIR>/components/ directory. A typical

components directory looks like this:

Same as all Zowe server components, Zowe core components can be enabled or disabled by setting components.

<component>.enabled to true or false .

Zowe z/OS extensions

All Zowe z/OS extension runtime programs are installed into a single location which is defined as

zowe.extensionDirectory in zowe.yaml . Each extension should be represented with the extension name in this

directory, and use either a directory or a symbolic link.

The Zowe launch script reads components.<component>.enabled and haInstances.<ha-instance>.components.

<component>.enabled defined in zowe.yaml to determine whether to start an extension in current HA instance. The

value of this enabled is boolean either true or false .

Example:

The vendor MYVENDOR has a product named MYAPP that installs into /usr/lpp/myvendor/myapp . There is one Zowe

extension shipped within the product in the directory /usr/lpp/myvendor/myapp/zowe-ext . This subdirectory is a Zowe

extension so that the product can be started and stopped with Zowe and run as an address space under the ZWESLSTC

started task in the Zowe USS shell.

The directory /usr/lpp/myvendor/myapp/zowe-ext should include a manifest.yaml file to describe the extension. The

script /usr/lpp/myvendor/myapp/zowe-ext/bin/validate.sh checks that the environment is configured correctly and

the script /usr/lpp/myvendor/myapp/zowe-ext/bin/start.sh starts the vendor application. The

/usr/lpp/myvendor/myapp/zowe-ext/manifest.yaml should look like this:

Because MYAPP is shipped within another product, the installation should create a symbolic link in

zowe.extensionDirectory directory.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-uninstall
https://docs.zowe.org/stable/extend/component-registries
https://docs.zowe.org/stable/extend/component-registries
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-search

Also, myapp is enabled in zowe.yaml like this.

When the Zowe instance is launched by running zwe start command, it will read manifest commands instructions and

call the /usr/lpp/myvendor/myapp/zowe-ext/bin/start.sh script. The started task will create an address space under

ZWESLSTC for the vendor component. When the Zowe instance is stopped, the address space is terminated.

Version: v3.3.x LTS

Advanced Application Framework Configuration

The Zowe Application ("App") Framework is configured in the Zowe configuration file. Configuration can be used to

customize functionalities such as verbosity of logs, the way in which the App server communicates with the Mediation

Layer, how ZSS operates, whether to use HTTPS or AT-TLS, what language the logs should be set, and many more

attributes.

When you install Zowe™, the App Framework is configured as an API Mediation Layer client by default. This is simpler to

administer because the App framework servers are accessible externally through a single port: API ML Gateway port. It is

more secure because you can implement stricter browser security policies for accessing cross-origin content.

You can modify the Zowe App Server and Zowe System Services (ZSS) configuration, as needed, or configure

connections for the Terminal app plugins.

Accessing ZSS

The zss server should be accessed through the gateway when both are present. When both are ready, ZSS can be

accessed from the API Mediation Layer Gateway, such as

https://<zowe.externalDomain>:<components.gateway.port>/zss/api/v1/ .

Although you access the ZSS server via the Gateway port, the ZSS server still needs a port assigned to it which is the

value of the components.zss.port variable in the Zowe configuration file.

If the mediation layer is not used, ZSS directly at https://<zowe.externalDomain>:<components.zss.port>/ .

Configuration file

app-server configuration

The app-server uses the Zowe server configuration file for customizing server behavior. For a full list of parameters,

requirements, and descriptions, see the json-schema document for the app-server which describes attributes that can be

specified within the configuration file section components.app-server

zss configuration

ZSS shares some parameters in common with the app-server, so you can consult the above json-schema document to

find out which parameters are valid within components.zss of the Zowe configuration file. However, some parameters

within the app-server schema are not used by ZSS, such as the node section. A ZSS-centric schema will be available

soon.

Configuring the framework as a Mediation Layer client

The App Server and ZSS automatically register to the API Mediation Layer when present. If this is not desired,

registration can disabled by setting the properties components.app-server.mediationLayer.server.enabled=false for

app-server and components.zss.mediationLayer.enabled=false for ZSS.

https://github.com/zowe/zlux-app-server/blob/v3.x/staging/schemas/app-server-config.json

Setting up terminal app plugins

Follow these optional steps to configure the default connection to open for the terminal app plugins.

Setting up the TN3270 mainframe terminal app plugin

The file _defaultTN3270.json within the tn3270-ng2 app folder /config/storageDefaults/sessions/ is deployed to

the configuration dataservice when the app-server runs for the first time. This file is used to tell the terminal what host

to connect to by default. If you'd like to customize this default, you can edit the file directly within the configuration

dataservice <components.app-server.instanceDir>/org.zowe.terminal.tn3270/sessions/_defaultTN3270.json . Or

you can open the app, customize a session within the UI, click the save icon (floppy icon) and then copy that file from

<components.app-server.usersDir>/<your user>/org.zowe.terminal.tn3270/sessions/_defaultTN3270.json to

<components.app-server.instanceDir>/org.zowe.terminal.tn3270/sessions/_defaultTN3270.json . Either way, you

will see a file with the following properties:

Setting up the VT Terminal app plugin

The file _defaultVT.json within the vt-ng2 app folder /config/storageDefaults/sessions/ is deployed to the

configuration dataservice when the app-server runs for the first time. This file is used to tell the terminal what host to

connect to by default. If you'd like to customize this default, you can edit the file directly within the configuration

dataservice <components.app-server.instanceDir>/org.zowe.terminal.vt/sessions/_defaultVT.json . Or you can

open the app, customize a session within the UI, click the save icon (floppy icon) and then copy that file from

<components.app-server.usersDir>/<your user>/org.zowe.terminal.vt/sessions/_defaultVT.json to

<components.app-server.instanceDir>/org.zowe.terminal.vt/sessions/_defaultVT.json . Either way, you will see a

file with the following properties:

Network configuration

Note: The following attributes are to be defined in the Zowe configuration file.

The App Server and ZSS both can be accessed over HTTPS, either natively or via AT-TLS by setting appropriate AT-TLS

rules and Zowe YAML assignments. When using native HTTPS, the TLS properties can be further customized within the

YAML.

Port configuration

The Zowe YAML property components.<component-name>.port can be used to set the port for any Zowe server. By

default, the following is used but can be overridden:

IP configuration

By default, all Zowe servers listen on the IP address 0.0.0.0 . This can be customized. The Zowe YAML property

zowe.network.server.tls.listenAddresses can be used to instruct both app-server and zss of which IP to listen on.

This property can be nested within each component if it is desired to customize them individually. Alternatively, TCPIP

port rules can be used to control the assignment of 0.0.0.0 into a particular alternative IP address. You can read more

about this in the network requirements page.

Native TLS

https://docs.zowe.org/stable/extend/extend-desktop/mvd-configdataservice
https://docs.zowe.org/stable/extend/extend-desktop/mvd-configdataservice
https://docs.zowe.org/stable/user-guide/address-network-requirements
https://docs.zowe.org/stable/user-guide/address-network-requirements

Both app-server and zss server components default to using HTTPS without the need for AT-TLS. AT-TLS is also

possible. When using the native TLS, attributes such as TLS version and ciphers can be customized within the

zowe.network.server.tls and zowe.network.client.tls objects of the Zowe configuration. These objects can also be

placed within the components.zss and components.app-server objects, such as

components.zss.zowe.network.server.tls in order to individually customize each server TLS configuration. For more

information, read TLS configuration.

AT-TLS

You can instruct Zowe servers to expect TLS using the property zowe.network.server.tls.attls: true . Use this

property is to set AT-TLS for all Zowe servers. For more granular control, you can set the following section in the yaml

file:

This configuration instructs only the app-server component to expect AT-TLS for both inbound and outbound traffic.

Similarly, set the parameter zowe.network.server.tls.attls to true for the zss component. Use

zowe.network.server.tls.attls: true to instruct both servers to expect AT-TLS altogether. For more information, see

Configuring AT-TLS for Zowe server.

AT-TLS Rule Suggestions

The app-server and zss components of Zowe are servers that may accept incoming connections from each other,

other Zowe servers, and clients outside z/OS such as browsers either directly or indirectly such as when API ML is used.

As such, both Inbound and Outbound direction AT-TLS rules are needed for these servers. The Inbound rules can be

filtered by the listening ports of the servers, but Outbound rules may need to be set by either jobnames or destination

ports.

The ports and jobnames can be found in the Addressing network requirements documentation.

The Outbound rules can have HandshakeRole of Client, but when API ML is enabled, it is required that app-server and

zss include their server certificates as client certificates using the CertificateLabel property of a

TTLSConnectionAdvancedParms rule. For more information, see Configuring AT-TLS for Zowe server.

The Inbound rules can have a HandshakeRole of Server or ServerWithClientAuth.

Native TLS

The configuration object zowe.network.server.tls and zowe.network.client.tls can be set to control all Zowe

components, or just app-server or zss but nesting the object within them. This object can control ciphers by listing

IANA cipher names, minimum and maximum TLS levels, and for some servers even curves can be customized via a list.

An example for configuration is given below, but the specification for all options is found within the Zowe YAML schema

Configuration Directories

When running, the App Server will access the server's settings and read or modify the contents of its resource storage.

All of this data is stored within a hierarchy of folders which correspond to scopes:

Product: The contents of this folder are not meant to be modified, but used as defaults for a product.

https://docs.zowe.org/stable/user-guide/tls-configuration
https://docs.zowe.org/stable/user-guide/configuring-at-tls-for-zowe-server
https://docs.zowe.org/stable/user-guide/address-network-requirements
https://docs.zowe.org/stable/user-guide/configuring-at-tls-for-zowe-server#outbound-rule-for-communication-between-api-gateway-and-extensions-servers
https://github.com/zowe/zowe-install-packaging/blob/fdcdb2618080cf87031c070aed7e90503699ab5f/schemas/zowe-yaml-schema.json#L939

Site: The contents of this folder are intended to be shared across multiple App Server instances, perhaps on a

network drive.

Instance: This folder represents the broadest scope of data within the given App Server instance.

Group: Multiple users can be associated into one group, so that settings are shared among them.

User: When authenticated, users have their own settings and storage for the Apps that they use.

These directories dictate where the Configuration Dataservice will store content. For more information, see the

Configuration Dataservice documentation

App plugin configuration

The App framework will load plugins from Components such as extensions based upon their enabled status in Zowe

configuration. The server caches knowledge of these plugins in the <workspaceDirectory>/app-server/plugins folder.

This location can be customized with the components.app-server.pluginsDir variable in the Zowe configuration file.

Logging configuration

For more information, see Logging Utility.

Enabling tracing

To obtain more information about how a server is working, you can enable tracing within the Zowe configuration file via

components.app-server.logLevels or components.zss.logLevels variable. For more information on all loggers, check out

the Extended documentation.

For example:

All settings are optional.

Log files

The app-server and zss will create log files containing processing messages and statistics. The log files are generated

within the log directory specified within the Zowe configuration file (zowe.logDirectory). The filename patterns are:

App Server: <zowe.logDirectory>/appServer-yyyy-mm-dd-hh-mm.log

ZSS: <zowe.logDirectory>/zssServer-yyyy-mm-dd-hh-mm.log

Retaining logs

By default, the last five log files are retained. You can change this by setting environment variables within the

zowe.environments section of the Zowe server configuration file. To specify a different number of logs to retain, set

ZWED_NODE_LOGS_TO_KEEP for app-server logs, or ZWES_LOGS_TO_KEEP for zss logs. For example, if you set

ZWED_NODE_LOGS_TO_KEEP to 10, when the eleventh log is created, the first log is deleted.

Controlling the logging location

At minimum, the log information for both app-server and zss are written to STDOUT such that messages are visible in

the terminal that starts Zowe and when on z/OS, the STC job log.

https://docs.zowe.org/stable/extend/extend-desktop/mvd-configdataservice
https://docs.zowe.org/stable/extend/extend-desktop/mvd-logutility
https://docs.zowe.org/stable/extend/extend-desktop/mvd-core-loggers

By default, both servers additionally log to files and the location of these files can be changed or logging to them can be

disabled. The following environment variables can be used to customize the app-server and zss log locations by setting

the values within the zowe.environments section of the Zowe configuration file.

ZWED_NODE_LOG_DIR : Overrides the zowe configuration file value of zowe.logDirectory for app-server, but keeps the

default filenames.

ZWES_LOG_DIR : Overrides the zowe configuration file value of zowe.logDirectory for zss, but keeps the default

filenames.

ZWED_NODE_LOG_FILE : Specifies the full path to the file where logs will be written from app-server. This overrides

both ZWED_NODE_LOG_DIR and zowe.logDirectory . If the path is /dev/null then no log file will be written. This

option does not timestamp logs or keep multiple of them.

ZWES_LOG_FILE : Specifies the full path to the file where logs will be written from zss. This overrides both

ZWES_LOG_DIR and zowe.logDirectory . If the path is /dev/null then no log file will be written. This option does not

timestamp logs or keep multiple of them.

If the directory or file specified cannot be created, the server will run (but it might not perform logging properly).

ZSS configuration

ZSS provides APIs that any server or client can use. By default, the Zowe Desktop includes Apps which rely upon ZSS

APIs, and therefore it's recommended that whenever the app-server is enabled in the Zowe YAML, that zss is also

enabled.

ZSS 64 or 31 bit modes

Two versions of ZSS are included in Zowe, a 64 bit version and a 31 bit version. It is recommended to run the 64 bit

version to conserve shared system memory but you must match the ZSS version with the version your ZSS plugins

support. Official Zowe distributions contain plugins that support both 64 bit and 31 bit, but extensions may only support

one or the other.

Verifying which ZSS mode is in use

You can check which version of ZSS you are running by looking at the logs. At startup, the message ZWES1013I states

which mode is being used, for example:

ZWES1013I ZSS Server has started. Version 3.0.0 64-bit

Or

ZWES1013I ZSS Server has started. Version 3.0.0 31-bit

Verifying which ZSS mode plugins support

You can check if a ZSS plugin supports 64 bit or 31 bit ZSS by reading the pluginDefinition.json file of the plugin. In each

component or extension you have, its manifest file will state if there are appFw plugin entries. In each folder referenced

by the appFw section, you will see a pluginDefinition.json file. Within that file, if you see a section that says type:

'service' , then you can check its ZSS mode support. If the service has the property libraryName64 , then it supports 64

bit. If it says libraryName31 , then it supports 31 bit. Both may exist if it supports both. If it instead only contains

libraryName , this is ambigious and deprecated, and most likely that plugin only supports 31 bit ZSS. A plugin only

supporting 31 bit ZSS must be recompiled for 64 bit support, so you must contact the developers to accomplish that.

Example: the sample angular app supports both 31 bit and 64 bit zss

Setting ZSS 64 bit or 31 bit mode

You can switch between ZSS 64 bit and 31 bit mode by setting the value components.zss.agent.64bit to true or false in

the Zowe configuration file. The value will not take effect until next server restart.

Customizing ZSS session duration

In a standard Zowe installation, all Zowe servers utilize the API Mediation Layer's token-based, single-sign on

authentication. This authentication in turn cooperates with z/OSMF, and the session duration is typically that of

z/OSMF's, which defaults to 8 hours before the session expires. In that situation, customization of session duration is best

done by customizing z/OSMF's session duration, as a part of its Liberty configuration.

If you are not using the API Mediation Layer, or are trying to contact ZSS directly, then ZSS's own session logic is used.

When authenticated directly to ZSS, it will respond to authenticated HTTP requests with a cookie which is valid by

default for 1 hour. This can be customized by creating and editing a file named "timeouts.json" within ZSS's instance

directory. The default location is <zowe.workspaceDirectory>/app-server/serverConfig/timeouts.json , because the

default instance directory is <zowe.workspaceDirectory>/app-server , but can be customized by editing the value of

components.zss.instanceDir .

The timeouts.json file has the following layout:

Where you can have a "users" section that lists user accounts on the z/OS system, and "groups" section that lists groups

on that system. The numbers for each entry are in seconds, where in the example zoweuser1 has the default session

duration value of 1 hour. It is possible that a user specified in this file is also in a group specified in this file. If so, the

user value takes priority. If a user authenticates to ZSS and their user or group is not found in this file, then the default

value of 1 hour is used. If this file is missing, Zowe will print a message about it missing, but it does not harm Zowe as

the default value of 1 hour would be used for all direct authentications to ZSS.

Using multiple ZIS instances

When you install Zowe, it is ready to be used for 1 instance of each component. However, ZIS can have a one-to-many

relationship with the Zowe webservers, and so you may wish to have more than one copy of ZIS for testing or to handle

different groups of ZIS plugins.

The following steps can be followed to point a Zowe instance at a particular ZIS server.

1. Create a copy of the ZIS server. You could run multiple copies of the same code by having different STC JCLs pointing

to the same LOADLIB, or run different copies of ZIS by having JCLs pointing to different LOADLIBs.

2. Edit the JCL of the ZIS STC. In the NAME parameter specify a unique name for the ZIS server, for example:

Where ZWESIS_MYSRV is the unique name of the new ZIS.

3. Start the new ZIS with whatever PROCLIB name was chosen.

4. Stop the Zowe instance you wish to point to the ZIS server.

https://github.com/zowe/sample-angular-app/blob/083855582e8a82cf48abc21e15fa20bd59bfe180/pluginDefinition.json#L50-L53
https://docs.zowe.org/stable/user-guide/configure-xmem-server
https://docs.zowe.org/stable/user-guide/configure-xmem-server#starting-and-stopping-the-cross-memory-server-on-zos
https://docs.zowe.org/stable/user-guide/start-zowe-zos

5. Locate the zowe configuration file for the Zowe instance, and edit the parameter

components.zss.privilegedServerName to match the name of the ZIS STC name chosen, such as ZWESIS_MYSRV

6. Restart the Zowe instance

7. Verify that the new ZIS server is being used by checking for the following messages in the ZWESLSTC server job log:

ZIS status - Ok (name='ZWESIS_MYSRV ', cmsRC=0, description='Ok', clientVersion=2)

Controlling access to apps

You can control which apps are accessible (visible) to all Zowe desktop users, and which are accessible only to individual

users. For example, you can make an app that is under development only visible to the team working on it.

You control access by editing JSON files that list the apps. One file lists the apps all users can see, and you can create a

file for each user. When a user logs into the desktop, Zowe determines the apps that user can see by concatenating their

list with the all users list.

You can also control access to the JSON files. The files are accessible directly on the file system, and since they are

within the configuration dataservice directories, they are also accessible via REST API. We recommend that only Zowe

administrators be allowed to access the file system locations, and you control that by setting the directories and their

contents to have file permissions on z/OS that only allow the Zowe admin group read & write access. You control who can

read and edit the JSON files through the REST API by controlling who can access the configuration dataservice objects

URLs that serve the JSON files.

Enabling RBAC

By default, RBAC is disabled and all authenticated Zowe users can access all dataservices. To enable RBAC, follow these

steps:

1. To enable RBAC, set the components.zss.dataserviceAuthentication.rbac and components.app-

server.dataserviceAuthentication.rbac variables to true in the Zowe configuration file.

Controlling app access for all users

Note:

<zowe.runtimeDirectory> variable comes from the Zowe configuration file.

1. Enable RBAC.

2. Navigate to the following location:

3. Copy the allowedPlugins.json file and paste it in the following location:

4. Open the copied allowedPlugins.json file and perform either of the following steps:

To make an app unavailable, delete it from the list of objects.

To make an app available, copy an existing plugin object and specify the app's values in the new object.

Identifier and version attributes are required.

https://docs.zowe.org/stable/user-guide/start-zowe-zos#starting-and-stopping-zowe-main-server-zweslstc-on-zos-with-zwe-server-command
https://docs.zowe.org/stable/user-guide/mvd-configuration#creating-authorization-profiles

5. Restart the app server.

Controlling app access for individual users

1. Enable RBAC.

2. In the user's ID directory path, in the \pluginStorage directory, create \org.zowe.zlux.bootstrap\plugins

directories. For example:

3. In the /plugins directory, create an allowedPlugins.json file. You can use the default allowedPlugins.json file as

a template by copying it from the following location:

4. Open the allowedPlugins.json file and specify apps that user can access. For example:

Notes:

Identifier and version attributes are required.

When a user logs in to the desktop, Zowe determines which apps they can see by concatenating the list of apps

available to all users with the apps available to the individual user.

5. Restart the app server.

Controlling access to dataservices

To apply role-based access control (RBAC) to dataservice endpoints, you must enable RBAC for Zowe, and then use a

z/OS security product such as RACF to map roles and authorities to the endpoints. After you apply RBAC, Zowe checks

authorities before allowing access to the endpoints.

You can apply access control to Zowe endpoints and to your app endpoints. Zowe provides endpoints for a set of

configuration dataservices and a set of core dataservices. Apps can use configuration endpoints to store and their own

configuration and other data. Administrators can use core endpoints to get status information from the App Framework

and ZSS servers. Any dataservice added as part of an app plugin is a service dataservice.

Creating authorization profiles

For users to access endpoints after you enable RBAC, in the ZOWE class you must create System Authorization Facility

(SAF) profiles for each endpoint and give users READ access to those profiles.

Endpoints are identified by URIs in the following format:

/ZLUX/plugins/<plugin_id>/services/<service>/<version>/<path>

For example:

/ZLUX/plugins/org.zowe.foo/services/baz/_current/users/fred

Where the path is /users/fred .

SAF profiles have the following format:

https://docs.zowe.org/stable/user-guide/start-zowe-zos
https://docs.zowe.org/stable/user-guide/start-zowe-zos
https://docs.zowe.org/stable/extend/extend-desktop/mvd-configdataservice#configuration-dataservice
https://docs.zowe.org/stable/user-guide/mvd-configuration#administering-the-servers-and-plugins-using-an-api

ZLUX.<zowe.rbacProfileIdentifier>.<servicename>.<pluginid_with_underscores>.<service>.<HTTP_method>.

<url_with_forward_slashes_replaced_by_periods>

For example, to issue a POST request to the dataservice endpoint documented above, users must have READ access to

the following profile:

ZLUX.1.SVC.ORG_ZOWE_FOO.BAZ.POST.USERS.FRED

For configuration dataservice endpoint profiles use the service code CFG . For core dataservice endpoints use COR . For all

other dataservice endpoints use SVC .

Creating generic authorization profiles

Some endpoints can generate an unlimited number of URIs. For example, an endpoint that performs a DELETE action on

any file would generate a different URI for each file, and users can create an unlimited number of files. To apply RBAC to

this type of endpoint you must create a generic profile, for example:

ZLUX.1.COR.ORG_ZOWE_FOO.BAZ.DELETE.**

You can create generic profile names using wildcards, such as asterisks (*). For information on generic profile naming,

see IBM documentation.

Configuring basic authorization

The following are recommended for basic authorization:

To give administrators access to everything in Zowe, create the following profile and give them UPDATE access to it:

ZLUX.**

To give non-administrators basic access to the site and product, create the following profile and give them READ

access to it: ZLUX.*.ORG_ZOWE_*

To prevent non-administrators from configuring endpoints at the product and instance levels, create the following

profile and do not give them access to it: ZLUX.1.CFG.**

To give non-administrators all access to user, create the following profile and give them UPDATE access to it:

ZLUX.1.CFG.*.*.USER.**

Endpoint URL length limitations

SAF profiles cannot contain more than 246 characters. If the path section of an endpoint URL is long enough that the

profile name exceeds the limit, the path is trimmed to only include elements that do not exceed the limit. To avoid this

issue, we recommend that appliction developers maintain relatively short endpoint URL paths.

For information on endpoint URLs, see Using dataservices with RBAC

Customizing Security Plugins

By default, the app-server handles security questions by utilizing either the API Mediation Layer, or ZSS, depending on

which is present. If the API Mediation Layer is present, it is used to establish an SSO session which ZSS also respects.

When RBAC is enabled, ZSS is queried for authorization questions.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.icha100/egnoff.htm
https://docs.zowe.org/stable/extend/extend-desktop/mvd-dataservices#using-dataservices-with-rbac

This behavior is performed by an app-server security plugin named sso-auth . Security plugins can be installed as part

of Zowe extensions, and app-server can be customized to prefer them via the Zowe YAML. Different security plugins

could be used to operate in different environments, with different security systems, or with different session

characteristics. For more information, read the extender's guide on security plugins

Session duration and expiration

After successful authentication, a Zowe Desktop session is created by authentication plugins.

The duration of the session is determined by the plugin used. Some plugins are capable of renewing the session prior to

expiration, while others may have a fixed session length.

The session duration and expiration behavior of the default security plugin, sso-auth , is determined by API Medation

Layer configuration if present, and otherwise upon ZSS configuration. If API Medation Layer is enabled, by default it will

use z/OSMF as the session provider and the session duration will be based upon z/OSMF settings. You can read more

about API Mediation Layer providers here. If the API Mediation Layer is not enabled, you can use or customize ZSS's

default session duration of one hour.

When a session expires, the credentials used for the initial login are likely to be invalid for re-use, since MFA credentials

are often one-time-use or time-based.

In the Desktop, Apps that you opened prior to expiration will remain open so that your work can resume after entering

new credentials.

Administering the servers and plugins using an API

The App Server has a REST API to retrieve and edit both the App Server and ZSS server configuration values, and list,

add, update, and delete plugins. Most of the features require RBAC to be enabled and for your user to have RBAC access

to utilize these endpoints. For more information see documentation on how to use RBAC

The API returns the following information in a JSON response:

API Description

/server (GET)
Returns a list of accessible server endpoints for the Zowe

App Server.

/server/config (GET)
Returns the Zowe App Server configuration which follows

this specification.

/server/log (GET) Returns the contents of the Zowe App Server log file.

/server/loglevels (GET)
Returns the verbosity levels set in the Zowe App Server

logger.

/server/environment (GET)

Returns Zowe App Server environment information, such

as the operating system version, node server version, and

process ID.

https://docs.zowe.org/stable/extend/extend-desktop/mvd-authentication-api
https://docs.zowe.org/stable/user-guide/authentication-providers-for-apiml
https://docs.zowe.org/stable/user-guide/authentication-providers-for-apiml
https://docs.zowe.org/stable/user-guide/mvd-configuration.html#controlling-access-to-dataservices
https://github.com/zowe/zlux-app-server/blob/v3.x/master/schemas/app-server-config.json

API Description

/server/reload (GET)
Reloads the Zowe App Server. Only available in cluster

mode.

/server/agent (GET)
Returns a list of accessible server endpoints for the ZSS

server.

/server/agent/config (GET)
Returns the ZSS server configuration which follows this

specification.

/server/agent/log (GET) Returns the contents of the ZSS log file.

/server/agent/loglevels (GET) Returns the verbosity levels of the ZSS logger.

/server/agent/environment (GET) Returns ZSS environment information.

/server/logLevels/name/:componentName/level/:level

(POST)

Specify the logger that you are using and a verbosity

level.

/plugins (GET) Returns a list of all plugins and their dataservices.

/plugins (PUT)
Adds a new plugin or upgrades an existing plugin. Only

available in cluster mode (default).

/plugins/:id (DELETE) Deletes a plugin. Only available in cluster mode (default).

Swagger API documentation is provided in the <zowe.runtimeDirectory>/components/app-server/share/zlux-app-

server/doc/swagger/server-plugins-api.yaml file. To see it in HTML format, you can paste the contents into the

Swagger editor at https://editor.swagger.io/.

Note: The "agent" end points interact with the agent specified in the zowe configuration file. By default this is ZSS.

Managing Cluster Mode for app-server

On the Zowe servers, the component "app-server" has an environment variable "ZLUX_NO_CLUSTER" which controls

whether or not it uses cluster mode. Cluster mode is enabled by default. However, you might need to disable cluster

mode under certain circumstances. When cluster mode is disabled, make sure you are aware of the potential drawbacks

and benefit.

When you disable cluster mode, you will lose the following benefits:

1. Performance under high user Count: This is due to the absence of redundant workers, which can impact the

system's efficiency when dealing with a large number of users.

2. Reduced downtime during unexpected exceptions: The low-downtime characteristic, where only one request is

interrupted compared to around 15 seconds of downtime, is compromised.

https://github.com/zowe/zss/blob/v3.x/staging/schemas/zss-config.json
https://github.com/zowe/zss/blob/v3.x/staging/schemas/zss-config.json
https://editor.swagger.io/

To turn the cluster mode on

Do NOT include the zowe.environments.ZLUX_NO_CLUSTER in the zowe.yaml file.

To turn the cluster mode off

Include zowe.environments.ZLUX_NO_CLUSTER=1 in the zowe.yaml file.

Version: v3.3.x LTS

Installing Zowe client-side components

Review this article to prepare to install, configure, and deploy Zowe client-side components.

REQUIRED ROLES: SYSTEMS PROGRAMMER, SECURITY ADMINISTRATOR, STORAGE ADMINISTRATOR

To prepare for an installation or upgrade, your installation team should review the configuration requirements for both

z/OSMF and the particular component to be installed.

Doing so can help you complete the process faster without any delays due to missing pre-requisites that may require a

system administrator to configure.

To install your product, we recommend that your team understands the following topics:

JCL

TSO/ISPF

Your organization's IT environment, enterprise structure, and region structure

z/OS environment and installing software in this environment

z/OS UNIX System Services

Consult with the following team roles, as required:

Security administrator for access

Storage administrator for DASD allocations

Systems programmer for z/OS and VTAM definitions

Version: v3.3.x LTS

Configuring z/OSMF

For client-side components to communicate with the mainframe, z/OSMF requires configuration to make this happen.

REQUIRED ROLE: SYSTEMS PROGRAMMER

Complete the following IBM z/OSMF configuration tasks for the implementation of Zowe CLI, Zowe Explorer for Visual

Studio Code, or the Zowe Explorer plug-in for IntelliJ IDEA.

NOTE

If you are connecting to the mainframe with methods other than a z/OSMF profile, you do not need to configure

z/OSMF. Other connection options might include using FTP, or your custom API.

Obtaining z/OSMF installation and configuration materials

Before you start the configuration process, review Overview of z/OSMF in the IBM Documentation.

Installing and configuring z/OSMF

Zowe client-side components were designed and tested to integrate with z/OSMF running on IBM version 2.5 z/OS

mainframe systems. To use Zowe client-side components, ensure that your z/OS system meets the requirements that are

described in the following table:

Requirement Description

AXR (System Rexx)

The AXR (System Rexx) component lets z/OS perform Incident Log tasks. It also lets

REXX execs execute outside of conventional TSO and batch environments.

For more information, see Communicating with System REXX on the IBM

Documentation.

CEA (Communications

Enabled Applications)

Server

CEA server is a co-requisite for the CIM server. The CEA server lets z/OSMF deliver

z/OS events to C-language clients.

z/OSMF requires the CEA server to perform the following types of tasks:

Problem determination

Sysplex

z/OS classic interfaces

z/OS Operator Console

Notes:

Start the CEA server before you start z/OSMF (the IZU* started tasks).

Set up CEA server in Full Function Mode and assign the TRUSTED attribute to the

CEA started task.

https://docs.zowe.org/stable/user-guide/user-roadmap-zowe-cli
https://docs.zowe.org/stable/getting-started/user-roadmap-zowe-explorer
https://docs.zowe.org/stable/getting-started/user-roadmap-zowe-explorer
https://docs.zowe.org/stable/user-guide/intellij-configure
https://www.ibm.com/docs/en/zos/2.5.0?topic=zosmf-overview
https://www.ibm.com/docs/en/zos/2.5.0?topic=command-communicating-system-rexx

Requirement Description

For more information, see Customizing for CEA on the IBM Documentation.

CIM (Common Information

Model) Server

z/OSMF requires the CIM server to perform the following types of tasks:

Capacity provisioning

Problem determination

Workload management

Note: Start the CIM server before you start z/OSMF (the IZU* started tasks).

For more information, see Configuring the CIM server for your system on the IBM

Documentation.

For more information on how to perform asynchronous operations, review the required

authorizations for z/OSMF on the IBM Documntation.

Console Command The CONSOLE and CONSPROF commands must exist in the authorized command table.

Java version

IBM® 64-bit SDK for z/OS®, Java™ Technology Edition V8 SR4 FP10 (5655-DGH) or

higher is required. However, we experienced problems accessing z/OSMF 2.2 using

Java version 8. If you use z/OSMF 2.3, Java version 8.0_64 is required.

For more information, see Software prerequisites for z/OSMF on the IBM

Documentation.

Maximum region size
To prevent exceeds maximum region size errors, ensure that you have a TSO

maximum region size of at least 65536 KB for the z/OS system.

User IDs

User IDs require a TSO segment (access) and an OMVS segment. During workflow

processing and REST API requests, z/OSMF may start one or more TSO address spaces

under the following job names:

userid

substr(userid, 1, 6)//CN (Console)

Example: (userid = USRMY01, USRMY0CN)

Selecting and configuring your z/OSMF plug-ins

Plug-in Functionality Task

(Optional)

Cloud Portal

The Cloud Portal plug-in lets you make software

services available to marketplace consumers and it

adds the Marketplace and Marketplace

Administration tasks to the z/OSMF navigation tree.

For information about how to enable the

plug-in, see Cloud provisioning marketplace

on the IBM Documentation.

Configuration

Assistant

The Configuration Assistant plug-in lets z/OSMF

configure TCP/IP policy-based networking functions.

For more information about the functionality that

For information about how to enable the

plug-in, see Updating z/OS for the

https://www.ibm.com/docs/en/zos/2.5.0?topic=test-customizing-cea
https://www.ibm.com/docs/en/zos/2.5.0?topic=configurations-configuring-cim-server-your-system
https://www.ibm.com/docs/en/zos/2.5.0?topic=services-zos-jobs-rest-interface#izuhpinfo_api_restjobs__RequiredAuthorizationsForRestServices__title__1
https://www.ibm.com/docs/en/zos/2.5.0?topic=services-zos-jobs-rest-interface#izuhpinfo_api_restjobs__RequiredAuthorizationsForRestServices__title__1
https://www.ibm.com/docs/en/zos/2.5.0?topic=zosmf-software-prerequisites
https://www.ibm.com/docs/en/zos/2.5.0?topic=services-cloud-provisioning-marketplace

Plug-in Functionality Task

the plug-in provides, see Network Configuration

Assistant and Security Configuration Assistant on

the IBM Documentation.

Configuration Assistant plug-in on the IBM

Documentation.

ISPF

The ISPF plug-in lets z/OSMF access traditional ISPF

applications.

For information about the functionality that the

plug-in provides, see ISPF task overview on the IBM

Documentation.

For information about how to enable the

plug-in, see Updating z/OS for the ISPF

service on the IBM Documentation.

Workload

Management

The Workload Management plug-in lets z/OSMF

operate and manage workload management

service definitions and policies.

For information about the functionality that the

plug-in provides, see Workload Management task

overview on the IBM Documentation.

For information about how to enable the

plug-in, see Updating z/OS for the Updating

z/OS for the Workload Management service

on the IBM Documentation.

https://www.ibm.com/docs/en/zos/2.5.0?topic=configuration-network-assistant-task-summary
https://www.ibm.com/docs/en/zos/2.5.0?topic=configuration-network-assistant-task-summary
https://www.ibm.com/docs/en/zos/2.5.0?topic=configuration-security-assistant-task
https://www.ibm.com/docs/en/zos/2.2.0?topic=ins-updating-zos-configuration-assistant-plug-in
https://www.ibm.com/docs/en/zos/2.5.0?topic=interfaces-ispf
https://www.ibm.com/docs/en/zos/2.5.0?topic=service-updating-zos-ispf
https://www.ibm.com/docs/en/zos/2.5.0?topic=service-updating-zos-ispf
https://www.ibm.com/docs/en/zos/2.5.0?topic=performance-workload-management-task
https://www.ibm.com/docs/en/zos/2.5.0?topic=performance-workload-management-task
hhttps://www.ibm.com/docs/en/zos/2.5.0?topic=service-updating-zos-workload-management
hhttps://www.ibm.com/docs/en/zos/2.5.0?topic=service-updating-zos-workload-management

Version: v3.3.x LTS

Configuring z/OSMF Security

Review the tasks that security administrators must complete to configure z/OSMF security for your installation of Zowe

client-side components.

REQUIRED ROLE: SECURITY ADMINISTRATOR

Configuring z/OS REST services SAF security

NOTE

If you are connecting to the mainframe with methods other than a z/OSMF profile, you do not need to configure

z/OSMF security. Other connection options might include using FTP, or your custom API.

A security administrator must configure security to allow z/OSMF System Authorization Facility (SAF) access to the

resources that Zowe client-side components require. Zowe client-side components use REST endpoints that are

associated with each z/OSMF REST API. After you complete all z/OSMF and z/OSMF cloud provisioning configurations, you

can test your connection to z/OSMF to verify that your Zowe client-side components can communicate with z/OS

systems.

CAUTION

Before you allow users to issue z/OS console commands with Zowe client-side components, security administrators

should ensure that they provide access to commands that are appropriate for their organization.

The following table details the required z/OSMF REST services and examples of the features they enable.

z/OSMF

REST

Service

REST Endpoint Description More information

Cloud

provisioning

services

Endpoints that begin with:

/zosmf/provisioning/

Cloud provisioning for

development

environments (zowe

provisioning list

instance-info).

Used by Zowe

CLI

Cloud

provisioning

services

TSO/E

address

space

services

Endpoints that begin with: /zosmf/tsoApp TSO commands (zowe

zos-tso issue).

Used by Zowe

CLI, Zowe

Explorer

TSO/E address

space services

Class activations

that z/OSMF

https://www.ibm.com/docs/en/zos/2.5.0?topic=services-cloud-provisioning
https://www.ibm.com/docs/en/zos/2.5.0?topic=services-cloud-provisioning
https://www.ibm.com/docs/en/zos/2.5.0?topic=services-cloud-provisioning
https://www.ibm.com/docs/en/zos/2.5.0?topic=services-tsoe-address-space
https://www.ibm.com/docs/en/zos/2.5.0?topic=services-tsoe-address-space
https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-security-structures-zosmf#DefaultSecuritySetupForZosmf__ResourceAuthorizationsForRESTapi__title__1
https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-security-structures-zosmf#DefaultSecuritySetupForZosmf__ResourceAuthorizationsForRESTapi__title__1

z/OSMF

REST

Service

REST Endpoint Description More information

requires

z/OS console

services

Endpoints that begin with:

/zosmf/restconsoles/

Example: /zosmf/restconsoles/defcn

Console commands

(zowe zos-console

issue). Any MVS console

command such as

MODIFY and DISPLAY.

Used by Zowe

CLI, Zowe

Explorer

z/OS console

services

Resource

authorizations for

the z/OS console

services REST

interface

z/OS data set

and file REST

interface

Endpoints that begin with: /zosmf/restfiles/

Example: /zosmf/restfiles/ds/<dsname>

Create data sets (zowe

zos-files create),

delete data sets (zowe

zos-files delete), read

(download) data sets

(zowe zos-files

download), and write

(upload) data sets (zowe

zos-files upload).

Access to access method

services (IDCAMS) (zowe

zos-files invoke

access-method-

services).

Used by Zowe

CLI, Zowe

Explorer

z/OS data set and

file REST

interface

Resource

authorizations for

the z/OS data set

and file REST

interface

z/OS jobs

REST

interface

Endpoints that begin with: /zosmf/restjobs/

Example:

/zosmf/restjobs/jobs/<jobname>/<jobid>

Submit jobs (zowe zos-

jobs submit), purge

jobs, and read job output.

List jobs (zowe zos-jobs

list).

Used by Zowe

CLI, Zowe

Explorer

z/OS jobs REST

interface

Resource

authorizations for

the z/OS jobs

REST interface

https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-security-structures-zosmf#DefaultSecuritySetupForZosmf__ResourceAuthorizationsForRESTapi__title__1
https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-security-structures-zosmf#DefaultSecuritySetupForZosmf__ResourceAuthorizationsForRESTapi__title__1
https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-security-structures-zosmf#DefaultSecuritySetupForZosmf__ResourceAuthorizationsForRESTapi__title__1
https://www.ibm.com/docs/en/zos/2.5.0?topic=services-zos-console
https://www.ibm.com/docs/en/zos/2.5.0?topic=services-zos-console
https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-security-structures-zosmf#DefaultSecuritySetupForZosmf__zOSConsolesRestAPI__title__1
https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-security-structures-zosmf#DefaultSecuritySetupForZosmf__zOSConsolesRestAPI__title__1
https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-security-structures-zosmf#DefaultSecuritySetupForZosmf__zOSConsolesRestAPI__title__1
https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-security-structures-zosmf#DefaultSecuritySetupForZosmf__zOSConsolesRestAPI__title__1
https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-security-structures-zosmf#DefaultSecuritySetupForZosmf__zOSConsolesRestAPI__title__1
https://www.ibm.com/docs/en/zos/2.5.0?topic=services-zos-data-set-file-rest-interface
https://www.ibm.com/docs/en/zos/2.5.0?topic=services-zos-data-set-file-rest-interface
https://www.ibm.com/docs/en/zos/2.5.0?topic=services-zos-data-set-file-rest-interface
https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-security-structures-zosmf#DefaultSecuritySetupForZosmf__ResourceAuthorizationsForRESTdsfilesAPI__title__1
https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-security-structures-zosmf#DefaultSecuritySetupForZosmf__ResourceAuthorizationsForRESTdsfilesAPI__title__1
https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-security-structures-zosmf#DefaultSecuritySetupForZosmf__ResourceAuthorizationsForRESTdsfilesAPI__title__1
https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-security-structures-zosmf#DefaultSecuritySetupForZosmf__ResourceAuthorizationsForRESTdsfilesAPI__title__1
https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-security-structures-zosmf#DefaultSecuritySetupForZosmf__ResourceAuthorizationsForRESTdsfilesAPI__title__1
https://www.ibm.com/docs/en/zos/2.5.0?topic=services-zos-jobs-rest-interface
https://www.ibm.com/docs/en/zos/2.5.0?topic=services-zos-jobs-rest-interface
https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-security-structures-zosmf#DefaultSecuritySetupForZosmf__ResourceAuthorizationsForRESTapi__title__1
https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-security-structures-zosmf#DefaultSecuritySetupForZosmf__ResourceAuthorizationsForRESTapi__title__1
https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-security-structures-zosmf#DefaultSecuritySetupForZosmf__ResourceAuthorizationsForRESTapi__title__1
https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-security-structures-zosmf#DefaultSecuritySetupForZosmf__ResourceAuthorizationsForRESTapi__title__1

z/OSMF

REST

Service

REST Endpoint Description More information

z/OSMF

workflow

services

Endpoints that begin with: /zosmf/workflow/

Cloud provisioning for

development

environments (zowe zos-

workflows list active-

workflows).

Used by Zowe

CLI

z/OSMF workflow

services

Configuring z/OS console REST interface

Review the following recommendations for configuring the security for z/OS console REST services:

Add the COMMON_TSO statement to the IZUPRMxx parmlib member to customize the z/OSMF options for the logon

procedure.

Define a value of at least 50000 KB as the size of the address space for the user's logon procedure. To help you

prevent system memory exception errors from occurring, confirm that this value is acceptable in your environment.

Ensure that the members in your z/OSMF user security group can issue TSO and CONSOLE commands. IBM provides

RACF statements for user group IZUUSER. To prevent all z/OSMF users from issuing TSO and CONSOLE commands,

you can create more z/OSMF user groups for more granular security.

Ensure that the OPERCMD class is active and that your MVS commands are protected. MVS commands include, but

are not limited to, the MVS and MVS.MCSOPER resource prefixes.

Ensure that the z/OSMF user security groups can access (authorized) the logon procedure name and account number

that is specified in the COMMON_TSO statement.

Define a TSO segment for all the z/OSMF users.

Configuring z/OS data set and file REST interface

Review the following recommendations for configuring the z/OS security for data set and file REST services:

Add the COMMON_TSO statement to the RESTAPI_FILE parmlib member to customize the z/OSMF options for the

logon procedure.

Define a value of at least 65536 KB as the size of the address space for the user's logon procedure. To help you

prevent system memory exception errors from occurring, confirm that this value is acceptable in your environment.

Authorize z/OSMF user groups and the z/OSMF server to CEA TSO/E address space services.

Ensure that the z/OSMF user security groups can access (authorized) the logon procedure name and account number

that is specified on the COMMON_TSO statement.

Define a TSO segment for all the z/OSMF users.

Define at least 20971520 KB (20 MB) the IPCMSGQBYTES option of your parmlib member named BPXPRMxx. IBM

recommends this value to let TSO and z/OSMF communicate using z/OS USS interprocess communications.

Configuring z/OSMF plug-in security

https://www.ibm.com/docs/en/zos/2.5.0?topic=services-zosmf-workflow
https://www.ibm.com/docs/en/zos/2.5.0?topic=services-zosmf-workflow

Ensure that you implement all the required security for the plug-ins. For more information, see Setting up structures for

z/OSMF in the IBM Documentation.

NOTE

For systems that are secured by RACF, ensure that the TRUSTED attribute is assigned to the CEA started task.

To enable Zowe client-side components to authenticate to z/OSMF using certificates, security administrators can

configure the certificates for users of Zowe client-side components. For more information, see Using the z/OSMF

REST services in the IBM Documentation.

https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-security-structures-zosmf
https://www.ibm.com/docs/en/zos/2.5.0?topic=guide-security-structures-zosmf
https://www.ibm.com/docs/en/zos/2.2.0?topic=guide-using-zosmf-rest-services
https://www.ibm.com/docs/en/zos/2.2.0?topic=guide-using-zosmf-rest-services

Version: v3.3.x LTS

Installing Zowe CLI

For a better understanding of Zowe CLI, review the various reference materials that document the application.

Get to know what's new in the Zowe ecosystem, review the quick start guide, and find ways to get the most out of Zowe

CLI.

About Zowe CLI

Check out Zowe release notes to learn about the latest Zowe CLI updates.

Watch Office Hours videos that outline major features in Zowe CLI V2 and Zowe CLI V3.

New to Zowe? Pick up terms and basic concepts with the Zowe Glossary.

Zowe CLI quick start

Ready to start using Zowe CLI right now? Speed up the installation process with the Zowe CLI quick start to get Zowe

CLI up and running in your environment sooner.

Getting the most from Zowe CLI

The following blog posts on the publishing platform Medium go over use cases and provide recommendations on best

practices, providing tips on how to best use Zowe CLI to meet your needs.

Zowe CLI: Getting started with Team Config.

Password management for Zowe CLI profiles

Enterprise rollout of Zowe CLI

Zowe CLI Tips & Tricks

Zowe CLI and TSO commands

FIND OUT MORE

Check out Medium for more informative blogs on Zowe CLI.

Contributing to Zowe CLI

Review the Contributing guidelines for a summary of conventions and best practices for development of Zowe

CLI.

Zowe CLI community resources

https://docs.zowe.org/stable/whats-new/release-notes/release-notes-overview
https://docs.zowe.org/stable/getting-started/zowe-office-hours
https://docs.zowe.org/stable/whats-new/zowe-v3-office-hours
https://docs.zowe.org/stable/appendix/zowe-glossary
https://docs.zowe.org/stable/getting-started/cli-getting-started
https://medium.com/zowe/zowe-cli-team-config-101-be57345ed668
https://medium.com/zowe/zowe-cli-team-config-101-be57345ed668
https://medium.com/zowe/zowe-cli-team-config-101-be57345ed668
https://medium.com/zowe/password-management-for-zowe-cli-profiles-c57f64d1fe88
https://medium.com/zowe/password-management-for-zowe-cli-profiles-c57f64d1fe88
https://medium.com/zowe/enterprise-rollout-of-zowe-cli-2b0a84357de3
https://medium.com/zowe/enterprise-rollout-of-zowe-cli-2b0a84357de3
https://medium.com/modern-mainframe/zowe-cli-tips-tricks-79607b8dbd4e
https://medium.com/modern-mainframe/zowe-cli-tips-tricks-79607b8dbd4e
https://medium.com/zowe/zowe-ci-and-tso-commands-14e5445fca1e
https://medium.com/zowe/zowe-ci-and-tso-commands-14e5445fca1e
https://medium.com/zowe/search?q=Zowe%20CLI
https://github.com/zowe/zowe-cli/blob/master/CONTRIBUTING.md

The Zowe ecosystem is more than a collection of applications and extensions. An entire community exists to work on

enhancements, help answer questions, and discuss plans for the future of the open source project.

Join the #zowe-cli Slack channel to ask questions about Zowe CLI, propose new ideas, and interact with the

Zowe community.

You can join Zowe CLI squad meetings to get involved. The meeting schedule is posted in the Zowe calendar.

If you have an issue that is specific to Zowe CLI, you can submit an issue in the zowe-cli repository on GitHub.

Community resources

Slack channel

Join the #zowe-cli Slack channel to ask questions about Zowe CLI, propose new ideas, and interact with the Zowe

community.

Zowe CLI squad meetings

Join Zowe CLI squad meetings to get involved.

Zowe CLI Blogs on Medium

Read a series of blogs about Zowe CLI on Medium to explore use cases, best practices, and more.

https://openmainframeproject.slack.com/archives/CC8AALGN6
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://github.com/zowe/zowe-cli/issues/new/choose
https://openmainframeproject.slack.com/
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://medium.com/zowe/search?q=Zowe%20CLI

Version: v3.3.x LTS

Zowe CLI installation checklist

This checklist outlines the required steps for a first-time installation of Zowe CLI.

REQUIRED ROLES: SYSTEMS ADMINISTRATOR, DEVOPS ARCHITECT, SECURITY ADMINISTRATOR, SYSTEMS

PROGRAMMER

The checklist includes a brief description of the steps required for installation of Zowe CLI. The checklist also identifies

the roles that are typically required to complete the step, which enables the pre-installation planning team to focus on

the tasks for which they are responsible.

For a printable version of this checklist, click here.

Preparing for installation

Step Description Role
Time

Estimate

Addressing Zowe CLI software

requirements and Zowe CLI plug-

ins software requirements

Check the following items:

Node.js

Node Package Manager (npm)

Disk space

Plug-in configuration

Systems

administrator
15 min.

Configuring your PC to install from

an online registry by proxy

Configure log-in credential requirements in

the NPM configuration file to use a proxy

server to download Zowe CLI.

Systems

administrator
15 min.

Configuring z/OSMF
Confirm that z/OS components, region sizes,

and user IDs meet Zowe CLI requirements.

Systems

programmer
40 min.

Configuring z/OSMF security

Configure security for:

SAF access to REST endpoints

z/OS console REST interface

z/OS data set and file REST services

Security

administrator
50 min.

Installing Zowe CLI and Zowe CLI plug-ins

https://docs.zowe.org/stable/Zowe_CLI_Installation_Checklist.xlsx
https://docs.zowe.org/stable/user-guide/systemrequirements-cli
https://docs.zowe.org/stable/user-guide/systemrequirements-cli
https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://docs.zowe.org/stable/user-guide/cli-install-configure-install-online-registry-proxy
https://docs.zowe.org/stable/user-guide/cli-install-configure-install-online-registry-proxy
https://docs.zowe.org/stable/user-guide/cli-install-configure-zosmf
https://docs.zowe.org/stable/user-guide/cli-install-configure-zosmf-security

Step Description Role
Time

Estimate

Installing Zowe CLI and

Zowe CLI plug-ins from a

local package or

an NPM public online

registry

Install Zowe CLI from an online registry or a local

package.

Systems

administrator
30 min.

Updating Zowe CLI and

Zowe CLI plug-ins

Identify the currently installed version of Zowe CLI

and update to the most recent version. Or, revert to

a specific previous release of Zowe CLI.

Systems

administrator
30 min.

Configuring Zowe CLI

Step Description Role
Time

Estimate

Configuring Zowe CLI

environment variables

Set the location of the CLI home directory to

contain log files, profiles, and other files.

Set log levels to adjust the detail included in log

files.

Set CLI daemon mode properties.

Security

administrator

and/or

DevOps architect

15 min.

Initializing team

configuration

Create team profiles to streamline profile

management in one location:

Create service profiles to store connection

information for a specific mainframe service.

Create base profiles to store connection

information used with one or more services.

Security

administrator

and/or

DevOps architect

15 min.

Configuring daemon

mode

Enable daemon mode and configure daemon mode

properties to run Zowe CLI commands significantly

faster.

Security

administrator

and/or

DevOps architect

15 min

Verifying your Zowe CLI

installation

Confirm the connection to z/OSMF.

Access the product help.

Systems

administrator

and/or

DevOps architect

15 min.

https://docs.zowe.org/stable/user-guide/cli-installcli#installing-zowe-cli-and-zowe-cli-plug-ins-from-a-local-package
https://docs.zowe.org/stable/user-guide/cli-installcli#installing-zowe-cli-and-zowe-cli-plug-ins-from-a-local-package
https://docs.zowe.org/stable/user-guide/cli-installcli#installing-zowe-cli-and-zowe-cli-plug-ins-from-an-npm-online-registry
https://docs.zowe.org/stable/user-guide/cli-installcli#installing-zowe-cli-and-zowe-cli-plug-ins-from-an-npm-online-registry
https://docs.zowe.org/stable/user-guide/cli-updatingcli
https://docs.zowe.org/stable/user-guide/cli-updatingcli
https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev
https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev
https://docs.zowe.org/stable/user-guide/cli-using-initializing-team-configuration
https://docs.zowe.org/stable/user-guide/cli-using-initializing-team-configuration
https://docs.zowe.org/stable/user-guide/cli-using-using-daemon-mode
https://docs.zowe.org/stable/user-guide/cli-using-using-daemon-mode
https://docs.zowe.org/stable/user-guide/cli-install-verify-your-installation
https://docs.zowe.org/stable/user-guide/cli-install-verify-your-installation

Version: v3.3.x LTS

Zowe CLI system requirements

Before installing Zowe CLI, ensure that your environment meets the prerequisites that are described here.

REQUIRED ROLE: SYSTEMS ADMINISTRATOR

Client-side requirements

Zowe CLI is supported on Windows, Linux, and Mac operating systems. Meet the following requirements before you

install the CLI.

Node.js

The JavaScript runtime environment Node.js must be installed to run JavaScript applications (such as Zowe CLI) outside

of a web browser.

To install Node.js:

1. Go to Node.js LTS to select and install a runtime version with active support.

For a list of supported LTS versions, see Nodejs Releases.

2. Restart the command prompt after installing Node.js, if required.

3. Verify that Node.js is installed. Issue the following command in the command prompt:

Node.js is installed on your PC when a message returns with the correct Node.js version.

If you issue the node --version command and get an error message, confirm that your PATH environment variable

includes the path to the Node.js installation location.

npm

Node Package Manager (npm) is included with most Node.js installations and is used to install and manage Node.js

packages on your personal computer. (Zowe CLI supports the npm version packaged with Node.js.)

Your installed version of npm must be compatible with your version of Node.js.

To determine the installed version of npm:

1. Issue the following command in the command prompt:

A message returns with the installed version of npm.

2. Verify that your installed version of npm is compatible with your version of Node.js by referring to the Node.js release

matrix.

If your npm version is not compatible, install a new version of Node.js.

https://nodejs.org/en/
https://nodejs.org/en/about/previous-releases
https://nodejs.org/en/about/previous-releases#looking-for-latest-release-of-a-version-branch
https://nodejs.org/en/about/previous-releases#looking-for-latest-release-of-a-version-branch

Secure credential storage

On Linux systems, you must install the packages gnome-keyring and libsecret (or libsecret-1-0 on Debian and

Ubuntu).

For information on performing this configuration, see Configuring secure credential storage on headless Linux operating

systems.

Plug-in client requirements

If you plan to install plug-ins, review the Software requirements for CLI plug-ins.

IMPORTANT

Ensure that you meet the client-side requirements for the IBM Db2 plug-in before it is installed.

Host-side requirements

IBM z/OSMF

IBM z/OSMF must be configured and running.

You do not need to install the full Zowe solution to install and use Zowe CLI.

Minimally, an instance of IBM z/OSMF must be running on the mainframe before you can issue Zowe CLI commands

successfully. z/OSMF enables the core capabilities, such as retrieving data sets, executing TSO commands, submitting

jobs, and more.

If Zowe API Mediation Layer (API ML) is configured and running, Zowe CLI users can choose to connect to API ML rather

than to every separate mainframe service.

Plug-in services

Services for plug-ins must be configured and running.

Plug-ins communicate with various mainframe services. The services must be configured and running on the mainframe

before issuing plug-in commands. For example, the CICS plug-in requires an instance of IBM CICS on the mainframe with

CICS management client interface (CMCI) (REST services) running. For more information, see Software requirements for

CLI plug-ins

Zowe CLI on z/OS is not supported

Zowe CLI can be installed on an IBM z/OS environment and run under Unix System Services (USS). However, the IBM Db2

plug-in and the Zowe Secrets SDK cannot run on z/OS due to native code requirements. This means that any z/OS

credentials display as plain text on a team configuration file. As such, Zowe CLI is not supported on z/OS and is currently

experimental.

Free disk space

https://docs.zowe.org/stable/user-guide/cli-configure-scs-on-headless-linux-os
https://docs.zowe.org/stable/user-guide/cli-configure-scs-on-headless-linux-os
https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://docs.zowe.org/stable/user-guide/cli-swreqplugins

Zowe CLI requires approximately 100 MB of free disk space. The actual quantity of free disk space consumed might vary

depending on your operating system, the plug-ins that you install, and the user profiles that are saved to disk.

Version: v3.3.x LTS

Zowe CLI plug-ins software requirements

Before installing a Zowe™ CLI plug-in, meet the software requirements to run the plug-in as expected.

REQUIRED ROLE: SYSTEMS ADMINISTRATOR

Plug-in Requirements

IBM CICS Plug-in for

Zowe CLI

Ensure that IBM CICS Transaction Server v5.2 or later is installed and running in your

mainframe environment.

IBM CICS Management Client Interface (CMCI) is configured and running in your CICS

region.

IBM Db2 Database

Plug-in for Zowe CLI

Download and prepare the ODBC driver (required for only package installations) and

address the licensing requirements. Perform this task before you install the plug-in.

(MacOS) Download and Install Xcode.

Note: Linux users might need to resolve an incompatible glibc version.

IBM z/OS FTP Plug-in

for Zowe CLI

Ensure that z/OS FTP service is enabled and configured with JESINTERFACELEVEL = 2.

FTP over SSL is recommended.

IBM MQ Plug-in for

Zowe CLI

Ensure that IBM® MQ™ v9.1.0 or later is installed and running in your mainframe

environment. Please read this blog for more information: Exposing the MQ REST API via

the Zowe API Mediation Layer

Visual Studio Code

Extension for Zowe

Node.js V8.0 or later

Access to z/OSMF; at least one profile is configured

Configure TSO/E address space services, z/OS data set, file REST interface, and z/OS jobs

REST interface. For more information, see z/OS Requirements.

https://docs.zowe.org/stable/user-guide/cli-cicsplugin
https://docs.zowe.org/stable/user-guide/cli-cicsplugin
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.2.0/com.ibm.cics.ts.home.doc/welcomePage/welcomePage.html
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.2.0/com.ibm.cics.ts.clientapi.doc/topics/clientapi_overview.html
https://docs.zowe.org/stable/user-guide/cli-db2plugin
https://docs.zowe.org/stable/user-guide/cli-db2plugin
https://docs.zowe.org/stable/user-guide/cli-db2plugin#downloading-the-odbc-driver
https://developer.apple.com/xcode/resources/
https://docs.zowe.org/stable/troubleshoot/cli/troubleshoot-ibm-db2-database-plug-in#incompatible-glibc-version
https://docs.zowe.org/stable/user-guide/cli-ftpplugin
https://docs.zowe.org/stable/user-guide/cli-ftpplugin
https://docs.zowe.org/stable/user-guide/cli-mqplugin
https://docs.zowe.org/stable/user-guide/cli-mqplugin
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.pro.doc/q121910_.htm
https://developer.ibm.com/messaging/2019/05/17/exposing-the-mq-rest-api-via-the-zowe-api-mediation-layer/
https://developer.ibm.com/messaging/2019/05/17/exposing-the-mq-rest-api-via-the-zowe-api-mediation-layer/
https://docs.zowe.org/stable/user-guide/ze-install
https://docs.zowe.org/stable/user-guide/ze-install
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf

Version: v3.3.x LTS

Configuring your PC to install from an online

registry by proxy

You can install Zowe CLI and Zowe CLI plug-ins from an online registry using a proxy server on Windows, macOS, or Linux

operating systems.

REQUIRED ROLE: SYSTEMS ADMINISTRATOR

If your site functions behind a proxy server and blocks access to public registries, complete the following steps before

you install Zowe CLI core and Zowe CLI plug-ins from your desired online registry.

1. Contact your site administrator and obtain the IP address and port number to your proxy server.

2. Configure your NPM configuration file using one of the following methods:

If your proxy server does not require login credentials:

Issue one of the following commands to add to the URL for the proxy server to your NPM configuration file.

For HTTPS protocol:

For HTTP protocol:

https-proxy

Specifies to communicate with the proxy server using https communication.

proxy

Specifies to communicate with the proxy server using http communication.

[proxy_name]

Specifies the IP address or the host name of the proxy server.

[port_number]

Specifies the port number of the proxy server.

If your proxy server requires login credentials:

Issue one of the following commands to add the URL for the proxy server and your login credentials to your NPM

configuration file.

For HTTPS protocol:

For HTTP protocol:

https-proxy

Specifies to communicate with the proxy server using https communication.

proxy

Specifies to communicate with the proxy server using http communication.

[username]

Specifies the user name to log in to the proxy server.

[password]

Specifies the password to log in to the proxy server.

[proxy_name]

Specifies the IP address or the host name of the proxy server.

[port_number]

Specifies the port number of the proxy server.

3. Install Zowe CLI and Zowe CLI plug-ins from an NPM public online registry.

Version: v3.3.x LTS

Installing Zowe CLI and Zowe CLI plug-ins

Follow these guidelines to install Zowe™ CLI on your computer.

REQUIRED ROLE: SYSTEMS ADMINISTRATOR

If you want to get started using Zowe CLI quickly, see Zowe CLI quick start. You can learn about new CLI features in the

release notes.

NOTES

As you install Zowe CLI, you might encounter error messages that relate to cpu-features and ssh . You can

safely ignore error messages of this type; the installation completes successfully. This behavior can occur when

you install CLI from npm and also from a local package.

Linux users might need to prepend sudo to npm commands. For more information, see Known Zowe CLI

issues.

Installing Zowe CLI and Zowe CLI plug-ins from a local package

To install Zowe CLI from a local package:

1. Meet the Zowe CLI software requirements.

2. Navigate to Download Zowe. In the Client-side component installer section, click the Zowe <X.Y.Z> CLI Core

button (where <X.Y.Z> specifies the release number).

3. Read the End User License Agreement for Zowe and click I agree to download the core package.

zowe-cli-package-next-YYYYMMDD.zip is downloaded to your computer (where YYYYMMDD indicates the year,

month, and day of the build).

4. If installing Zowe CLI plug-ins, meet the software requirements to install Zowe CLI plug-ins.

5. If installing Zowe CLI plug-ins, navigate to Download Zowe and click the Zowe <X.Y.Z> CLI Plugins button (where

<X.Y.Z> specifies the release number).

6. If installing Zowe CLI plug-ins, read the End User License Agreement for Zowe and click I agree to download the

plug-ins package.

zowe-cli-plugins-next-YYYYMMDD.zip is downloaded to your computer.

7. Unzip the contents of zowe-cli-package-<X.Y.Z>.zip (and zowe-cli-plugins-<X.Y.Z>.zip , if downloaded) to a

working directory.

https://docs.zowe.org/stable/getting-started/cli-getting-started
https://docs.zowe.org/stable/whats-new/release-notes/release-notes-overview
https://docs.zowe.org/stable/troubleshoot/cli/known-cli#sudo-syntax-required-to-complete-some-installations
https://docs.zowe.org/stable/troubleshoot/cli/known-cli#sudo-syntax-required-to-complete-some-installations
https://docs.zowe.org/stable/user-guide/systemrequirements-cli
https://www.zowe.org/download.html
https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://www.zowe.org/download.html

8. To install Zowe CLI core, open a command-line window and issue the following commands to the working directory

that was used the previous step:

NOTE

If an EACCESS error displays, see Resolving EACCESS permissions errors when installing packages globally in

npm Docs.

9. To install all available Zowe CLI plug-ins, issue the following command to the working directory that was used in Step

7:

Zowe CLI and the optional plug-ins are installed on your computer.

Installing Zowe CLI and Zowe CLI plug-ins from an npm online

registry

To install Zowe CLI from an npm registry:

1. To install Zowe CLI core, open a command-line window and issue the following command:

Zowe CLI is installed.

2. If installing Zowe CLI plug-ins, meet the software requirements to install Zowe CLI plug-ins.

3. If installing all available Zowe CLI plug-ins, issue the following command:

Zowe CLI and the optional plug-ins are installed on your computer.

Other installation options

There are some users who might prefer to install Zowe CLI on the mainframe, or on an operating system where secure

credential storage is not required or cannot be installed from its package.

For those users, mainframe installation offers the ability to install Zowe CLI in one place yet still be accessible to multiple

mainframe developers. This can help with training purposes, or for scripts that run on both a local computer and the

mainframe. These users often request instructions on mainframe installation, and they are provided here.

Note, however, that Zowe CLI was not designed for mainframe installation and unexpected behavior can occur.

CAUTION

Installing Zowe CLI on the mainframe is not supported by Zowe conformant support providers. By choosing this

installation method, you need to perform your own independent troubleshooting if any problems arise.

Installing Zowe CLI on z/Linux

Installation steps for Zowe CLI depend on whether your z/Linux environment requires the secure credential storage.

Installing with secure credential storage

https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.zowe.org/stable/user-guide/cli-swreqplugins

1. Follow the steps in Configuring secure credential storage on headless Linux operating systems.

2. Follow the steps in Installing Zowe CLI and Zowe CLI plug-ins from an npm online registry or Installing Zowe CLI and

Zowe CLI plug-ins from a local package.

Installing without secure credential storage

1. Follow the steps in Installing Zowe CLI and Zowe CLI plug-ins from an npm online registry or Installing Zowe CLI and

Zowe CLI plug-ins from a local package.

2. Follow the steps in Configuring Zowe CLI where secure credential storage is not available.

Installing Zowe CLI on a USS system, or an OS without secure credential storage

Follow the steps in Configuring Zowe CLI where secure credential storage is not available.

Next steps

After installing Zowe CLI, set environment variables, configure Zowe profiles, and, optionally, enable daemon mode.

https://docs.zowe.org/stable/user-guide/cli-configure-scs-on-headless-linux-os
https://docs.zowe.org/stable/user-guide/cli-configure-cli-on-os-where-scs-unavailable
https://docs.zowe.org/stable/user-guide/cli-configure-cli-on-os-where-scs-unavailable

Version: v3.3.x LTS

Configuring secure credential storage on

headless Linux operating systems

Perform the following configurations on headless Linux or z/Linux operating systems.

REQUIRED ROLE: SYSTEMS ADMINISTRATOR

NOTE

For CI/CD pipelines, we recommend using the credential management provided by the CI/CD tool (for example,

Jenkins credentials or GitHub secrets) to store credentials and load them into environment variables in the pipeline.

See Using environment variables for more information.

Headless Linux operating systems

Requirements for headless Linux operating systems

Ensure that you installed the secure credential storage requirements that are described in Zowe CLI software

requirements.

Unlock the Gnome keyring to allow you to load and store credentials on headless Linux operating systems. You can

unlock the keyring manually or automatically, see the following instructions.

Unlocking the keyring manually

You must unlock the keyring in each user session.

To unlock the keyring manually, open the command prompt and issue the following command:

NOTE

The gnome-keyring-daemon -r --unlock --components=secrets command can appear to hang, but it is waiting for

you to enter a password. Type your keyring password (typically the same as your Linux user password), then press

Ctrl+ D twice to continue the terminal session.

Unlocking the keyring automatically

When you are using SSH or TTY to log in to Linux, you can configure the Gnome keyring to unlock automatically when

you log in.

NOTE

The following steps were tested on CentOS, SUSE, and Ubuntu operating systems. The steps do not work on WSL

(Windows Subsystem for Linux) because it bypasses TTY login. Results may vary on other Linux distributions.

https://docs.zowe.org/stable/user-guide/cli-using-using-environment-variables#store-credentials-securely-in-cicd-pipelines
https://docs.zowe.org/stable/user-guide/systemrequirements-cli#secure-credential-storage
https://docs.zowe.org/stable/user-guide/systemrequirements-cli#secure-credential-storage

To unlock the Gnome keyring automatically when you log in:

1. Follow instructions for your Linux distribution on installing the PAM module for Gnome keyring. The package name

depends on your distribution:

gnome-keyring-pam : CentOS, Fedora, SUSE

libpam-gnome-keyring : Debian, Ubuntu

2. Use a text editor or the applicable command to edit the files /etc/pam.d/login (for TTY login) and

/etc/pam.d/sshd , if it exists (for SSH login).

Add the following statement to the end of the auth section:

Add the following statement to end of the session section:

3. Use a text editor or the applicable command to add the following commands to the ~/.bashrc file:

The first command launches DBus, which the Gnome keyring requires. The second command starts the keyring

daemon so that it is ready to be used by Zowe CLI commands.

4. Restart your computer.

You have successfully completed the configuration to unlock the Gnome keyring automatically.

5. Issue a Zowe CLI command that uses secure credentials to validate the automatic keyring unlock.

z/Linux operating systems

Configuring z/Linux

Zowe CLI does not contain the native, pre-built binaries that are required to access the credential vault on z/Linux

operating systems. Developers must build the credential manager binaries on z/Linux systems during the Zowe CLI

installation process.

For instructions to set up the credential manager binaries for Red Hat Enterprise Linux (RHEL) V8.X and Ubuntu z/Linux

systems, refer to this section. For instructions specific to RHEL V7.X, see Configuring RHEL V7.X.

To install and build the credential storage binaries on z/Linux RHEL V8.X and Ubuntu systems:

1. Use the command prompt to install the following Linux packages on the z/Linux system:

make

gcc-c++ (sometimes available as g++)

gnome-keyring

libsecret (sometimes available as libsecret-1-0)

libsecret-devel (sometimes available as libsecret-1-dev)

Python 3.6 or later

NOTE

If you are installing the Linux packages on a z/Linux system, the system where you are configuring secure

credential storage might require Internet access. When a site hosts its own package repositories, the

repositories might not contain all of the packages that are required to configure the secure credential storage.

In this scenario, the z/Linux system requires Internet access to install the required packages.

2. If you are configuring secure credential storage on a Ubuntu z/Linux operating system, install Zowe CLI.

For all other platforms (RHEL), continue to the next step.

3. Enable the rhel-#-for-system-z-optional-rpms repository to download libsecret-devel.

If your license entitles you to this repository, open the command prompt and issue the following command to enable

it:

Replace # with the major version of RHEL that is running on the z/Linux system.

4. Unlock the keyring manually or unlock the keyring automatically to load and store credentials.

5. If you are configuring secure credential storage to run on RHEL V8.x or later, install Zowe CLI.

Configuring RHEL V7.X

To install and build the credential storage binaries on z/Linux RHEL V7.X:

1. Use the command prompt to install the following Linux packages on the z/Linux system:

make

gcc-c++ (sometimes available as g++)

gnome-keyring

libsecret (sometimes available as libsecret-1-0)

libsecret-devel (sometimes available as libsecret-1-dev)

Python 3.6 or later

NOTE

If you are installing the Linux packages on a z/Linux system, the system where you are configuring secure

credential storage might require Internet access. When a site hosts its own package repositories, the

repositories might not contain all of the packages that are required to configure the secure credential storage.

In this scenario, the z/Linux system requires Internet access to install the required packages.

2. Enable the rhel-#-for-system-z-optional-rpms repository to download libsecret-devel.

If your license entitles you to this repository, open the command prompt and issue the following command to enable

it:

Replace # with the major version of RHEL that is running on the z/Linux system.

3. Install the Red Hat Developer Toolset to ensure that you are running a version of the gcc-c++ compiler that can build

the secure credential storage native binaries.

Issue the following commands to enable the repositories that are required to install the toolset:

4. Install the toolset by issuing the following command:

5. Install Zowe CLI.

6. Unlock the keyring manually or unlock the keyring automaticallyto load and store credentials.

IMPORTANT

The secure credential storage capability is installed every time that you install or update Zowe CLI. On RHEL

V7.x, ensure that the Red Hat Developer Toolset is enabled every time you install or update Zowe CLI. When you

do not enable the toolset, secure credential management is not available on the system. To ensure that the

toolset is enabled when you install Zowe CLI, issue the following commands instead of the standard npm

install commands.

When you run these commands, Zowe CLI installs globally and the system uses the latest version of the C++

compiler to build the native components. Refer back to the keyring unlocking instructions to set up the the

Zowe CLI secure credential storage.

Version: v3.3.x LTS

Configuring Zowe CLI where secure credential

storage is not available

By default, Zowe CLI attempts to store sensitive information and credentials in the operating system’s credential

storage. If the information cannot be stored securely, Zowe CLI displays an error when you attempt to initiate team

configuration.

REQUIRED ROLE: SYSTEMS ADMINISTRATOR

Team configuration

In team configuration, team profiles are stored in the zowe.config.json file and user profiles are saved in

zowe.config.user.json .

By default, every configuration file includes an autoStore property that is set to automatically store values that are

prompted from the user. The value that you enter when prompted is stored for future commands to use to avoid re-

entering information repeatedly.

This can cause potential problems when secure credential storage is not available.

If Zowe CLI cannot find the value for a user ID or password, for example, it prompts the user for that information and

then stores the information securely when secure storage is available.

In cases where secure storage is not possible, and the autoStore property is set to true , the credentials are saved as

text in the applicable configuration file.

Stopping automatic storage of prompted values

To stop storing information prompted by Zowe CLI:

1. Use a text editor to open the configuration file used by your commands.

For project configuration, locate the file in your project directory. For global configuration, the file is found in the

ZOWE_CLI_HOME directory.

2. Navigate to the autoStore property and set the value to false :

Zowe CLI is configured to prompt for all missing values on all commands that you issue.

https://docs.zowe.org/stable/user-guide/appendix/zowe-glossary#team-configuration
https://docs.zowe.org/stable/user-guide/appendix/zowe-glossary#team-configuration

Version: v3.3.x LTS

Updating Zowe CLI and Zowe CLI plug-ins

Zowe™ CLI is updated continuously. You can update Zowe CLI to a more recent version using either the online registry or

the local package method.

REQUIRED ROLE: SYSTEMS ADMINISTRATOR

You must update Zowe CLI using the method that you used to install Zowe CLI.

Identifying the currently installed version of Zowe CLI and Zowe

CLI plug-ins

For Zowe CLI core, open a command line window and issue the following command:

For Zowe CLI plug-ins, open a command line window and issue the following command:

Updating to the Zowe CLI V3 Long-term Support (v3-lts)

version

If you are running the Zowe CLI version included with Zowe release v2.0.0 to v2.15.x, you can update to @zowe-v3-lts

(LTS version) to leverage the latest Zowe CLI and Zowe CLI plug-ins functionality.

Updating from an npm online registry

1. To update and install Zowe CLI core, open a command line window and issue the following command:

2. To update and install all Zowe plug-ins, open a command line window and issue the following command:

To install a subset of the plug-ins, remove the syntax for the plug-in(s) that you do not want to update. For example:

3. When updating from Zowe V1 to Zowe V3, migrate your Zowe CLI profiles from your current installation to your V3

installation:

Profile data is backed up in case you want to revert the profiles to your previous Zowe CLI installation.

4. When updating from Zowe V1 to Zowe V3, if you no longer require the profiles for your previous Zowe CLI

installation, you can delete them:

IMPORTANT

We do not recommend deleting the profiles from your previous Zowe CLI installation until you have tested your

V3 installation and are satisfied.

You have successfully updated to the Zowe CLI V3-LTS version.

5. See Next steps for recommended tasks after installation.

Updating from a local package

To update Zowe CLI core and Zowe CLI plug-ins from an offline (.tgz), local package, uninstall your current package

then reinstall from a new package.

1. To uninstall Zowe CLI and Zowe CLI plug-ins, follow the instructions in Uninstalling Zowe CLI and Zowe CLI Plug-ins.

2. To install a new package for Zowe CLI and Zowe CLI plug-ins, follow the instructions in Installing Zowe CLI and Zowe

CLI plug-ins from a local package.

3. See Next steps for recommended tasks after installation.

Updating or reverting Zowe CLI and Zowe CLI plug-ins to a

specific version

If necessary, you can update or revert Zowe CLI to a known, previously released version.

Updating or reverting from an npm online registry

1. To update or revert Zowe CLI and Zowe CLI plug-ins to a specific known version, open a command line window and

issue the following command:

<X.Y.Z>

Specifies release number that Zowe CLI or Zowe CLI plug-ins are to be updated or reverted to. For example, npm

install -g @zowe/cli@8.0.0 .

2. See Next steps for recommended tasks after installation.

Updating or reverting from a local package

1. Uninstall Zowe CLI and Zowe CLI plug-ins. Follow the instructions in Uninstalling Zowe CLI and Zowe CLI Plug-ins.

2. Navigate to Download Zowe. Select the specific release you want to update or revert to from All Zowe V2.x

Releases or All Zowe V3.x Releases.

The End User License Agreement for Zowe displays.

3. Read the End User License Agreement for Zowe and click I agree to download the core package.

zowe-cli-package-next-<X.Y.Z>.zip is downloaded to your computer (where <X.Y.Z> indicates the year, month,

and day of the build).

4. If updating or reverting Zowe CLI plug-ins, navigate to Download Zowe and click the Zowe <X.Y.Z> CLI Plugins

button (where <X.Y.Z> specifies the release number).

5. If updating or reverting Zowe CLI plug-ins, read the End User License Agreement for Zowe and click I agree to

download the plug-ins package.

zowe-cli-plugins-next-<X.Y.Z>.zip is downloaded to your computer.

https://docs.zowe.org/stable/user-guide/cli-uninstall
https://docs.zowe.org/stable/user-guide/cli-installcli#installing-zowe-cli-and-zowe-cli-plug-ins-from-a-local-package
https://docs.zowe.org/stable/user-guide/cli-installcli#installing-zowe-cli-and-zowe-cli-plug-ins-from-a-local-package
https://docs.zowe.org/stable/user-guide/cli-uninstall
https://www.zowe.org/download.html
https://www.zowe.org/download.html

6. Unzip the contents of zowe-cli-package-<X.Y.Z>.zip (and zowe-cli-plugins-<X.Y.Z>.zip , if downloaded) to a

working directory.

7. To install Zowe CLI core, open a command-line window and issue the following command to the working directory

that was used the previous step:

NOTE

If an EACCESS error displays, see Resolving EACCESS permissions errors when installing packages globally in

npm Docs.

8. To update or revert all available Zowe CLI plug-ins, issue the following command to the working directory that was

used in Step 6:

Zowe CLI and the optional plug-ins are installed on your computer.

To update or revert a subset of the plug-ins, remove the syntax for the plug-in(s) that you do not want to update. For

example:

9. See Next steps for recommended tasks after installation.

Next steps

Review the release notes for the notable changes in the newly installed version.

Issue familiar commands and run scripts to ensure that your profiles/scripts are compatible. Take corrective action to

address any breaking changes.

https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.zowe.org/stable/whats-new/release-notes/release-notes-overview

Version: v3.3.x LTS

Configuring Zowe CLI environment variables

Configure Zowe CLI using environment variables to define directories, log levels, daemon mode properties, and more.

REQUIRED ROLES: SECURITY ADMINISTRATOR, DEVOPS ARCHITECT

By default, Zowe CLI configuration is stored on your computer in the C:\Users\user01\.zowe directory. The directory

includes log files, profile information, and installed Zowe CLI plug-ins. When troubleshooting, refer to the logs in the

imperative and zowe folders.

NOTE

For information on how to define Zowe CLI environment variables to execute commands more efficiently, see Using

environment variables.

Setting the Zowe CLI home directory

You can set the location on your computer where Zowe CLI creates the .zowe directory, which contains log files, profiles,

and plug-ins for the product.

Environment

variable
Description Values Default

ZOWE_CLI_HOME
Zowe CLI home directory

location

Any valid path on your

computer

Your computer default home

directory

Setting a shared plug-in directory

You can set the location of a shared directory to manage Zowe CLI plug-ins for multiple users.

A project administrator can pre-install, and update, a Zowe CLI plug-in stored in the shared directory to make the same

version of that plug-in available to all users. This avoids managing separate copies of a plug-in across a development

team.

The plug-in directory must be defined before any Zowe CLI plug-ins are installed.

IMPORTANT

Any plug-in installed before specifying the environment variable cannot be managed with Zowe CLI. To resolve this,

re-install the plug-in after the environment variable is set.

https://docs.zowe.org/stable/user-guide/cli-using-using-environment-variables
https://docs.zowe.org/stable/user-guide/cli-using-using-environment-variables

Environment

variable
Description Values Default

ZOWE_CLI_PLUGINS_DIR
Zowe CLI plug-in directory

location

Any valid path on your

computer

Plug-ins folder inside the Zowe

CLI home

Setting CLI log levels

You can set the log level to adjust the level of detail that is written to log files.

WARNING

Setting the log level to TRACE or ALL might result in sensitive data being logged. For example, command line

arguments are logged when TRACE is set.

Environment variable Description Values Default

ZOWE_APP_LOG_LEVEL Zowe CLI logging level
Log4JS log levels (OFF , TRACE , DEBUG ,

INFO , WARN , ERROR , FATAL)

WARN

ZOWE_IMPERATIVE_LOG_LEVEL
Imperative CLI Framework

logging level

Log4JS log levels (OFF , TRACE , DEBUG ,

INFO , WARN , ERROR , FATAL)
WARN

Setting CLI daemon mode properties

By default, the CLI daemon mode binary creates or reuses a file in the user's home directory each time a Zowe CLI

command runs. In some cases, this behavior might be undesirable. For example, when the home directory resides on a

network drive and has poor file performance.

To change the location that the daemon uses, set the environment variables that are described in the following table.

Platform
Environment

variable
Description Values Default

All ZOWE_DAEMON_DIR

Lets you override the

complete path to the

directory that will hold

daemon files related to this

user. The directory can

contain the following files:

daemon.lock

daemon.sock

daemon_pid.json

Any valid

path on

your

computer

<your_home_dir>/.zowe/daemon

Examples:

Windows:

%HOMEPATH%\.zowe\daemon

Linux: $HOME/.zowe/daemon

Platform
Environment

variable
Description Values Default

Windows

(only)
ZOWE_DAEMON_PIPE

Lets you override the last two

segments of the name of the

communication pipe between

the daemon executable (.exe)

and the daemon.

Any valid

path on

your

computer

\\.\pipe\%USERNAME%\ZoweDaemon

Showing secure values

See the secure credentials used by a command to help troubleshoot a configuration problem.

Environment variable Description Values Default

ZOWE_SHOW_SECURE_ARGS

Displays secure property values used by a Zowe CLI command

Notes: Use the --show-inputs-only option in a Zowe CLI

command to view the property values used by the command.

When the ZOWE_SHOW_SECURE_ARGS is set to true , the response

also includes the secure values used and defined in the user's

client configuration.

Use the zowe config list command in Zowe CLI to view your

team configuration settings. When ZOWE_SHOW_SECURE_ARGS is set

to true , the response includes the secure values in plain text.

TRUE ,

FALSE
FALSE

Using Zowe CLI with a proxy

If your network configuration requires communication with the mainframe to be performed through a proxy server, set

environment variables to route Zowe CLI traffic through an HTTP/HTTPS proxy.

Environment

Variable
Description Example Value

HTTPS_PROXY ,

https_proxy

Use an https proxy to route

communication to the mainframe

when your proxy server supports

https .

If authentication required:

https://[user]:[password]@[address]:[port]

If authentication not required:

https://[address]:[port]

HTTP_PROXY ,

http_proxy

Use an http proxy to route

communication to the mainframe

when your proxy server does not

support https .

If authentication required:

http://[user]:[password]@[address]:[port]

If authentication not required:

http://[address]:[port]

Environment

Variable
Description Example Value

NO_PROXY

Set a list of host addresses

(separated by commas) to connect

to the specified hosts without

going through a proxy.

https://[address_1],https://[address_2] ,

http://[address_1],http://[address_2] ,

.address_1,.address_2

Version: v3.3.x LTS

Configuring an environment variables file

If it is not possible to configure your own system environment variables, create a special configuration file to set these

variables for Zowe CLI commands.

REQUIRED ROLES: SECURITY ADMINISTRATOR, DEVOPS ARCHITECT

Although not common, there are cases where users do not have the ability to configure their own system environment

variables. This can happen when users are working on hosted integrated development environments (IDEs), or in a

highly locked down environment.

When working under these kinds of restrictions, you can set environment variables that apply to CLI commands. To do

this, create a .zowe.env.json file storing key-value pairs that specify your configurations.

NOTE

Use a .zowe.env.json file only when it is not possible to set your own system environment variables. If you are

able to configure environment variables in your system, continue to do so.

How .zowe.env.json works

When a Zowe command is issued, the command initializes the Imperative CLI Framework so that it loads all the utilities

that allow the command to function. Imperative reads the .zowe.env.json configuration file and sets the environment

variables before any loggers or Zowe CLI finish their own initialization.

The .zowe.env.json environment variables are set for only the duration of a Zowe CLI command.

If an existing environment variable is set in your system and the variable is also in .zowe.env.json , the values in

.zowe.env.json overwrite it.

.zowe.env.json can be used to set any environment variable. This allows setting environment variables to change the

default behavior of Node.JS, in addition to all of the Zowe environment variables.

Creating the configuration file

Create a dedicated JSON file to store settings for environment variables:

1. In your Files Explorer, go to the home directory (%HOMEPATH% for Windows, $HOME for Linux and Mac) or the path set

in the ZOWE_CLI_HOME environment variable.

2. Create a JSON file titled .zowe.env.json .

3. Use a text editor to open .zowe.env.json and enter environment variables, as in the following example:

NOTE

If you have the ZOWE_CLI_HOME environment variable set in your system, do not include it in the

.zowe.env.json file. Otherwise, unexpected behavior can occur.

Using daemon mode

Daemon mode is a long-running background process that significantly improves Zowe CLI performance.

When changes are made to your work environment, daemon mode does not capture the changes. Restarting daemon

mode lets the daemon capture any updates since its last start up.

This means that if the Zowe CLI daemon is in use, the daemon must be restarted when the .zowe.env.json file is

created or updated.

Issue the following command to stop the currently running daemon and start a new daemon:

See Restart daemon mode for more information.

https://docs.zowe.org/stable/user-guide/cli-using-using-daemon-mode/#restart-daemon-mode

Version: v3.3.x LTS

Initializing team configuration

Team configuration is a profile management method introduced in Zowe Version 2.

REQUIRED ROLES: SECURITY ADMINISTRATOR, DEVOPS ARCHITECT

Under this method, team-specific profiles are saved in the zowe.config.json configuration file and user-specific profiles

in the zowe.config.user.json configuration file. Team configuration profile management can be applied globally and/or

per project, depending on the development project. See Team configurations for more information.

Use one of the following methods to initialize global team configuration. These instructions show how to create a

configuration file that you can later open in a text editor or IDE (such as Visual Studio Code) to add or modify profiles.

NOTE

If API Mediation Layer is running on your site, Connecting profiles to API Mediation Layer is the recommended

method to use to initialize team configuration.

Creating a global team configuration file

1. To initialize a global team configuration file, open a command line window and issue the following command:

2. Respond to subsequent prompts with a username and password for a mainframe service such as z/OSMF.

The zowe config init command ensures that your credentials are stored securely on your computer by default.

When the credentials are received, the zowe.config.json team configuration file is added to the local .zowe

directory. Use a text editor or IDE to add or modify connection details for your mainframe services.

NOTE

Run the zowe config init --global-config command again after installing a new plug-in to add the plug-in

profile to the global configuration file. See Creating team plug-in profiles for information.

3. To test access to z/OSMF, issue a Zowe CLI command.

For example, list all data sets under your user ID:

IBMUSER

Specifies your user ID.

A list of data sets is returned, indicating Zowe CLI is successfully configured to access a z/OSMF instance.

If the CLI returns an error message, verify that you have access to the target system. Examine the configuration files

in a text editor to check that the entered information is correct.

https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles

IMPORTANT

After the configuration file is in place (by using either the zowe config init command or a file provided by a

system administrator), the zowe profiles commands used in Zowe V1 no longer function. Zowe CLI returns errors

when deprecated profile commands are issued.

Creating team plug-in profiles

After the zowe.config.json team configuration file is created and new plug-ins are installed, run the zowe config init

(or zowe config auto-init , if using API ML) command again to add the plug-in profiles to the configuration file.

To create a team plug-in profile:

1. Install a new plug-in.

For example, open a command line window and issue the following command to install the IBM CICS Plug-in from an

npm online registry:

NOTE

If the zowe.config.json file has not yet been created in the .zowe directory, see Creating a global team

configuration file.

2. Issue the zowe config init --global-config or zowe config auto-init --global-config command.

This adds a plug-in profile to the configuration file in the .zowe home directory.

3. Open the zowe.config.json file and confirm the plug-in profile is included.

In the example from Step 1, the profile information displays similarly to the example below:

The plug-in profile has been successfully added to the zowe.config.json file in the .zowe home directory.

NOTE

To add plug-in profiles to a configuration file in the current working directory, enter the base command without

the --global-config option: zowe config init .

Connecting profiles to API Mediation Layer

You can use profiles to connect to the API Mediation Layer. This more efficient way to connect to the mainframe allows

you to specify a host and port only once on a base profile instead of multiple host-and-port combinations across several

service profiles.

To set up the zowe.config.json file to automatically access the services that are registered to API ML and support

Single Sign-On:

1. Open a command line window and issue the following command:

https://docs.zowe.org/stable/user-guide/cli-cicsplugin

NOTE

To add a profile to a configuration file in the current working directory, enter the base command without the --

global-config option: zowe config auto-init .

2. Respond to subsequent CLI prompts with the following information:

The host name and port to your API ML instance.

Your username and password.

A default base profile is added to the configuration file in the .zowe home directory.

NOTE

To use certificates instead of basic authentication (such as user ID and password), you can specify the options -

-cert-file and --cert-key-file on the base command (zowe config auto-init). For more information on

how to log in with certificates, see Integrating with API Mediation Layer.

https://docs.zowe.org/stable/user-guide/cli-using-integrating-apiml

Version: v3.3.x LTS

Configuring daemon mode

Daemon mode significantly improves the performance of Zowe CLI commands by running Zowe CLI as a persistent

background process (daemon). Running Zowe CLI as daemon lets Zowe absorb the one-time startup of Node.js modules,

which results in significantly faster responses to Zowe commands.

REQUIRED ROLES: SECURITY ADMINISTRATOR, DEVOPS ARCHITECT

When you run Zowe CLI in daemon mode, you run all Zowe commands as you normally run them. The first time you run

a command, it starts the daemon in the background automatically and runs your desired Zowe command. Since the first

Zowe command starts the daemon, the first command usually runs slower than a traditional Zowe command. However,

subsequent Zowe commands run significantly faster. The daemon continues to run in the background until you close

your terminal window.

Preparing for installation

Review the following installation notes before you configure Zowe CLI to run in daemon mode:

Daemon mode does not function on z/OS UNIX System Services (USS) systems.

When you want Zowe CLI to run in daemon mode on z/Linux operating systems, you must build the daemon mode

binary on the z/Linux systems. For information about how to build the binary, see Configuring daemon mode on

z/Linux operating systems. The sections Enabling daemon mode and Disabling daemon mode (in this article) do not

apply to running Zowe CLI in daemon mode on z/Linux operating systems.

We do not recommend using daemon mode in an environment where multiple users use the same system. For

example, a shared Linux server. This could result in increased consumption of system resources.

When you are running Zowe on a Windows operating system in a virtual environment (for example, Windows

Sandbox), you might receive an error message that indicates that a library named VCRUNTIME140.dll is missing. To

correct the error, install Visual C++ Redistributable for Visual Studio 2015. For more information, see Download

Visual C++ Redistributable for Visual Studio 2015 in the Microsoft Download Center.

Enabling daemon mode

To enable daemon mode and configure Zowe to run Zowe CLI constantly in daemon mode:

1. Open a terminal window and issue the following command:

The command copies the Zowe executable for your operating system into the $ZOWE_CLI_HOME/bin (.zowe/bin)

directory. The next command that you issue starts the daemon.

2. Add the binary file path to the Zowe executable to your PATH environment variable. For example:

IMPORTANT

https://docs.zowe.org/stable/user-guide/cli-configure-daemon-on-zlinux-os
https://docs.zowe.org/stable/user-guide/cli-configure-daemon-on-zlinux-os
https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://www.microsoft.com/en-us/download/details.aspx?id=48145

Ensure that you position the path to your Zowe executable before the path into which NPM installed the Node.js

script. For example, C:\Program Files\nodejs\zowe.cmd . For information about configuring environment

variables, see the documentation for your computer's operating system.

You have successfully configured Zowe CLI to run on daemon mode. Each time a Zowe CLI command is issued, the

daemon binary is loaded from the user's home directory to run the Zowe executable.

NOTE

In some cases, using the home directory might be undesirable. (For example, the home directory resides on a

network drive and has poor file performance.) To change the location that the daemon uses, see Setting CLI

daemon mode properties.

Restarting daemon mode

Daemon mode is a long-running background process that significantly improves Zowe CLI performance by, essentially,

waiting for work to perform. When you make changes to your work environment, daemon mode does not capture the

changes.

Restarting daemon mode lets the daemon capture the changes.

To stop the currently running daemon and start a new daemon, open a command line window and issue the following

command:

Changes that require daemon mode restart

You must restart daemon mode under the following scenarios:

You changed the value of any of the following Zowe CLI environment variables:

ZOWE_CLI_HOME

ZOWE_APP_LOG_LEVEL

ZOWE_IMPERATIVE_LOG_LEVEL

You installed, updated, or uninstalled a plug-in.

You installed a newer version of Zowe CLI and daemon mode was running while you installed the newer version of

Zowe CLI.

NOTE

When you install another version of Zowe CLI, you should always run the zowe daemon enable command again.

You issued a Zowe command and the following message displays:

You created or updated the .zowe.env.json file in your home directory or the path set in the ZOWE_CLI_HOME

environment variable. See Configuring an environment variables file for more information.

Disabling daemon mode

https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev#setting-cli-daemon-mode-properties
https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev#setting-cli-daemon-mode-properties
https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev
https://docs.zowe.org/stable/user-guide/cli-configuringcli-evfile

You can disable Zowe CLI from running in daemon mode at any time. For example, if the daemon experiences an

unexpected error.

To disable daemon mode, open a terminal window and issue the following command:

The disable command stops daemon mode, removes the Zowe executable from your .zowe/bin directory, and disables

daemon mode.

Version: v3.3.x LTS

Configuring daemon mode on z/Linux operating

systems

Currently, Zowe CLI does not offer a prebuilt daemon that can run on z/Linux operating systems. However, developers

can build the daemon binary from source.

REQUIRED ROLES: SECURITY ADMINISTRATOR, DEVOPS ARCHITECT

To install and build the daemon binary on z/Linux systems:

1. Ensure that the z/Linux system can communicate using the Internet.

2. Install Zowe CLI on the z/Linux system.

3. Install the following Linux packages on the z/Linux system:

make

gcc-c++ (or g++)

git

Rust

For information about how to install Rust, see the Rust documentation.

4. Shallow clone the Zowe CLI Git repository for the version of CLI that you installed. Open a command line window and

issue the following command:

5. Change to the following directory:

6. Build the daemon binary. Issue the following command from the zowe-cli/zowex directory:

After the command completes successfully, the Zowe daemon binary is a file named zowe that can be found in the

target/release directory.

7. Copy the binary to another location on the system and add that location to your PATH.

8. To allow others to use the same binary, modify the file permissions in the binary:

The following example illustrates the command to allow all users to run the Zowe binary. However, only the user that

created the binary can overwrite the binary.

NOTE

You can delete the .zowe-cli folder that was created in Step 4 after the binary builds successfully. The Zowe

daemon commands will not function, and the daemon will need to be rebuilt for all new versions of Zowe CLI.

https://forge.rust-lang.org/infra/other-installation-methods.html

Version: v3.3.x LTS

Verifying your Zowe CLI installation

Verify that Zowe CLI has been installed successfully by checking your connection to z/OSMF and accessing the in-product

help.

REQUIRED ROLES: SYSTEMS ADMINISTRATOR, DEVOPS ARCHITECT

NOTE

Use these commands to validate connection to z/OSMF, not user credentials. To confirm credentials, issue any fully

qualified command, such as zowe zos-files list data-set <dataSetName> [options] .

Testing connections to z/OSMF

Issue a command at any time to receive diagnostic information from the server and confirm that Zowe CLI can

communicate with z/OSMF or other mainframe APIs.

Refer to the following sections for instructions on how to connect to z/OSMF with different types of profiles.

IMPORTANT

When z/OSMF receives a request via a Zowe CLI command, z/OSMF uses an SSL/TLS certificate to ensure a secure

connection during the user session.

In the event that your z/OSMF instance does not have a SSL/TLS certificate registered with a Certificate Authority

(CA), use the --reject-unauthorized (or --ru) false flag to the end of each command listed here to bypass this

security check.

Determine the potential security risks. For the most secure environment, system administrators configure a server

keyring with a server certificate signed by a CA. For more information, see Working with certificates.

Connecting to z/OSM without a profile

Follow these steps when you have installed Zowe CLI but have not yet created a configuration file, or the configuration

file has an incomplete profile for z/OSMF.

1. Verify that your Zowe CLI instance can communicate with z/OSMF:

<host>

Specifies the host.

<port>

Specifies the port.

<username>

https://docs.zowe.org/stable/user-guide/cli-using-working-certificates

Specifies the username.

<password>

Specifies the password.

2. Verify that the installed z/OSMF services are plug-ins listed in the response.

You have confirmed that Zowe CLI is connected to z/OSMF.

Connecting to z/OSMF with a default profile

Follow these steps when you have created a default profile in a configuration file (such as a global team config:

1. Verify the default profile can communicate with z/OSMF:

2. Check that the installed z/OSMF services and plug-ins are listed in the response.

You have confirmed that Zowe CLI is connected to z/OSMF.

Connecting to z/OSM with a specific profile

Follow these steps when you have created a custom profile in a configuration (such as a global team configuration file).

1. Verify that you can use that specific profile to communicate with z/OSMF:

<profile name>

Specifies the name of the custom profile.

2. Check that the installed z/OSMF services and plug-ins are listed in the response.

You have confirmed that Zowe CLI is connected to z/OSMF.

Troubleshooting Zowe CLI connection

The preceding commands return a success or failure message and display information about your z/OSMF server, such

as the z/OSMF version number. Report failures to your systems administrator and use the response information for

diagnostic purposes.

Accessing Zowe CLI help

The in-product help is used as a reference of all the commands and plug-ins that are installed on the computer. If any

part of the installation corrupts during installation, the help does not display.

Viewing top level Zowe CLI help

1. To view top-level help:

Alternatively, to display a full list of all available commands:

2. Verify that the help content displays and includes installed plug-ins.

https://docs.zowe.org/stable/user-guide/cli-using-initializing-team-configuration
https://docs.zowe.org/stable/user-guide/cli-using-initializing-team-configuration

You have confirmed that you successfully installed Zowe CLI.

Version: v3.3.x LTS

Uninstalling Zowe CLI and Zowe CLI plug-ins

You can uninstall Zowe™ CLI from the desktop if you no longer need to use it.

REQUIRED ROLES: SYSTEMS ADMINISTRATOR

IMPORTANT

The uninstall process does not delete the profiles and credentials that you created when using the product from

your computer. To delete the profiles from your computer, delete them before you uninstall Zowe CLI.

To list the profiles that you created, delete the profiles, and uninstall Zowe CLI.

1. Open a command line window.

NOTE

If you do not want to delete the Zowe CLI profiles from your computer, proceed to Step 5.

2. List all configuration files that you created. Issue the following command:

Example response for Windows:

Example response for Linux and Mac OS:

3. Delete all of the configuration files that are listed. Issue the following command:

TIP

For this command, use the results of the zowe config list command.

For Windows:

For Linux and Mac OS:

4. Uninstall Zowe CLI by issuing the following command:

NOTE

You might receive an ENOENT error when issuing this command if you installed Zowe CLI from a local package

(.tgz) and the package was moved from its original location. To resolve this, add the --force option to the npm

uninstall --global @zowe/cli command and to bypass any errors.

The uninstall process removes all Zowe CLI installation directories and files from your computer.

5. Delete the ~/.zowe or %homepath%\.zowe directory on your computer. The directory contains the Zowe CLI log files

and other miscellaneous files that were generated when you used the product.

INFO

Deleting the directory does not harm your computer.

Version: v3.3.x LTS

Installing Zowe Explorer

The Zowe Explorer extension for Visual Studio Code (VS Code) modernizes the way developers and system

administrators interact with z/OS mainframes, and lets you interact with data sets, USS files, and jobs.

For a better understanding of Zowe Explorer, review the various reference materials that document the VS Code

extension.

About Zowe Explorer

Check out Zowe release notes to learn about the latest Zowe Explorer updates.

If you have a question, review the Zowe Explorer FAQs, which answer the most commonly asked questions about

Zowe Explorer.

Installing and configuring

Review the system requirements and steps for installing the Zowe Explorer in Installing Zowe Explorer.

Learn how to create and work with Zowe Explorer profiles. A profile enables you to connect to services running on

a mainframe, integrate with the API Mediation Layer, and more.

Getting the most out of Zowe Explorer

Review Using Zowe Explorer to go over how to use Zowe Explorer in a remote environment and managing

credentials.

Learn how to extend Zowe Explorer to introduce new functionalities.

Add CICS functionality and the FTP protocol to the Zowe Explorer VS Code extension with the Zowe Explorer CICS

Extension and the Zowe Explorer FTP Extension.

Check out the Zowe Explorer GitHub repository to view the source code for Zowe Explorer and other Zowe

Explorer-related extensions.

Watch the following videos to learn how to get started with Zowe Explorer, and work with data sets:

https://docs.zowe.org/stable/whats-new/release-notes/release-notes-overview
https://docs.zowe.org/stable/getting-started/zowe_faq#zowe-explorer-faq
https://docs.zowe.org/stable/user-guide/ze-install
https://docs.zowe.org/stable/user-guide/ze-profiles
https://docs.zowe.org/stable/user-guide/ze-usage
https://github.com/zowe/vscode-extension-for-zowe/wiki/Extending-Zowe-Explorer
https://docs.zowe.org/stable/user-guide/ze-using-zowe-explorer-cics-ext
https://docs.zowe.org/stable/user-guide/ze-using-zowe-explorer-cics-ext
https://docs.zowe.org/stable/user-guide/ze-ftp-install-ze-ftp-ext
https://github.com/zowe/vscode-extension-for-zowe#readme

Getting Started with Zowe Explorer: Part 1Getting Started with Zowe Explorer: Part 1

Zowe Explorer Video: How to Work with Data Sets Part 2Zowe Explorer Video: How to Work with Data Sets Part 2

Contributing to Zowe Explorer

Review the Contribution Guidelines for a summary of conventions and best practices for development of the

Visual Studio Code Extension for Zowe.

Zowe Explorer community resources

The Zowe ecosystem is more than a collection of applications and extensions. An entire community exists to work on

enhancements, help answer questions, and discuss plans for the future of the open source project.

https://www.youtube.com/watch?v=G_WCsFZIWt4
https://www.youtube.com/watch?v=X4oSHrI4oN4
https://github.com/zowe/vscode-extension-for-zowe/blob/master/CONTRIBUTING.md

Join the #zowe-explorer-vscode Slack channel to ask questions, propose new ideas, and interact with the Zowe

community.

You can join Zowe Explorer squad meetings to get involved. The meeting schedule is posted in the Zowe

calendar.

Read informative blog posts about Zowe on Medium to explore use cases, best practices, and more.

If you have an issue that is specific to Zowe Explorer, you can submit an issue in the zowe-explorer-vscode

repository on GitHub.

Community resources

Slack channel

Join the # zowe-explorer Slack channel to ask questions, propose new ideas, and interact with the Zowe

community.

Zowe Explorer squad meetings

You can join one of the Zowe Explorer squad meetings to get involved.

Zowe Blogs on Medium

Read a series of blog articles about Zowe on Medium to explore use cases, best practices, and more.

https://app.slack.com/client/T1BAJVCTY/CUVE37Z5F
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://medium.com/zowe
https://github.com/zowe/zowe-explorer-vscode/issues/new/choose
https://openmainframeproject.slack.com/
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://medium.com/zowe

Version: v3.3.x LTS

Zowe Explorer installation checklist

This checklist outlines the required steps for a first-time installation of Zowe Explorer.

REQUIRED ROLES: SYSTEMS ADMINISTRATOR, DEVOPS ARCHITECT, SECURITY ADMINISTRATOR, SYSTEMS

PROGRAMMER

The checklist includes a brief description of the steps required for installation of Zowe Explorer. The checklist also

identifies the roles that are typically required to complete the step, which enables the pre-installation planning team to

focus on the tasks for which they are responsible.

For a printable version of this checklist, click here.

Preparing for installation

Step Description Role
Time

Estimate

Addressing Zowe Explorer

system requirements

Check the following items:

your operating system

development environments

Systems

administrator
15 min.

(Optional) Configuring

z/OSMF

Confirm that z/OS components, region sizes, and

user IDs meet Zowe Explorer requirements.

Required step when using a z/OSMF profile

connection.

Systems

programmer
40 min.

(Optional) Configuring

z/OSMF security

Configure security for:

SAF access to REST endpoints

z/OS console REST interface

z/OS data set and file REST services

Required step when using a z/OSMF profile

connection.

Security

administrator
50 min.

(Optional) Installing Zowe

CLI

Set up team configuration with Zowe CLI to

communicate with the mainframe.

Systems

administrator
60 min.

Installing Zowe Explorer

https://docs.zowe.org/stable/Zowe_CLI_Installation_Checklist.xlsx
https://docs.zowe.org/stable/getting-started/ZE-system-reqs
https://docs.zowe.org/stable/getting-started/ZE-system-reqs
https://docs.zowe.org/stable/user-guide/cli-install-configure-zosmf
https://docs.zowe.org/stable/user-guide/cli-install-configure-zosmf
https://docs.zowe.org/stable/user-guide/cli-install-configure-zosmf-security
https://docs.zowe.org/stable/user-guide/cli-install-configure-zosmf-security
https://docs.zowe.org/stable/user-guide/cli-install-cli-checklist
https://docs.zowe.org/stable/user-guide/cli-install-cli-checklist

Step Description Role
Time

Estimate

Installing Zowe Explorer

and Zowe Explorer

extensions

Install Zowe Explorer and Zowe Explorer

extensions from the Visual Studio Marketplace

or with a VSIX file.

Systems administrator

and/or developer
10 min.

Updating Zowe Explorer

and Zowe Explorer

extensions

Updates are done automatically unless

otherwise specified.

Systems administrator

and/or developer
10 min.

Configuring Zowe Explorer

Step Description Role
Time

Estimate

Creating Zowe Explorer

profiles

Connect to the mainframe with a

Zowe Explorer profile.
Systems administrator 30 min.

Configuring Zowe Explorer Save your preferences as settings. Developer 30 min.

Verifying your Zowe

Explorer installation
Confirm the connection to z/OSMF.

Systems administrator and/or

DevOps architect
15 min.

https://docs.zowe.org/stable/user-guide/ze-install#installing-zowe-explorer
https://docs.zowe.org/stable/user-guide/ze-install#installing-zowe-explorer-extensions
https://docs.zowe.org/stable/user-guide/ze-install#installing-zowe-explorer-extensions
https://docs.zowe.org/stable/user-guide/ze-install#updating-zowe-explorer-and-zowe-explorer-extensions
https://docs.zowe.org/stable/user-guide/ze-install#updating-zowe-explorer-and-zowe-explorer-extensions
https://docs.zowe.org/stable/user-guide/ze-install#updating-zowe-explorer-and-zowe-explorer-extensions
https://docs.zowe.org/stable/user-guide/ze-profiles
https://docs.zowe.org/stable/user-guide/ze-profiles
https://docs.zowe.org/stable/user-guide/ze-install-configuring-ze
https://docs.zowe.org/stable/user-guide/ze-install-verify-your-installation
https://docs.zowe.org/stable/user-guide/ze-install-verify-your-installation

Version: v3.3.x LTS

Zowe Explorer system requirements

Before installing Zowe Explorer, make sure that you meet the following requirements.

REQUIRED ROLES: SYSTEMS ADMINISTRATOR, DEVOPS ARCHITECT

Client side requirements

Operating systems

macOS

NOTE

Only Mac operating system versions supported by Apple.

Unix-like:

CentOS 8+

RHEL 8+

Ubuntu 20.04+

Windows 10+

Integrated development environments:

Red Hat CodeReady Workspaces

NOTE

Secure credentials are not supported in Red Hat CodeReady Workspaces as the keyring is not unlocked by

default. However, you can use the Kubernetes Secrets plug-in for Zowe CLI and Zowe Explorer as an alternative,

or you can create your own Custom Credential Managers in Zowe Explorer and Zowe CLI.

VS Code 1.79.0+

Server side requirements

IBM z/OSMF is configured and running.

See z/OSMF REST services for Zowe clients for a list of services that need configuration.

Applicable plug-in services are configured and running on the mainframe.

Plug-ins communicate with various mainframe services. The services must be configured and running on the

mainframe before issuing plug-in commands.

https://www.centos.org/
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://ubuntu.com/
https://www.redhat.com/en/technologies/jboss-middleware/codeready-workspaces
https://github.com/zowe/zowe-cli-secrets-for-kubernetes/blob/main/README.md
https://medium.com/zowe/custom-credential-managers-in-zowe-explorer-b37faeee4c29
https://code.visualstudio.com/
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf#zosmf-rest-services-for-zowe-clients

See Zowe Explorer CICS Extension system requirements.

See Zowe Explorer FTP Extension system requirements.

https://docs.zowe.org/stable/getting-started/install-ze-extensions#zowe-explorer-cics-extension-system-requirements
https://docs.zowe.org/stable/getting-started/install-ze-extensions#zowe-explorer-ftp-extension-system-requirements

Version: v3.3.x LTS

Installing and updating Zowe Explorer

codecovcodecov unknownunknown

chatchat on Slackon Slack

REQUIRED ROLES: SYSTEMS ADMINISTRATOR

Install Zowe Explorer directly to Visual Studio Code to enable the extension within the GUI.

Working with data sets and USS files from VS Code can be more convenient than using 3270 emulators, and

complements your Zowe CLI experience. The extension provides the following benefits:

Enables you to create, modify, rename, copy, and upload data sets directly to a z/OS mainframe.

Enables you to create, modify, rename, and upload USS files directly to a z/OS mainframe.

Provides a more streamlined way to access data sets, USS files, and jobs.

Lets you create, edit, and delete Zowe CLI zosmf compatible profiles.

NOTE

Zowe Explorer is a subcomponent of Zowe. The extension demonstrates the potential for plug-ins powered by Zowe.

Installing Zowe Explorer

Installing from VS Code Extensions

To install Zowe Explorer:

1. Address the system requirements.

2. Open VS Code, and navigate to the Extensions tab on the Activity Bar.

3. Type Zowe Explorer in the Search field.

Zowe Explorer appears in the list of extensions in the Side Bar.

4. Click the green Install button to install the extension.

5. Restart VS Code.

The extension is now installed and available for use.

Installing from a VSIX file

For information about how to install the extension from a VSIX file and run system tests on the extension, see the

Developer README.

Changing the installed version of Zowe Explorer

https://app.codecov.io/gh/zowe/zowe-explorer-vscode
https://app.codecov.io/gh/zowe/zowe-explorer-vscode
https://app.slack.com/client/T1BAJVCTY/CUVE37Z5F
https://app.slack.com/client/T1BAJVCTY/CUVE37Z5F
https://code.visualstudio.com/
https://zowe.org/home/
https://docs.zowe.org/stable/getting-started/ZE-system-reqs
https://github.com/zowe/vscode-extension-for-zowe#build-locally

Depending on their circumstances, developers might want to run a specific version of Zowe Explorer.

IMPORTANT

Releases older than Zowe Explorer v2.10 do not support secure credentials in Visual Studio Code v1.83+ due to the

removal of the keytar library from VS Code.

To install a particular version on VS Code:

1. Refer to Installing Zowe Explorer to install Zowe Explorer for Visual Studio Code if not already installed.

2. In VS Code, select the Extensions tab on the Activities Bar to display a list of installed extensions.

3. In the Side Bar, click the Manage icon next to Zowe Explorer to open a dropdown menu that lists available options.

4. Select Install Another Version… to open a dropdown menu that lists previous versions of Zowe Explorer.

5. Click the version of Zowe Explorer you want to install.

Preventing automatic updates to retain a specific version

By default, VS Code automatically updates extensions as new versions are released. Refer to the following steps to

prevent automatic updates:

1. On the VS Code menu bar, click File, Preferences, and click Settings to display the Settings editor.

2. Select the User or Workspace tab, depending on which settings you want to update.

3. In the Settings navigation menu, click Features and click Extensions.

4. In the Auto Update dropdown menu, select None. This prevents VS Code from updating your extensions

automatically.

VS Code is configured to stop updating your extensions, and Zowe Explorer extensions, automatically.

Installing Zowe Explorer extensions

Installing from VS Code Extensions

1. Navigate to Extensions tab of your VS Code application.

2. In the Search field, enter the name of the Zowe Explorer extension.

The name of the extension appears in the list that displays in the Side Bar.

3. Click Install at the top of the page.

The selected extension is installed in VS Code.

Installing Zowe Explorer Extension for FTP from a VSIX file

1. Go to the Zowe Explorer Extension for FTP download site.

2. Select the DOWNLOAD button to download the latest version of the .vsix file.

https://open-vsx.org/extension/Zowe/zowe-explorer-ftp-extension

3. Open the Extensions icon in the Side Bar, navigate to the ... menu, select Install from VSIX ... and select the

downloaded Zowe.zowe-explorer-ftp-extension-3.x.x-next.<DATE> file.

A message displays to confirm the installation was successful.

4. Close and reopen VS Code to check that the notification message "Zowe Explorer was modified for FTP support"

displays.

Once installed, the notification displays every time you open VS Code to confirm that the FTP extension is available.

Updating Zowe Explorer and Zowe Explorer extensions

By default, VS Code automatically updates extensions as new versions are released. To stop automatic updates, see

Preventing automatic updates to retain a specific version.

Version: v3.3.x LTS

Installing Zowe Explorer extensions

To successfully install Zowe Explorer extensions, meet the following system requirements.

Zowe Explorer CICS Extension system requirements

Client side requirements

Visual Studio Code

Zowe Explorer V3

Server side requirements

The following services must be installed, configured, and running on the mainframe:

CICS Management Client Interface (CMCI) APIs

z/OSMF (optional but recommended)

Zowe Explorer FTP Extension system requirements

Client side requirements

Visual Studio Code

Zowe Explorer V3

Server side requirements

Ensure that you can obtain remote access to a z/OS FTP service before using the extension.

Some functionality within the FTP extension requires the FTP server on the mainframe to be configured with the

JESINTERFACELevel parameter set to 2 . For more information, see the JESINTERFACELEVEL (FTP server) statement.

The JESINTERFACELevel parameter can be found in multiple locations within the mainframe, depending on your

site's security policies.

Contact your system administrator to determine if your FTP server is configured with the correct

JESINTERFACELevel . For more information, see FTP configuration statements in FTP.DATA.

https://code.visualstudio.com/download
https://docs.zowe.org/stable/user-guide/ze-install#installing-zowe-explorer
https://code.visualstudio.com/download
https://docs.zowe.org/stable/user-guide/ze-install#installing-zowe-explorer
https://www.ibm.com/docs/en/zos/2.5.0?topic=protocol-jesinterfacelevel-ftp-server-statement
https://www.ibm.com/docs/en/zos/2.5.0?topic=protocol-ftp-configuration-statements-in-ftpdata

Version: v3.3.x LTS

Installing Zowe Explorer CICS Extension

Installation methods

Install or update the Zowe Explorer CICS Extension from Visual Studio Code Extensions or from a VSIX file.

Installing from Visual Studio Code Extensions

1. Select the Extensions tab on the Side Bar of the VS Code application.

2. Search for Zowe Explorer for IBM CICS and select the matching search result.

3. Click the Install button at the top of the Editor page.

The extension is installed. If Zowe Explorer is not already installed, it also installs automatically.

Installing from a VSIX file

Before you install Zowe Explorer CICS Extension from a VSIX file, ensure that Zowe Explorer is installed. Zowe Explorer

is a required dependency. See Installing Zowe Explorer for instructions..

If Zowe Explorer is installed, you can install Zowe Explorer CICS Extension from a VSIX file.

1. Go to the Zowe Explorer for IBM CICS Extension download site. Select the Latest button, which directs to a page

that includes the latest version of the .vsix file. Download it to your PC.

https://docs.zowe.org/stable/user-guide/ze-install#installing-zowe-explorer
https://github.com/zowe/cics-for-zowe-client

2. Open the Extensions icon in the Side Bar, navigate to the ... menu, select Install from VSIX ... and select the

downloaded Zowe.cics-extension-for-zowe-3.x.x.vsix file.

The following message indicates that the extension is installed successfully.

The Zowe Explorer pane shows tree views for Data Sets, Unit System Services (USS) and Jobs, and a new view

for CICS.

Version: v3.3.x LTS

Zowe Explorer FTP Extension

Zowe Explorer FTP extension adds the FTP protocol to the Zowe Explorer VS Code extension, allowing you to use z/OS

FTP profiles to connect and interact with z/OS USS.

Installing

1. Install the VS Code extension from the Microsoft or Open VSX marketplace.

NOTE

The installation includes Zowe Explorer if it is not already installed as it is a required dependency.

2. Close and reopen VS Code to check that the notification message "Zowe Explorer was modified for FTP support"

displays.

Once installed, the notification displays every time you open VS Code to confirm that the FTP extension is available.

https://github.com/zowe/zowe-explorer-vscode
https://marketplace.visualstudio.com/items?itemName=Zowe.zowe-explorer-ftp-extension
https://open-vsx.org/extension/Zowe/zowe-explorer-ftp-extension

Version: v3.3.x LTS

Creating Zowe Explorer profiles

After you install Zowe Explorer, you must have a Zowe Explorer profile to use all functions of the extension.

REQUIRED ROLES: SYSTEMS ADMINISTRATOR

Configuring Zowe profiles

Zowe uses team configuration to simplify profile management by letting you edit, store, and share mainframe

connection details in one location, a configuration file.

You can use a text editor or an IDE to populate configuration files with profiles, which contain the connection information

for your mainframe services. By default, your global team configuration file is located in the .zowe folder in your home

folder, whereas a project configuration file is located in the main directory of your project.

NOTE

When multiple profiles with the same name are available in Zowe Explorer, project configuration takes precedence

over global configuration. To learn more, see How Zowe CLI uses configurations.

Creating team configuration files

Create a team configuration file:

1. Navigate to the explorer tree.

2. Hover over DATA SETS, USS, or JOBS.

3. Click the + icon.

4. Select Create a New Team Configuration File.

5. If no workspace is open, a global configuration file is created. If a workspace is open, choose either a global

configuration file or a project-level configuration file.

6. Edit the configuration file to include the host information and save the file.

7. Refresh Zowe Explorer by either clicking the button in the notification message shown after creation, alt + z , or

the Zowe Explorer: Refresh Zowe Explorer command palette option.

Your team configuration file appears either in your .zowe folder if you choose the global configuration file option, or

in your workspace directory if you choose the project-level configuration file option. The notification message that

displays in VS Code after the configuration file creation includes the path of the file created.

Managing profiles

Change profile validations and edit the profiles in your project or global configuration files:

https://docs.zowe.org/stable/appendix/zowe-glossary#team-configuration
https://docs.zowe.org/stable/user-guide/cli-using-understand-profiles-configs

1. Right-click on a profile icon in the DATA SETS, USS, or JOBS tree view.

2. Select the Manage Profile option to choose from several authentication and profile management actions for the

credentials detected in your Zowe Explorer session.

Authentication options display according to the detected credentials:

Add Credentials to store a username and password. Credentials are stored securely in the credential vault

when the team or user profile has values in the secure array. Otherwise, the credentials are stored as plain text

in the profile.

Update Credentials to update the username and password. Credentials are stored securely in the credential

vault when the team or user profile has values in the secure array. Otherwise, the credentials are stored as plain

text in the profile.

Log in to authentication service to obtain a new authentication token when the token in the profile is no

longer valid or is missing.

Log out of authentication service to invalidate the token in the profile so a valid token is not stored.

Profile management options displays for specific profile actions:

Disable/Enable Profile Validation to disable or enable validation of access to z/OSMF.

Edit Profile to update profile information in an Editor tab.

Hide Profile to hide the profile name from the tree view.

Delete Profile to manually remove the profile information in an Editor tab.

3. Refresh the view by clicking the Refresh icon in the DATA SETS, USS, or JOBS tree view.

You successfully edited your configuration file.

Example profiles configuration

Review the profile examples below to understand how settings are organized in a configuration file. In this example, the

default lpar1.zosmf profile is loaded upon activation.

You can use this example to customize your own profiles in a configuration file. Ensure that you edit the host and port

values before you work in your environment.

Using base profiles and tokens with existing profiles

As a Zowe user, you can leverage the base profile functionality to access multiple services through Single Sign-on. Base

profiles enable you to authenticate using Zowe API Mediation Layer (API ML). You can use base profiles with more than

one service profile. For more information, see Base Profiles.

::: note

If you want to access services through multiple API ML gateways, the same following steps apply. However, you must

first edit your configuration file to follow a specific structure.

Review Accessing services for multiple API ML instances to see how profiles are structured in the configuration file.

:::

https://docs.zowe.org/stable/user-guide/cli-using-using-profiles-v1#base-profiles
https://docs.zowe.org/stable/user-guide/cli-using-creating-profiles#accessing-services-through-multiple-api-ml-gateways

Accessing services through API ML using SSO

Connect your service profile with a base profile and token:

1. Right-click on the profiles you want to connect through with API ML.

2. Select the Manage Profile option from the context menu

3. In the Quick Pick, select Log in to Authentication Service.

4. In the next Quick Pick menu, select the appropriate option for authenticating to API ML

5. Answer the proceeding prompts for information.

Tokens are stored either in a base profile or, if using a nested profile structure, in a parent profile that has a secure

array that contains tokenValue . If not using a nested profile structure, and if a base profile does not exist, a base

profile is created that contains your token. For more information about API integration and using tokens, see Token

Management.

Logging out of API ML using SSO

If you do not want to store your token, request the server to revoke your token and delete it from your local profile. Use

the Log out from Authentication Service feature to invalidate the token.

1. Open Zowe Explorer.

2. Right-click your profile.

3. Select the Manage Profile option.

4. In the Quick Pick, select the Log out from Authentication Service option.

Your token has been successfully invalidated.

https://docs.zowe.org/stable/user-guide/cli-using-integrating-apiml#how-token-management-works
https://docs.zowe.org/stable/user-guide/cli-using-integrating-apiml#how-token-management-works

Version: v3.3.x LTS

Configuring Zowe Explorer

REQUIRED ROLE: DEVELOPER

Configure Zowe Explorer in the settings file so the extension performs according to your preferences.

To access Zowe Explorer settings:

1. Click the Manage icon at the bottom of the Activity Bar.

2. Select the Settings option.

3. Open the Extension option listed in the Commonly Used menu.

4. Select Zowe Explorer to access its settings.

5. Scroll the list to find the setting that needs modification.

Modifying creation settings for data sets, USS files, and jobs

1. In Zowe Explorer settings, scroll to a data set, USS file, or job setting type.

2. Click the setting's corresponding Edit in settings.json link.

This opens the settings.json file in an Editor tab. (The suggestions widget also opens if the functionality is

enabled.)

3. Edit the settings in the file as needed.

4. Save the file to keep changes.

Modifying REST timeout settings

1. Navigate to Zowe Explorer Settings.

2. Scroll to Zowe › Settings.

3. Determine which REST timeout to change:

Socket Connect Timeout - Specify the maximum number of milliseconds to wait for the REST client to perform

the initial connection and handshake with the server.

Request Timeout - Specify the maximum number of milliseconds to wait for a REST request to complete.

Modifying pagination options for data sets

Zowe Explorer v3.2 and above have pagination enabled by default when listing data sets and PDS members, splitting the

results into pages rather than showing all items at once. To configure the number of data sets and PDS members to

display per page:

1. Navigate to Zowe Explorer settings.

2. Scroll to Zowe › Ds › Paginate: Data Sets Per Page.

3. Specify the number of items to list per page in the input box. Set the value to zero to disable pagination for data sets

and PDS members.

Modifying the Secure Credentials Enabled setting

When environment conditions do not support the Zowe CLI built-in credential manager, change the Secure Credentials

Enabled setting:

1. Navigate to Zowe Explorer settings.

2. Scroll to Security: Secure Credentials Enabled.

3. Deselect the checkbox to disable secure credentials.

When disabled, if the autoStore setting in the zowe.config.json file is set to true , z/OS credentials are stored as

text in the file.

If the autoStore setting is set to false , you are prompted for the missing credentials in VS Code. The credentials

are stored and used for the duration of the session.

Setting confirmation requirements for submitting jobs

Submitting the wrong job can risk potential problems on your server. This can happen when the user enters the wrong

job or inadvertently selects the Submit Jobs option.

To help prevent this, enable the option to require confirmation before submitting a job. Once enabled, a dialog window

asking for user confirmation displays when Submit Jobs is selected.

To configure confirmation settings for submitting a job:

1. On the VS Code menu bar, click File, Preferences, and click Settings to display the Settings editor.

2. Select the User or Workspace tab, depending on the settings you want to update.

3. In the Settings navigation menu, open the Extensions menu and click Zowe Explorer.

4. In the Jobs: Confirm Submission section, open the drop-down menu to select a different confirmation setting.

If enabled, a confirmation dialog displays when a job matching the selected option is submitted.

Modifying level of detail included in logs

To define the level of detail included in log files:

1. On the VS Code menu bar, click File, Preferences, and click Settings to display the Settings editor.

2. Select the User or Workspace tab, depending on the settings you want to update.

3. In the Settings navigation menu, open the Extensions menu and click Zowe Explorer.

4. In the Logger section, open the drop-down menu to select a different detail setting.

Modifying the default sort order for data sets and jobs

To change the default sort order for data sets and jobs:

1. In Zowe Explorer settings, scroll to a data set or job setting type.

2. Click the setting's corresponding Edit in settings.json link.

3. This opens the settings.json file in an Editor tab.

TIP

Alternately, on the VS Code Command Palette (Ctrl / Cmd + Shift + P), enter Preferences: Open User Settings

(JSON) to display the Settings editor.

The following allowed directions are available for sorting both data sets and jobs:

Direction Description

Ascending Sorts in ascending order.

Descending Sorts in descending order.

The following allowed methods are available for sorting data sets:

Method Description

Name Sorts by the name of the data set.

DateCreated Sorts by the date the data set was created.

LastModified Sorts by the date the data set was last modified.

UserId Sorts by the user ID who last modified the data set.

The following allowed methods are available for sorting jobs:

Method Description

Id Sorts by the job ID.

DateSubmitted Sorts by the date the job was submitted.

DateCompleted Sorts by the date the job was completed.

JobName Sorts by the name of the job.

ReturnCode Sorts by the return code of the job.

Examples

To change the default data set sort order to LastModified in Descending order, change the following setting in the

settings.json file:

To change the default data set sort order to DateCompleted in Ascending order, change the following setting to the

settings.json file:

Version: v3.3.x LTS

Verifying your Zowe Explorer installation

Verify that Zowe Explorer has been installed successfully by searching data sets to test your connection to z/OSMF.

REQUIRED ROLES: SYSTEMS ADMINISTRATOR, DEVOPS ARCHITECT

Using your profile to search data sets

1. Expand DATA SETS in the Side Bar, and hover over the profile you want to filter.

2. Click the Search icon.

3. Use the input box field to enter your username and password when prompted.

4. Select the + Create a new filter option.

5. Enter the criteria to filter search results.

If Zowe Explorer is able to connect with z/OSMF and the user credentials are valid, the filtered data sets display in

the DATA SETS tree view.

If there is a problem with the z/OSMF connection and/or user credentials, an error displays. See Troubleshooting

Zowe Explorer for possible next steps.

https://docs.zowe.org/stable/troubleshoot/ze/troubleshoot-ze
https://docs.zowe.org/stable/troubleshoot/ze/troubleshoot-ze

Version: v3.3.x LTS

Uninstalling Zowe Explorer

You can uninstall Zowe™ Explorer from Visual Studio Code (VS Code) if you no longer need to use it.

REQUIRED ROLES: SYSTEMS ADMINISTRATOR

IMPORTANT

The uninstall process does not delete the profiles and credentials that you created when using the product from

your computer. To delete the profiles from your computer, delete them before you uninstall Zowe Explorer.

Uninstalling the Zowe Explorer VS Code extension

Uninstall Zowe Explorer once any installed Zowe Explorer extensions have already been removed. See Uninstalling Zowe

Explorer CICS Extension and Uninstalling Zowe Explorer FTP Extension for instructions.

1. Navigate to the Extensions icon on the Activity Bar in VS Code to display a list of installed extensions.

2. Find Zowe Explorer and click it.

An Editor tab opens with the marketplace page for Zowe Explorer.

3. Click Uninstall at the top of the Editor tab.

4. A reload may be required. If a button appears for reload, click it.

Zowe Explorer is no longer installed.

Uninstalling Zowe Explorer CICS Extension

To uninstall the Zowe Explorer CICS Extension:

1. Navigate to the Extensions icon on the Activity Bar in VS Code to display a list of installed extensions.

2. Find Zowe Explorer for IBM CICS and click it.

An Editor tab opens with the marketplace page for Zowe Explorer CICS Extension.

3. Click Uninstall at the top of the Editor tab.

4. A reload may be required. If a button appears for reload, click it.

Zowe Explorer CICS Extension is no longer installed.

Uninstalling Zowe Explorer FTP Extension

To uninstall the Zowe Explorer FTP Extension:

1. Click the Extension icon on the Activity Bar in VS Code to display a list of installed extensions.

2. Find Zowe Explorer FTP Extension and click it.

An Editor tab opens with the marketplace page for Zowe Explorer FTP Extension.

3. Click Uninstall at the top of the Editor tab.

4. A reload may be required. If a button appears for reload, click it.

Zowe Explorer FTP Extension is no longer installed.

Version: v3.3.x LTS

Prerequisites

The plug-in is supported on all of the operating systems with GUI. To use the plug-in, you need to install an IntelliJ IDEA

platform's IDE. The platform has a nubmer of IDEs for different purposes. E.g. if you have Java/Kotlin developers, there is

an IntelliJ IDEA IDE, for Python developers, there is a PyCharm IDE, for web developers, there is a WebStorm IDE, etc.

There are two Community versions of the IDEs: IntelliJ IDEA Community and PyCharm Community. It means that

these IDEs are open-source and free of charge. The plug-in is supported on any IntelliJ IDEA IDE, it is enough to have the

Community version of any of the IDEs to work with the plug-in.

NOTE

Most of the other IntelliJ IDEA IDEs are available under the Ultimate version. It means that they are available to use

after purchasing them. They have a 30-day trial if you want to try them before the purchase.

To install the IntelliJ IDEA Community:

1. Proceed to the official JetBrains download page

2. Scroll down to the Community version of the IDE, select the binary to download

3. After the binary is downloaded, walk through the installation wizard and install the IDE

After these steps, you will be ready to proceed with the plug-in installation.

https://www.jetbrains.com/idea/download

Version: v3.3.x LTS

Installing the plug-in

There are two ways to install the plug-in:

1. (Preferred) Install the plug-in directly inside IntelliJ IDEA

2. Download and install binaries either from JetBrains Marketplace page or from our GitHub repository

Installing inside IntelliJ IDEA

To install the plug-in from IntelliJ:

1. At the right top corner click the gear button and from the dropdown list select the Plugins option

2. Select the Marketplace tab on top of the window

3. Type Zowe Explorer and click Install.

https://plugins.jetbrains.com/plugin/18688-zowe-explorer
https://github.com/zowe/zowe-explorer-intellij

4. Wait until the plug-in is installed, then click Restart IDE. IntelliJ IDEA will ask you if you want to restart the IDE to

applly all the changes in plugins. Select Restart, wait until the IDE is restarted

After the IDE is restarted, the plug-in's icon will appear at the right top corner. It means that you are ready to work with

it.

NOTE

Sometimes the plug-in's icon appear at some different place, other than the right top corner. To fix it, right-click on

the icon, in the Move To dropdown select the Right Top option.

Downloading binaries

ALWAYS DOUBLE-CHECK THE BINARIES YOU ARE TRYING TO INSTALL!

We are responsible for the genuine software provided by the zowe community only. If you have any questions

regarding the installation or the usage of the plug-in, feel free to contact any person directly related to Zowe

There are three ways of downloading binaries of the Zowe Explorer plug-in for IntelliJ IDEA:

1. JetBrains Marketplace page

2. GitHub Releases of our repository

3. GitHub Actions of our repository

Downloading binaries from JetBrains Marketplace page

1. Proceed to the JetBrains Marketplace page of the plug-in

2. Click Get button or select the Versions tab

3. Select the compatibility option and the channel of the distribution:

Stable - the stable versions of the plug-in

EAP - the Early Access Program versions of the plug-in, sometimes are provided for the EAP versions of the

IntelliJ IDEA

https://plugins.jetbrains.com/plugin/18688-zowe-explorer
https://github.com/zowe/zowe-explorer-intellij/releases
https://github.com/zowe/zowe-explorer-intellij/actions
https://plugins.jetbrains.com/plugin/18688-zowe-explorer

Preview - the next versions of the plug-in, that contain the bleeding-edge features of the plug-in, which may be

unstable

4. Select the version of the plug-in you want to download, click Download button against it

Downloading binaries from GitHub Releases

1. Proceed to the GitHub Releases of the repository

2. Select the release version you want to install and click on the .zip file to download the binary

NOTE

Prefer the "*-signed.zip" over the regular one

https://github.com/zowe/zowe-explorer-intellij/releases

Downloading binaries from GitHub Actions

NOTE

You need to be logged into a GitHub account to be able to download artifacts

1. Proceed to the GitHub Actions of the repository

2. Select a build workflow

3. Select the build of a branch you want to download

https://github.com/zowe/zowe-explorer-intellij/actions

4. At the bottom of the page, in the Artifacts section, select the .zip file with the version build to download

Installing binaries

After the .zip is downloaded, do the next steps:

1. At the right top corner click the gear button and from the dropdown list select the Plugins option

2. Near the Installed tab, click the gear button, from the dropdown select the Install Plugin from Disk option

3. In the Choose Plugin File dialog window, search for the .zip you want to install. Select it and click OK button

4. The plug-in will appear in the Installed tab, click the Restart IDE button, and then the Restart button in the dialog

window.

After the IDE is restarted, the plug-in's icon will appear at the right top corner. It means that you are ready to work with

it.

NOTE

Sometimes the plug-in's icon appear at some different place, other than the right top corner. To fix it, right-click on

the icon, in the Move To dropdown select the Right Top option.

Version: v3.3.x LTS

Configuring the plug-in

After you install the Zowe Explorer plug-in for Intellij IDEA, you must create a z/OSMF connection to your mainframe and

some working sets.

NOTE

z/OS v2.3 or later is required with a REST API z/OSMF configured properly. To use it, you need the user ID to be

connected to the IZUUSER RACF group. Contact your RACF administrator to complete the setup process.

Creating z/OSMF connection

There are two ways to create a z/OSMF connection:

using the in-built plug-in's connection configurations (1)

using Zowe Team Config v2 (2)

Creating the connection using the plug-in's connection configurations

You can create a connection to a z/OSMF REST API either by manually specifying all the needed information through the

"Settings" tab (1), or by clicking the "+" sign (2).

To create the connection:

1. In the Zowe Explorer click + button

2. Select Connection

3. Type in all the necessary information in the dialog

4. Wait until the connection test is finished and all the necessary information is fetched

Creating the connection using Zowe Config v2

To create the z/OSMF connection with Zowe Config v2 there are two ways.

The first scenario - adding already existing Zowe Config v2 from a local opened project

1. Open the project with the zowe.config.json

2. Zowe config file detected notification should appear, click Add Zowe Connection

3. Wait until the connection is tested

The second scenario - creating a new Zowe Config v2 from scratch:

1. In the Zowe Explorer click + button

2. Select Zowe Team Configuration

3. Fill in all the necessary information in the dialog

4. Wait until the connection test is finished and all the necessary information is fetched

After the configuration is made, you will be able to use all the features of the plug-in.

Version: v3.3.x LTS

Zowe SDKs installation

Leverage the Zowe Client Software Development Kits (SDKs) to build client applications and scripts that interface with

the mainframe.

The SDKs include programmatic APIs, each of which performs a particular mainframe task. For example, one API package

provides the ability to upload and download z/OS data sets. You can leverage that package to rapidly build a client

application that interacts with data sets.

The following SDKs are available.

Zowe Client Java SDK

Zowe Client Kotlin SDK

Zowe Client Node.js SDK

Zowe Client Python SDK technical preview

Fundamentals

New to Zowe Client SDKs? This Zowe Client SDK overview briefly introduces the SDKs.

The blog Zowe SDKs - Build z/OS Connected Applications Faster introduces Zowe SDKs and their benefits.

SDK documentation

For detailed SDK documentation, see the following:

Zowe Client Java SDK

Zowe Client Kotlin SDK

Zowe Client Node.js SDK

Zowe Client Python SDK technical preview

Zowe SDK Sample Scripts

SDK software requirements and dependencies

Java SDK

Requires Java Runtime Environment (JRE) 17.

To install this library in your project, use a build tool such as Maven, Gradle, or Ant. Get the necessary artifacts from the

Java SDK repository.

If you add the Java SDK as a dependency to your project, Maven or Gradle automatically downloads any additional

dependencies needed to use the SDK.

For a Maven project, add the SDK as a dependency by updating the pom.xml file:

https://docs.zowe.org/stable/getting-started/overview#zowe-client-software-development-kits-sdks
https://medium.com/zowe/zowe-sdks-build-z-os-connected-applications-faster-b786ba7bb0d9
https://github.com/Zowe-Java-SDK
https://zowe.github.io/zowe-client-kotlin-sdk/
https://docs.zowe.org/stable/typedoc/index.html
https://zowe-client-python-sdk.readthedocs.io/en/latest/
https://github.com/zowe/zowe-sdk-sample-scripts/
https://mvnrepository.com/artifact/org.zowe.client.java.sdk/zowe-client-java-sdk

For a Gradle project, add the SDK as a dependency by updating the build.gradle file:

Kotlin SDK

Requires Java Runtime Environment (JRE) 17.

For detailed information about how to install the library, refer to the official installation guide for Zowe Client Kotlin SDK

Node.js

If you install Node SDK packages from the online registry, the required dependencies are installed automatically.

If you download Node SDK packages from Zowe.org, the downloaded folder contains dependencies that you must install

manually. Extract the TGZ files from the folder, copy the files to your project, and issue the following commands to install

the dependencies:

Python SDK technical preview

If you install Python SDK packages from the online registry, the required dependencies are installed automatically.

If you download the Python SDK packages from Zowe.org, the downloaded folder contains dependencies that you must

install manually. Extract the WHL files from the folder, copy the files to your project, and issue the following command for

each dependency:

Installing a Zowe Client SDK

To get started, import the SDK package to your project. You can pull the packages from an online registry, or download

the packages from Zowe.org to install locally.

Installing an SDK from an online registry

Pull the packages from an online registry such as npm or PyPi:

1. In command-line window, navigate to your project directory. Issue the following command to install a package from

the registry:

To import a Node.js package: npm install <PackageName>

To import a Python package: pip install <PackageName>

<packageName> The name of the SDK package that you want to install, such as zos-files-for-zowe-sdk .

The package is installed.

Node packages are defined in package.json in your project.

Python packages are installed by default to $PYTHONPATH/Lib/site-packages (Linux) or to the Python folder in

your local /AppData folder (Windows).

For the Java and Kotlin SDKs, Maven puts libraries in the ~/.m2/repository directory and Gradle puts libraries in

the ~/.gradle/caches/modules-2/files-2.1 directory, where ~ represents the path to the user's home

directory.

https://zowe.github.io/zowe-client-kotlin-sdk/#installation

2. (Optional) You might want to automatically update the SDK version when updates become available, or you might

want to prevent automatic updates.

To define the versioning scheme for Node packages, use semantic versioning.

To define versioning for Python packages, specify versions or version ranges in a requirements.txt file checked-

in to your project. For more information, see pip install in the pip documentation.

To define versioning for Python packages, specify versions or version ranges in the pom.xml or build.gradle

files checked-in to your project.

In Maven, versioning ranges can be specified in the pom.xml file.

In Gradle, versioning ranges can be specified in the build.gradle file.

Installing an SDK from a local package

Download and install the packages:

1. Navigate to Zowe.org Downloads. Select your desired programming language in the Zowe Client SDKs section.

The SDK is downloaded to your computer.

2. Unzip the SDK folder, which contains the packages for each set of functionality (such as z/OS Jobs). Copy each file

that you want to install and paste them into your project directory.

3. Install required dependencies, which are included in the bundle. See Software requirements and dependencies for

more information.

4. In a command-line window, navigate to your project directory. Issue one of the following commands.

To install a Node.js package: npm install <packageName>.tgz

To install a Python package: pip install <packageName>.whl

- <packageName> The name of the package that you want to install, such as zos-files-for-zowe-sdk .

5. Repeat the command for each package that you need.

Packages are now installed.

https://docs.npmjs.com/about-semantic-versioning
https://pip.pypa.io/en/stable/cli/pip_install/
https://cwiki.apache.org/confluence/display/MAVENOLD/Dependency+Mediation+and+Conflict+Resolution#DependencyMediationandConflictResolution-DependencyVersionRanges
https://docs.gradle.org/current/userguide/single_versions.html
https://www.zowe.org/download.html

Version: v3.3.x LTS

Zowe Chat (Technical Preview)

Zowe Chat Technical Preview is an early access build of the newest incubating technology in Zowe, Zowe Chat! Zowe

Chat is a chatbot that aims to enable a ChatOps collaboration model by bringing simple access to z/OS resources and

tools within the chat tools you use everyday in your organization. As this is an early access build, it is recommended to

deploy the technical preview in development and test environments.

The following topics will guide you in setting up and using Zowe Chat.

1. System Requirements

2. Configuring Chat Tools

3. Installing Zowe Chat

4. Configuring Zowe Chat

5. Starting, stopping, and monitoring

6. Uninstalling Zowe Chat

Deployment diagram

Zowe Chat works by connecting to your chat tool of a choice as a Bot account, and is configured against a single sysplex

environment through a z/OSMF installation. Zowe Chat requires network connectivity to each of the configuration

endpoints. For more details and information on installation and configuration, follow the topics above.

https://docs.zowe.org/stable/user-guide/zowe-chat/systemrequirements-chat
https://docs.zowe.org/stable/user-guide/zowe-chat/systemrequirements-chat#chat-tool-requirements
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_install_overview
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_configure_overview
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_start_stop
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_uninstall

Version: v3.3.x LTS

System requirements

Before installing Zowe Chat, ensure that your target environment meets the prerequisites that are described in this

article.

Zowe Chat must be able to communicate with the chat tool you plan to use. More information is provided in the network

requirements section.

Linux System Requirements

Node.js

Optional: Zowe CLI

z/OS System Requirements

z/OSMF

Network Requirements

Ports

Connectivity Requirements

Chat Tool Requirements

Linux system requirements

The chat server must meet the following requirements:

Operating System: Any Linux distribution (Linux or zLinux)

NOTE

Zowe Chat can only be deployed to Linux or zLinux environments now. z/OS support is pending further review. If

you are interested in running Zowe Chat on z/OS, let us know by opening a question.

Processor count: 1

Memory: 4 GB

Disk space: 300 M

Node.js

Node.js v16.x. Zowe Chat has not yet been tested with 14.x or 18.x.

If Node.js is not included out of the box in your Linux distribution, you must install it. To install Node.js, follow the

instructions on the Node.js Download Page. It is recommended that you use a package manager as outlined here if

possible.

Zowe CLI (Optional)

If you want to run Zowe CLI on Zowe Chat, you must install Zowe CLI on your Zowe Chat server. To install Zowe CLI, see

Installing Zowe CLI.

https://github.com/zowe/zowe-chat/issues/new/choose
https://nodejs.org/en/download/
https://nodejs.org/en/download/package-manager/
https://docs.zowe.org/stable/user-guide/cli-installcli

z/OS system requirements

z/OSMF

IBM z/OS Management Facility (z/OSMF) Version 2.3 or Version 2.4.

z/OSMF is included with z/OS so does not need to be separately installed. You must configure z/OSMF with REST APIs

enabled because these APIs are used by Zowe Chat as data provider.

For non-production use of Zowe Chat (such as development, proof-of-concept, demo), you can set up z/OSMF Lite.

See Configuring z/OSMF Lite (non-production environment).

For production use of Zowe Chat, see Configuring z/OSMF.

Network requirements

Ports

The following ports are required to run Zowe Chat. You can change the defaults as part of the Zowe Chat configuration.

See the Configuring Zowe Chat topic for more detail.

Port

number
Configuration file

Configuration

field
Description

7701 $ZOWE_CHAT_HOME/config/chatServer.yaml webapp.port

Used to host a web

application required

to login users

7702

$ZOWE_CHAT_HOME/config/chatTools/<mattermost |

msteams | slack>.yaml
messagingApp.port

Used as the

messaging endpoint

by some chat tools.

Connectivity Requirements

Zowe Chat requires network connectivity to the mainframe system z/OSMF is running on, as well as network connectivity

to the chat tool of your choice. Since mainframes reside inside organizations’ private networks, by default we assume

that Zowe Chat will also be deployed in such a private network, and recommend it. Each chat tool has its own

connectivity requirements that require additional consideration as part of your installation plan.

Slack:

Public internet access is required. There are two ways to connect to Slack, over HTTP or using Socket mode. Socket

mode sets up a persistent connection to the Slack chat platform using secure WebSockets, while in HTTP mode Slack

issues requests directly to Zowe Chat over HTTP.

We strongly recommend that you use Socket mode, as it reduces your overall network configuration burden and is

equally secure when compared to HTTP mode.

Socket mode requires that Zowe Chat has outbound public internet access.

https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-lite
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_configure_overview

HTTP mode requires that Zowe Chat has both outbound and inbound public internet access. To set up inbound

access, you must configure your network firewall or use proxy servers to ensure that the Slack platform (on the

public net) can reach the HTTP endpoint of the Zowe Chat server (on your private network).

For more Slack related configuration, see Configuring the chat tool Slack.

Microsoft Teams:

Both outbound and inbound public internet access are required if you plan to connect your Zowe Chat with Microsoft

Teams chat platform, and will require network firewall configuration or use of proxy servers to allow the inbound traffic.

For more Teams-related configuration, see Configuring messaging endpoint for Microsoft Teams.

Mattermost:

Mattermost requires both outbound and inbound network access. However, the specific connectivity details depend on

the deployment of Mattermost in your organization.

If you use a cloud-hosted instance of Mattermost, you will require network firewall configuration or use of proxy

servers to allow inbound traffic to reach Zowe Chat.

If you use an on-premises instance of Mattermost, no additional network configuration is required.

Chat Tool Requirements

See Configuring chat platforms for information.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_slack
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_configure_endpoint
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_configure_chat_platforms

Version: v3.3.x LTS

Configuring chat platforms

Before you install Zowe Chat on your site, you must set up a bot in the chat tool you plan to connect with Zowe Chat.

You will use the information from the bot setup in a future Zowe Chat configuration step.

Mattermost

Must be version 7.0 or newer. See Configuring Mattermost chat platform.

Microsoft Teams

See Configuring Microsoft Teams chat platform.

Slack

See Configuring Slack chat platform.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_mattermost
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_slack

Version: v3.3.x LTS

Configuring Mattermost

If you use Mattermost as your chat platform, you must configure your Mattermost before using Zowe Chat. You need to

create an administrator account, a team, and a bot account in Mattermost.

1. Installing Mattermost chat platform server

You can use commands to install Mattermost Container on your server.

2. Creating administrator account and Mattermost team

After you start the Mattermost container, you can create an administrator account and a team in Mattermost, and

invite your colleagues to join the team.

3. Creating the bot account

Create a bot account in Mattermost.

4. Inviting the created bot to your Mattermost team

Invite your bot user to your team so that you can invite it to your Mattermost channel, and talk with it in the channel.

5. Inviting the created bot to your Mattermost channel

You can create your own private channel in Mattermost, invite your bot user to your channel by adding new

members, and talk with it in the channel.

6. Enabling insecure outgoing connections for mouse navigation

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_install_mattermost
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_mattermost_admin_account
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_mattermost_bot_account
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_mattermost_invite_team
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_mattermost_invite_channel
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_mattermost_enable_connection

Version: v3.3.x LTS

Installing Mattermost chat platform server

You can use commands to install Mattermost Container on your server.

Mattermost is a chat solution whose free trial version is available as a Container image. You can use it for your PoC or

testing environment. If you want to use Mattermost in your production environment, you must follow the Mattermost

installation guide to install the enterprise version. The following steps show you how to install Mattermost Container in

Preview Mode to explore its function.

Installing

To install Mattermost Container on a Linux® server, perform the following steps:

1. Make sure that Docker/Podman is set up on the Linux server, and you can access Docker Hub -

mattermost/mattermost-preview on the Linux server.

NOTE

The following command will use Docker as example. You can simply replace Docker with Podman if you are

using Podman.

2. Run the following command to pull the mattermost-preview image:

3. Run the following command to install Mattermost in Preview Mode.

For more information about installing Mattermost in Preview Mode on local machines by using Docker, see Local

Machine Setup using Docker.

4. Run the following command to verify that the Mattermost container is started.

When you see the name is mattermost in the response, your Mattermost container is started.

Your Mattermost is installed successfully.

Next steps

You must configure your Mattermost before using Zowe Chat. You need to create an administrator account, a team, and

a bot account in Mattermost. See Creating administrator account and Mattermost team.

https://docs.mattermost.com/guides/administrator.html#installing-mattermost
https://docs.mattermost.com/guides/administrator.html#installing-mattermost
https://hub.docker.com/r/mattermost/mattermost-preview
https://hub.docker.com/r/mattermost/mattermost-preview
https://docs.mattermost.com/install/docker-local-machine.html
https://docs.mattermost.com/install/docker-local-machine.html
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_mattermost_admin_account

Version: v3.3.x LTS

Creating administrator account and Mattermost

team

After you start the Mattermost container, you can create an administrator account and a team in Mattermost, and invite

your colleagues to join the team.

1. Open http://YOUR_MATTERMOST_SERVER:8065/ in your browser.

2. Create an administrator account.

i. Specify your email address, username, and password.

ii. Click Create Account, and your administrator account is created.

3. Create a team.

i. Click Create a new team.

ii. Specify your Team name, for example, BnzDev. Click Next.

iii. Specify your Team URL, for example, bnzdev. Click Finish.

NOTE

Remember your Team URL, it will be used when you configure Mattermost.

4. Invite people to your team.

i. In the chat window, click the Main Menu icon, then click Invite People.

ii. If your team member does not have an account yet, click Copy invite link and send the invitation link to them

so that they can join by themselves. If your team members have their accounts, you can specify their account

information in the Invite members to BnzDev field, select their accounts, and click Invite to add them to the

team.

5. Optional: If you want to enable TLS on Mattermost Server, you can refer to Configuring TLS on Mattermost Server for

specific steps.

Now you have your administrator account and team chat group. You can invite other people to join.

https://docs.mattermost.com/install/config-tls-mattermost.html

Version: v3.3.x LTS

Creating the bot account

Create a bot account in Mattermost.

1. Log in to Mattermost with your administrator account.

2. Click Main Menu icon and then click System Console.

3. Scroll down to INTEGRATIONS section and click Bot Accounts.

4. Select true for Enable Bot Account Creation, and click Save.

5. Click the Main Menu icon on the System Console, then click Switch to your team.

6. Click the Main Menu icon from the main screen of Mattermost, and click Integrations.

The following dialog opens.

7. Add a new bot account.

i. Click Bot Accounts > Add Bot Account.

ii. Specify bnz for Username and System Admin for Role.

iii. Click Create Bot Account. A successful notification dialog displays. On this dialog you can find a Token.

8. Copy this Token.

You will need this token for integration steps later. Save it well since you will not be able to retrieve it again.

For more information about Bot accounts, see Mattermost Integration Guide - Bot Accounts.

Next steps

Now you can invite the created bot to your Mattermost team.

https://docs.mattermost.com/developer/bot-accounts.html
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_mattermost_invite_team

Version: v3.3.x LTS

Inviting the created bot to your Mattermost

team

Invite your bot user to your team so that you can invite it to your Mattermost channel, and talk with it in the channel.

1. Click your username at the top of the navigation panel and click Invite People.

2. In the Invite members to BnzDev field, search your bot user and select it, then click Invite to invite the bot to this

team.

3. Click Done.

Your bot user is added to your team successfully.

Next steps

Now you can add it to your channels.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_mattermost_invite_channel

Version: v3.3.x LTS

Inviting the created bot to your Mattermost

channel

You can create your own private channel in Mattermost, invite your bot user to your channel by adding new members,

and talk with it in the channel.

1. Create a private channel.

i. Click the + button to create a new private channel.

ii. Make sure that you select Private as the channel type.

iii. Specify the Name of the channel, for example, DevOps.

Note: Remember URL under the name. You may use it later when you want to send incident to the channel.

iv. Click Create New Channel and your new private channel is created.

2. On the upper-left corner, click the Members icon and you can see the members that are in this channel. Click

Manage Members.

3. Click Add New Members on the upper-right corner.

4. Enter the name of your bot account to add it to this channel, for example, bnz. You can see bnz in the list. Select it

and click Add.

You add your bot account to your channel successfully.

Version: v3.3.x LTS

Enabling insecure outgoing connections for

mouse navigation

1. Log in to Mattermost with your administrator account.

2. Click the Main Menu icon and then click System Console.

3. Scroll down to the ENVIRONMENT section and click Web Server.

4. Select true for Enable Insecure Outgoing Connections, and click Save.

You enable insecure outgoing connections for mouse navigation successfully.

Version: v3.3.x LTS

Configuring Microsoft Teams

If you use Microsoft Teams as your chat platform, you need to create a bot app and a bot for Microsoft Teams and

configure the messaging endpoint. Take the following steps to configure your Microsoft Teams for Zowe Chat.

1. Creating Microsoft Teams bot app

Microsoft Teams provides Microsoft Developer Portal to create bot app in the current version. App Studio has been

deprecated according to the announcement made by Microsoft Teams.

2. Creating a bot for Microsoft Teams bot app

Microsoft provides two ways to create a bot, either using Microsoft Bot Framework or Microsoft Azure. You can choose

either one of them according to your own environment and requirements.

3. Configuring messaging endpoint for Microsoft Teams

You need to expose your Zowe Chat via a public HTTPS endpoint so that Microsoft Teams can push messages to it.

The steps differ depending on the way you create your bot.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_create_app_developer_portal
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_create_bot
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_configure_endpoint

Version: v3.3.x LTS

Creating Microsoft Teams bot app with

Developer Portal

To create a bot app for Microsoft™ Teams, you need to use the tool Developer Portal to create a new app, specify app

details, enable bot capabilities, and add it to your teams.

Developer Portal is a Teams app that makes it easy to create or integrate your own Microsoft Teams apps whether you

develop custom apps for your enterprise or SaaS applications for teams around the world. It streamlines the creation of

the manifest and package for your app and provides several useful tools like the Card Editor. You can find Developer

Portal in the Teams store.

1. Find and add Developer Portal to your Microsoft Teams.

i. Launch and log in your Microsoft Teams client.

ii. Click the Apps icon at the bottom left of your Microsoft Teams window to open the Apps pane.

iii. Search for Developer Portal with the search bar.

iv. Select Developer Portal and click Add.

You can see the home page of Developer Portal.

2. Create a new app.

i. Click the Apps icon at the top of the home page of Developer Portal to open the Apps pane.

ii. Click the New app icon to create a new app.

iii. In the prompted dialog, specify a short name for your app that is used for configuration in Zowe Chat as the bot

username, and then click Add.

iv. Specify the required values for your app, and then click Save.

For Descriptions, specify a short description for your app.

Specify all the required information accordingly.

3. Configure your app.

i. Switch to Apps pane and select the app that you created.

ii. Click the App features icon under Configure, and select Bot in App features pane.

iii. Select the bot that you created in Identify your bot section.

Select Personal, Team and Group Chat for Scope so that you can add the bot app to your teams. Save your

settings and you can see your bot in the Bots panel.

Remember: You need to create a bot if you don't have one. You can either create a bot with Microsoft Bot

Framework or with Microsoft Azure. For specific steps, see Creating a bot with Microsoft Bot Framework or

Creating a bot with Microsoft Azure.

4. Publish your app.

i. Click the App package icon under Publish.

ii. Click Download app package to download your app package.

iii. Click the Apps icon at the bottom left of your Microsoft Teams window, and click Manage your apps.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_create_bot_framework
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_create_bot_azure

iv. Select Upload a custom app to add the app to a team. Upload the app package that you download in substep

b.

v. Select Add to a team in the drill-down options.

vi. Type or select a team to set up your bot.

5. Optional: You can also choose to publish your app to your organization's app catalog so that people in your

organization can share it.

i. Click the Apps icon at the bottom left of your Microsoft Teams window, and click Manager your apps.

ii. Select Submit an app to your org to publish your app.

Your app will appear on your Apps homepage when the IT admin of your organization approves.

Now, people in your tenant can see this app and can use it.

You have successfully created a bot app for Microsoft Teams and can talk to it in your teams.

Version: v3.3.x LTS

Creating a bot for Microsoft Teams bot app

Microsoft™ provides two ways to create a bot, either using Microsoft Bot Framework or Microsoft Azure. You can choose

either one of them according to your own environment and requirements.

Creating a bot with Microsoft Bot Framework

You can use the tool Microsoft Developer Portal to create a bot with Microsoft Bot Framework and set it up for your

bot app.

Creating a bot with Microsoft Azure

To create a bot with Microsoft Azure, you need to use Microsoft Azure portal to create a resource with the Bot

Channels Registration service, configure the resource, get the bot password, and configure channels.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_create_bot_framework
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_create_bot_azure

Version: v3.3.x LTS

Creating a bot with Microsoft Bot Framework

You can use the tool Microsoft™ Developer Portal to create a bot with Microsoft Bot Framework and set it up for your bot

app.

1. Click the Tools icon at the top of the home page of Developer Portal to open the Tools pane.

2. Click Bot management to create your bot.

3. Click New bot to create a new bot.

4. In the prompted dialog, specify a short name for your bot and then click Add.

5. Click Client secrets at the left of the Developer Portal, and click Add a client secret for your bot to generate a

client secret for your bot.

6. Copy the new client secret.

Remember: Save the client secret for later use. You will need it when you configure your Microsoft Teams. The client

secret appears only once here.

Your Microsoft Bot Framework bot is successfully created.

You can continue with installing or publishing your bot app in your Microsoft Teams. For specific steps, refer to the step 4

and 5 in Creating Microsoft Teams bot app with Developer Portal.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_create_app_developer_portal

Version: v3.3.x LTS

Creating a bot with Microsoft Azure

To create a bot with Microsoft™ Azure, you need to use Microsoft Azure portal to create a resource with the Bot Channels

Registration service, configure the resource, get the bot password, and configure channels.

1. Create a new resource.

i. Launch the Microsoft Azure portal at portal.azure.com.

ii. Click Create a resource under Azure services.

iii. Search for Bot Channels Registration with the search bar and select it.

http://portal.azure.com/

iv. Click Create to create a new resource.

v. Specify the required values, where

Bot handler is a unique identifier for your bot. You can set it to be your bot name.

Resource group is a container that holds related resources for an Azure solution. You can create a new one

if you don't have one.

Messaging endpoint needs to be configured later. You can leave it blank for now.

Microsoft App ID and password is required. Set it as Auto create App ID and password. Otherwise,

you can create one manually.

vi. Click Create.

It takes a while to complete the creating process. You can see a notice in the Notification at the upper right of

the menu bar.

2. Configure the resource.

i. Click Go to resource when you see the notification. You can also check the resource from the portal home

page. Click All resources and you can see the one you just created. Select it to start configuration.

ii. Select Configuration in Settings.

iii. Specify the required values for your resource.

a. Check the Enable Streaming Endpoint box.

b. To specify the messaging endpoint, you need to do this step after you install Zowe Chat.

c. Click Apply to make the settings effective.

iv. To get the bot password, click Manage next to Microsoft App IDand open the Certificates & secrets pane.

a. Click New client secret under Client secrets and the Add a client secret displays.

b. Specify the description for your resource.

c. Set the Expires value for 24 months.

d. Click Add. You can see the resource information listed in the table with Description, Expires, Value, and

ID. Value is your bot password. Save it for later use when you configure Zowe Chat. It only appears once

here.

Remember: The Microsoft App ID is the bot ID in the App Studio of Microsoft Teams. You will need it when you

configure your Microsoft Teams in later steps.

3. Configure the channels.

i. Go back to the resource page, click Channels under Settings. Now, only Web Chat is listed in the table.

ii. Click the MS Teams icon under Add a featured channel.

iii. Click Save to connect to MS Teams channels.

4. Set up the bot for your bot app in Microsoft Teams.

i. Open the App Studio tool in your Microsoft Teams client.

ii. Click your resource that is listed on the pane to open it.

iii. Click the Bots icon under Capabilities and click Edit.

iv. Select Connect to a different bot id and specify with the Microsoft App ID that you have for your Azure bot.

v. Select Team for Scope so that you can add the bot app to your teams.

vi. Save your settings.

Your Microsoft Azure bot is successfully created.

You can continue with installing or publishing your bot app in your Microsoft Teams.

Version: v3.3.x LTS

Configuring messaging endpoint for Microsoft

Teams

You need to expose your Zowe Chat via a public HTTPS endpoint so that Microsoft™ Teams can push messages to it. The

steps differ depending on the way you create your bot.

If the IP address of your Zowe Chat server is public, you can use the Chatbot messaging-endpoint URL <messaging-

endpoint.protocol>://<messaging-endpoint.hostName>:<messaging-endpoint.port><messaging-endpoint.basePath>

directly. Otherwise, you must configure your own network firewall or use some proxy servers to make sure that your

Microsoft Teams can access the web hook of Zowe Chat server from Internet.

NOTE

You can find the values for protocol, hostName, port, and basePath messaging-endpoint section of the configuration

file <ZOWE_CHAT_HOME>/config/chatServer.yaml .

Version: v3.3.x LTS

Configuring messaging endpoint for the

Microsoft Bot Framework bot

If you create your bot with Microsoft™ Bot Framework, you need to specify the bot endpoint address in Developer Portal

to configure the messaging endpoint.

1. Launch and log in your Microsoft Teams client.

2. Click the Developer Portal icon and select Tools.

3. Click the Bot management. Choose the bot that you created and start editing your bot app.

4. Click Configure to configure the messaging endpoint.

5. Specify the Bot endpoint address input box under Endpoint address with the Zowe Chat web hook URL if it is

publicly accessible. Otherwise, you must fill in with your public proxy URL that transmits network payload to Zowe

Chat web hook URL.

Your messaging endpoint for Microsoft Bot Framework bot is successfully configured.

Version: v3.3.x LTS

Configuring messaging endpoint for the

Microsoft Azure bot

If you create your bot with Microsoft™ Azure, you need to specify the messaging endpoint in Microsoft Azure portal to

complete the configuration.

1. Launch the Microsoft Azure portal at portal.azure.com.

2. Click All resources and select the bot that you created.

3. Select Configuration in Settings.

4. Specify the Messaging endpoint with the Zowe Chat web hook URL if it is publicly accessible. Otherwise, you must

fill in with your public proxy URL that transmits network payload to Zowe Chat web hook URL.

5. Verify that the Enable Streaming Endpoint box is enabled.

6. Click Apply to make the settings effective.

Your messaging endpoint for Microsoft Azure bot is successfully configured.

http://portal.azure.com/

Version: v3.3.x LTS

Configuring Slack

If you use Slack as your chat platform, you must create and install one Slack App.

1. Creating and installing Slack App

You must create one Slack App and install it before you can talk with your chat bot in Slack client.

2. Adding your bot user to your Slack channel

You can add the bot user that you created to your Slack channel in two ways: either mention your bot user directly in

the message field or click the link Add an app at the beginning of your channel.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_slack_create_app
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_slack_invite_app_to_channel

Version: v3.3.x LTS

Creating a new Slack App

To create a bot app for Slack, you need to use the Slack app dashboard to create a new app and specify app details.

1. Open Slack app dashboard at Slack API.

2. Click Create App button.

3. Choose From scratch.

4. In the prompted dialog, specify values for the following fields:

App Name: input your App name, for example, Zowe Chat.

Development Slack Workspace: input any one of your Slack Workspace.

https://www.ibm.com/links?url=https%3A%2F%2Fapi.slack.com%2Fapps

TIP

You can change the App name at any time.

NOTE

Your workspace may require apps to be approved by admins. You will need to request approval to install it to the

workspace or sign into a different workspace.

5. Click the Create App button.

Your Slack App is successfully created.

Version: v3.3.x LTS

Configuring the Slack App

There are two ways to connect to Slack, over HTTP or using Socket mode. We strongly recommend that you use Socket

mode, as you can receive events via a private WebSocket, instead of a direct HTTP subscription to events. If you want to

receive events directly over HTTP, you must configure your own network firewall or use some proxy servers to make sure

that your Slack application of your Slack workspace in public cloud can access the messaging endpoint of Zowe Chat

server from internet. For more information, see https://api.slack.com/apis/connections.

Connecting to Slack using Socket mode

You can use Socket mode to connect your app to Slack.

Connecting to Slack using public HTTP endpoint

Complete this task after your Zowe Chat server is configured and started.

https://api.slack.com/apis/connections
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_slack_socket_mode
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_slack_http_endpoint

Version: v3.3.x LTS

Connecting to Slack using Socket mode

You can use Socket mode to connect your app to Slack.

1. Open Slack app dashboard at Slack API.

2. Click the App name that you created.

3. In the left sidebar, click Features > App Manifest to configure your Slack App.

4. In the text field, fill in the following manifest:

NOTE

You should delete the default manifest, and then fill in the manifest above. This is an example manifest for the

current version of Slack. If Slack has new changes and this manifest is out of date, you can refer to

https://api.slack.com/reference/manifests#creating_manifests to fill out the manifest.

In the manifest, specify values for the following fields:

display_information.name : your app name, for example, Zowe Chat

display_information.description : your app description, for example, Zowe Chat

features.bot_user.display_name : your bot name, for example, zowe-chat

5. Click Save Changes button, and you will be prompted with a notification asking you to generate an app level token.

6. Click Click here to generate, and you will be prompted with a dialog Generate an app-level token to enable

Socket Mode. Specify values for the following fields:

Token Name: socket-mode

https://www.ibm.com/links?url=https%3A%2F%2Fapi.slack.com%2Fapps
https://api.slack.com/reference/manifests#creating_manifests

7. Click Generate button and you will be prompted with a dialog socket-mode. You will get the token in the dialog.

Copy it for the later use. You will need it to configure your Slack in later steps. See Configuring the chat tool - Slack.

8. Click Done button.

You have successfully configured your Slack app.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_configure_slack

Version: v3.3.x LTS

Connecting to Slack using public HTTP endpoint

Complete this task after your Zowe Chat server is configured and started.

If you are using HTTP endpoint to receive Slack events, you must enable interactivity and configure the event request

URL and the interactivity request URL in your Slack App.

If the IP address of your Zowe Chat server is public, you can use the Chatbot messaging endpoint URL

<httpEndpoint.protocol>://<httpEndpoint.hostName>:<httpEndpoint.port><httpEndpoint.basePath> directly.

Otherwise, you must configure your own network firewall or use some proxy servers to make sure that your Slack App of

your Slack workspace in public cloud can access the messaging endpoint of Zowe Chat server from Internet.

NOTE

You can find the values for protocol , hostName , port , and basePath in the configuration file

<ZOWE_CHAT_HOME>/config/chatTools/slack.yaml .

1. Open Slack API in your browser.

2. Click your Slack App.

Remember that you must log in your Slack workspace before you can see your App in Slack.

3. Configure your Slack App.

i. In the left sidebar of Slack app dashboard, click Features > App Manifest to configure your Slack App.

ii. In the text field, fill in the following manifest:.

NOTE

You should delete the default manifest, and then fill in the manifest above.

In the manifest, specify values for the following fields:

display_information.name : your app name, for example, Zowe Chat

display_information.description : your app description, for example, Zowe Chat

features.bot_user.display_name : your bot name, for example, zowe-chat

iii. Click Save Changes.

You will be prompted with a notification that the URL is not verified. You can ignore this notification, and

configure the request URL after your Zowe Chat server is configured and started.

https://www.ibm.com/links?url=https%3A%2F%2Fapi.slack.com%2Fapps

4. Configure the request URL for the interactivity for your created Slack App. You can do this after your Zowe Chat is

configured and started.

i. In the left sidebar of Slack app dashboard, click Features > Interactivity&Shortcuts.

ii. In the request URL input field, use the Zowe Chat messaging-endpoint URL directly if it is publicly accessible.

Otherwise, you must fill in with your public proxy URL that transmits network payload to Zowe Chat web hook

URL.

iii. Click Save Changes.

5. Configure the request URL for events subscriptions for your created Slack App. You can do this after your Zowe Chat

server is configured and started.

i. In the left sidebar of Slack app dashboard, click Features > Event Subscriptions.

ii. In the request URL input field, use the Zowe Chat messaging-endpoint URL directly if it is publicly accessible.

Otherwise, you must fill in with your public proxy URL that transmits network payload to Zowe Chat web hook

URL.

iii. Click Save Changes.

You have successfully configured your Slack app.

Version: v3.3.x LTS

Installing the Slack App

You must install the Slack App to your workspace before you can talk with your chat bot in Slack client.

1. Install the Slack App.

i. Request to install the App.

a. In the left sidebar, click Settings > Install App.

b. Click Request to Install and you will be prompted with a dialog asking you to add an optional note to the

administrator to request an approval. You can add an optional note to the administrator and then wait for the

administrator of your workspace to approve. You will receive an email notice as well as a notice from the

Slackbot of your Workspace when the approval is done.

NOTE

After you receive a notice, you can refresh your web page. Now you can install your app to your workspace.

ii. Install the App to Workspace.

a. Open Slack app dashboard at Slack API when you get the approval.

b. Click the App name that you created.

c. In the left sidebar, click Settings > Install APP.

d. Click Install to Workspace button and you will be switch to a new page.

e. Click Allow button.

Your Slack App is installed.

2. Get the bot user OAuth token.

i. In the left sidebar, click Settings > Install App.

ii. Find the Bot User OAuth Token and click Copy.

Save this token. You will need it to configure your Slack in later steps.s

3. Get the signing secret.

i. In the left sidebar, click Settings > Basic information.

ii. Find the Signing Secret in App Credentials section and click show.

https://api.slack.com/apps

iii. Copy this signing secret.

Save this signing secret. You will need it to configure your Slack in later steps.

Version: v3.3.x LTS

Adding your bot user to your Slack channel

You can add the bot user that you created to your Slack channel in two ways: either mention your bot user directly in the

message field or click the link Add an app at the beginning of your channel.

Mention your bot user directly

You can mention your bot user directly in the message field.

1. Select the channel where you want to invite your Slack App.

2. In the message field, type @ and select the bot name you created, for example, bnz. You can see a not in channel

notice behind it.

3. Send the message to the channel. You will receive a message from Slackbot to help you invite your bot user to this

channel. Click Invite Them.

Use the channel link

You can click the link Add an app at the beginning of your channel.

1. Select the channel where you want to invite your Slack App.

2. Click the drill-down box at the top of your channel. Select Integrations.

3. You can see the dialog as the image below shows. Click Add an app.

4. Search for your app with your app name. Click Add when you see it.

You have invited the Zowe Chat app to your Slack channel. You can talk to it now.

Version: v3.3.x LTS

Installing Zowe Chat

You can install Zowe Chat from a local package.

Prerequisites

Before installing Zowe Chat, ensure that your environment meets the system requirements.

Installing

1. Download the Zowe Chat package from Zowe.org. Navigate to Technical Preview > Zowe Chat section, and select

the button to download the Zowe Chat build. You'll get a tar.gz file.

2. Log on to your Linux server.

3. Navigate to the target directory that you want to transfer the Zowe Chat package into or create a new directory.

4. When you are in the directory you want to transfer the Zowe Chat package into, upload it to the directory.

5. Run the command to expand the downloaded package to the target directory.

This will expand to a file structure similar to the following one.

6. Run the following commands to update your environment variables.

Update the Zowe Chat home directory.

where, your-chat-package-directory is the diretory of the Zowe Chat installation package.

Update the Zowe Chat plug-in home directory.

Update your PATH environment variable with your Zowe Chat home directory path.

7. Update the plug-in configuration file $ZOWE_CHAT_PLUGIN_HOME/plugin.yaml if necessary.

8. Run the following commands to install local dependencies.

9. Update the following configuration files based on your need.

Zowe Chat: $ZOWE_CHAT_HOME/config/chatServer.yaml

z/OSMF server: $ZOWE_CHAT_HOME/config/zosmfServer.yaml

Chat tool: $ZOWE_CHAT_HOME/config/chatTools/<mattermost | msteams | slack>.yaml

Now you can start the Zowe Chat server.

TIP

https://docs.zowe.org/stable/user-guide/zowe-chat/systemrequirements-chat
https://www.zowe.org/download.html
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_start_stop#starting-zowe-chat

If you encounter any issue during the installation, you can check the Zowe Chat server log in the folder

$ZOWE_CHAT_HOME/log/ for troubleshooting.

Version: v3.3.x LTS

Configuring Zowe Chat

To complete the configuration of Zowe Chat, you must complete the individual configuration steps listed below.

1. Configure Zowe Chat server

2. Configure z/OSMF endpoint information

3. Configure chat tool information

Zowe Chat server configuration

You can configure the Zowe Chat server by editing the chatServer.yaml configuration file.

1. Go to the Zowe Chat configuration directory by running the following command:

2. Edit the chatServer.yaml configuration file. Customize the default values based on your needs, for example, your

chat tool.

Zowe Chat z/OSMF endpoint configuration

Zowe Chat is configured to run against a single z/OSMF server. You describe your z/OSMF server information by editing

the zosmfServer.yaml configuration file.

1. Go to the z/OSMF server configuration directory by running the following command:

2. Edit the zosmfServer.yaml configuration file. Customize the default values based on your system .

Chat tool configuration

Zowe Chat's chat tool configuration varies depending on your choice of chat tool.

Slack

Configuring Zowe Chat with Slack

Microsoft Teams

Configuring Zowe chat with Microsoft Teams

Mattermost

Configuring Zowe Chat with Mattermost

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_configure_slack
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_configure_teams
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_configure_mattermost

Version: v3.3.x LTS

Configuring Zowe Chat with Mattermost

This step is for Mattermost users only. You configure your chat platform by editing the mattermost.yaml file.

Prerequisite

Make sure that you have configured your chat tool when configuring the Zowe Chat server. For details, see Configuring

Zowe Chat server.

Configuring Mattermost

1. Go to the Zowe Chat configuration directory.

2. If you enabled TLS on the Mattermost Server when you create an administrator account, you can download the SSL

certificate of Mattermost server.

i. Log in to Mattermost with your administrator account.

ii. Click Main Menu icon and then click System Console.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_configure_server
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_configure_server
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_mattermost_admin_account

iii. Scroll down to ENVIRONMENT section and click Web Server. Find your certificate according to the path

configured in TLS Certificate File.

iv. Copy the certificate to your Zowe Chat Server. You can place it in any directory that your Zowe Chat server can

access.

3. Edit the mattermost.yaml file by cutomizing the following fields:

hostName : your Mattermost server hostname

tlsCertificate : the absolute file path of the TLS certificate (PEM) of your Mattermost server if HTTPS protocol

is specified.

botAccessToken : the access token to connect to your bot

HTTP endpoint hostName : the host name or IP address of your HTTP endpoint

You can also specify other configurations such as the protocol, port number, team URL, bot user name, and HTTP

endpoint of your Mattermost server.

TIP

Team URL is what you got when you create your team. If you don't remember that, you can just select any

channel in your team and copy link. Paste the link into a text editor, and then you will find the team URL.

Version: v3.3.x LTS

Configuring Zowe Chat with Microsoft Teams

This step is for Microsoft Teams users only. You configure your chat platform by editing the msteams.yaml file.

Prerequisite

Make sure that you have configured your chat tool when configuring the Zowe Chat server. For details, see Configuring

Zowe Chat server.

Configuring Microsoft Teams

1. Go to the Zowe Chat configuration directory.

2. Edit the msteams.yaml file. Replace <Your Bot ID> , <Your bot password> and <Your host name> with values

based on your environment.

TIP

You should have saved your bot ID and bot password when you created your bot. For details, see Creating a bot

with Microsoft Bot Framework or Creating a bot with Microsoft Azure.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_configure_server
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_configure_server
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_create_bot_framework
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_create_bot_framework
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_create_bot_azure

Version: v3.3.x LTS

Configuring Zowe Chat with Slack

This step is for Slack users only. You configure your chat platform by editing the slack.yaml file.

Prerequisite

Make sure that you have configured your chat tool when configuring the Zowe Chat server. For details, see Configuring

Zowe Chat server.

Configuring Slack

1. Go to the Zowe Chat configuration directory.

2. Edit the slack.yaml file. Replace Your_signing_secret and Your_bot_user_OAuth_token. If you use socket mode, you

also need to provide your app level token. If you connect Slack over HTTP, you need to configure HTTP endpoint.

TIP

You should have saved the signing secret and bot user OAuth token when you installed the Slack App. For

details, see step 2 and 3 in Installing the Slack App.

If you use socket mode to connect to Slack, you need to set the socketMode enabled as true and the

httpEndpoint enabled as false and provide the app level token which you should have saved when you

configured the Slack App. For details, see step 7 in Connecting to Slack using Socket mode.

If you connect to Slack over HTTP endpoint, you need to set the socketMode enabled as false and the

httpEndpoint enabled as true . You need to configure the HTTP endpoint, protocol, host name, port

number and the basePath that you want to use.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_configure_server
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_configure_server
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_slack_install
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_slack_socket_mode

Version: v3.3.x LTS

Starting and stopping Zowe Chat

Start or stop Zowe Chat according to your requirement.

Starting Zowe Chat

To start the Zowe Chat server, perform the following steps.

1. On the server where you install Zowe Chat, run the following command:

chatsvr start

2. To verify that the Zowe Chat server is started, run the following command:

chatsvr status

Now you can launch your chat tool client and chat with your bot.

Stopping Zowe Chat

To stop the Zowe Chat server, perform the following steps.

1. On the server where you install Zowe Chat, run the following command:

chatsvr stop

2. To verify that the Zowe Chat server is stopped, run the following command:

chatsvr status

Version: v3.3.x LTS

Uninstalling Zowe Chat

You can uninstall Zowe Chat native installation package by running a command.

1. Stop the Zowe Chat server.

2. Remove the installed Zowe Chat core part by running the following command:

3. Remove all installed Zowe Chat plug-ins by running the following command:

4. Unset and update the following environment variables.

ZOWE_CHAT_HOME

ZOWE_CHAT_PLUGIN_HOME

PATH=$PATH:$ZOWE_CHAT_HOME/bin

5. Verify the uninstallation by launching your chat tool client and verifying that you cannot chat with the bot.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_start_stop#stopping-zowe-chat

Version: v3.3.x LTS

Using Zowe

Learn how to start using Zowe components, applications, and plug-ins.

Zowe server-side components

Using Zowe API Mediation Layer

Using Zowe Desktop

Configuring the Zowe cross memory server (ZIS)

Zowe client-side components

Using Zowe CLI

Using Zowe Explorer plug-in for IntelliJ IDEA

Using Zowe Explorer for Visual Studio Code

Using Zowe SDKs

Explore available plug-ins

Zowe CLI plug-ins

Zowe Explorer extensions for Visual Studio Code

Incubator components

Using Zowe Chat (incubator)

https://docs.zowe.org/stable/user-guide/api-mediation/using-api-mediation-layer
https://docs.zowe.org/stable/user-guide/mvd-using
https://docs.zowe.org/stable/user-guide/configure-xmem-server
https://docs.zowe.org/stable/user-guide/cli-using-usingcli
https://docs.zowe.org/stable/user-guide/intellij-use-cases
https://docs.zowe.org/stable/user-guide/ze-usage
https://docs.zowe.org/stable/user-guide/sdks-using
https://docs.zowe.org/stable/user-guide/cli-extending
https://docs.zowe.org/stable/user-guide/ze-using-zowe-explorer-cics-ext
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_use_interact_methods

Version: v3.3.x LTS

Using Zowe Desktop

You can use the Zowe™ Application Framework to create application plugins for the Zowe Desktop. For more information,

see Extending the Zowe Application Framework.

Enabling Server Components for the Desktop

The Zowe Desktop requires the app-server Component of Zowe to be enabled. This is set by default, but can be

controlled by the Zowe YAML property components.app-server.enabled which should be set to true .

When this server is running, it will print the message ZWED0031I when fully ready.

Navigating the Zowe Desktop

From the Zowe Desktop, you can access Zowe applications.

Accessing the Zowe Desktop

From a supported browser, open the Zowe Desktop at

https://zowe.externalDomains[0]:zowe.externalPort/zlux/ui/v1/ or you can navigate to the direct Desktop URI at

https://zowe.externalDomains[0]:zowe.externalPort/zlux/ui/v1/ZLUX/plugins/org.zowe.zlux.bootstrap/web/inde

x.html

Where:

zowe.externalDomains is the host on which you are running the Zowe Application Server, its the value that was

assigned in the zowe configuration file.

zowe.externalPort is the value of Gateway port that was assigned in the zowe configuration file.

Alternative Desktop access

The above URL can be modified with query parameters for the following purposes:

Action
Query

Parameter
Example Detail

Access

Desktop

without

Gateway

proxy

zwed-no-

redirect=1

https://zowe.externalDomains[0]:components.app-server.port/?

zwed-no-redirect=1

When the

APIML Gateway

is running, the

Desktop should

be reached

through it

instead of

going to the

app-server port

directly. The

https://docs.zowe.org/stable/extend/extend-desktop/mvd-extendingzlux

Action
Query

Parameter
Example Detail

Desktop avoids

direct access

by redirecting

users to the

gateway URL

when possible.

To disable this

behavior for

direct access,

you can use

"zwed-no-

redirect=1".

This is

intended for

troubleshooting

and is not

recommended

otherwise since

some Desktop

apps will not

work without

being accessed

via the

gateway URL.

Access

the

Zowe v2

Desktop

use-v2-

desktop=true

https://zowe.externalDomains[0]:zowe.externalPort/zlux/ui/v1/?

use-v2-desktop=true

Zowe V3

includes the

Zowe v2

Desktop for

ease of

transition. By

default, the V3

desktop is used

but if you have

an app that

does not yet

work on the V3

Desktop, you

can use the v2

Desktop

through this

parameter. The

v2 desktop is

in maintenance

mode and no

Action
Query

Parameter
Example Detail

longer receives

enhancements.

Logging in and out of the Zowe Desktop

1. To log in, enter your TSO credentials in the Username and Password fields.

2. Press Enter. Upon authentication of your user name and password, the desktop opens.

To log out, click the User icon in the lower right corner and click Sign Out.

Changing user password

1. Open the Preferences panel by clicking on the Preferences icon in the bottom right of the desktop.

2. Click the Change Password icon.

3. Fill out the Old Password and New Password fields.

4. Upon successful password change, you will be taken to the desktop.

Updating an expired password

1. Upon logging in with an expired password, a screen will be displayed prompting you to change your password.

2. Enter and confirm your new password in the corresponding fields.

3. Upon successful password change, you will be taken to the desktop.

Pinning applications to the task bar

1. Click the Start menu in the bottom left corner of the home screen.

2. Locate the application you want to pin.

3. Right-click the application icon and select Pin to taskbar.

Open application in new tab

1. Click the Start menu in the bottom left corner of the home screen.

2. Locate the application you want to open in new tab.

3. Right-click the application icon and select Open In New Browser Tab.

While opening an application in new tab you can also do the following:

You can use url to send data to the application, for example you would specify

https://zowe.externalDomains[0]:zowe.externalPort/zlux/ui/v1/ZLUX/plugins/org.zowe.zlux.bootstrap/w

eb/?pluginId=org.zowe.editor:data:{"type":"openFile","name":"<path of file>"}

You can use url to open application directly on browser with and without credentials using showLogin in url.

a. If showLogin = true then you need to login with your credentials before using an application for example.

https://zowe.externalDomains[0]:zowe.externalPort/zlux/ui/v1/ZLUX/plugins/org.zowe.zlux.bootstra

p/web/?pluginId=org.zowe.terminal.tn3270&showLogin=true .

b. If showLogin = false then you can access application directly without login.

Keyboard shortcuts

The following keyboard shortcuts can be used in the Desktop to navigate or perform actions with only the keyboard.

Keyboard Shortcut Command

CTRL+ALT+M
Open the Zowe launchbar menu. Use the UP/DOWN arrow keys to select an app, RIGHT

arrow key to spawn context menu, ENTER to launch app, and ESC to close menu

CTRL+ALT+UP Maximize active app. Press again to restore

CTRL+ALT+DOWN Minimize active app. Press again to restore

CTRL+ALT+LEFT (or "<"

key)
Switch to next recently active app

CTRL+ALT+RIGHT (or

">" key)
Switch to least recently active app

CTRL+ALT+W Close active app

Changing application elements size

There are 3 supported ways of changing size within the Desktop.

1. Use your browser's zoom feature (keyboard shortcuts: Ctrl +, Ctrl - for various supported browsers) to change all

elements' size. Recommended: 67%

Note: Zoom is highly variable and depends on your display size, resolution, and many other variables so the

recommended zoom may not be ideal for you

2. View the Preferences panel (see below section) to change the scale of the Desktop UI: elements like window title bar,

app icons, bottom-left start menu, app tool bar etc. and excluding main app content

3. Change an individual application's size via its window handles or minimize/maximize buttons. You can also start an

application in full screen mode by right clicking on an application's icon in the taskbar and select "Open in New

Browser Tab"

Tip: Did you know you can use the whole Desktop in full screen mode by using your browser's full screen feature

(keyboard shortcuts: F11 for various supported browsers)?

Personalizing the Desktop

1. Click the Preferences icon to open the Preferences panel.

2. Click the Personalization icon to open the menu.

3. Drag an image into the wallpaper grid, or press the upload button, to upload a new Desktop wallpaper.

4. To set a new theme color, select a color from the palette or hue.

5. Use the lightness swatch bar to adjust the lightness of the color.

Adjusting the lightness will also change the lightness of secondary text.

6. Select a size (small, medium, or large) to adjust the scale of the Desktop UI.

Changing the desktop language

Use the Languages setting in the Preferences panel to change the desktop language. After you change the language and

restart Zowe, desktop menus and text display in the specified language. Applications that support the specified desktop

language also display in that language.

1. Click the Preferences icon in the lower right corner.

2. Click Languages.

3. In the Languages dialog, click a language, and then click Apply.

4. When you are prompted, restart Zowe.

Zowe Desktop application plugins

Application plugins are applications that you can use to access the mainframe and to perform various tasks. Zowe's

official server download contains some built-in plugins as described below.

Additional plugins can be added to the Desktop, and are packaged and installed as Extensions to Zowe. See here for how

to install extensions.

Developers can create application plug-ins to put into extensions, and developers should read the extending guide for

more information.

https://docs.zowe.org/stable/user-guide/install-configure-zos-extensions
https://docs.zowe.org/stable/user-guide/install-configure-zos-extensions
https://docs.zowe.org/stable/extend/extend-desktop/mvd-extendingzlux
https://docs.zowe.org/stable/extend/extend-desktop/mvd-extendingzlux

VT Terminal

The VT Terminal plugin provides a user interface that emulates the basic functions of DEC VT family terminals. On the

"back end," the plugin and the Zowe Application Server connect to VT compatible hosts, such as z/OS UNIX System

Services (USS), using SSH or Telnet.

This terminal display emulator operates as a "Three-Tier" program. Due to web browsers being unable to supply TCP

networking that terminals require, this terminal display emulator does not connect directly to your SSH or Telnet server.

Instead, the Zowe Application Server acts as a bridge, and uses websockets between it and the browser for terminal

communication. As a result, terminal connections only work when the stack of network programs supports websockets

and the TN3270 server destination is visible to the Zowe Application Server.

The terminal connection can be customized per-user and saved for future sessions using the connection toolbar of the

application. The preferences are stored within the configuration dataservice storage, which can also be used to set

instance-wide defaults for multiple users.

API Catalog

The API Catalog plugin lets you view API services that have been discovered by the API Mediation Layer. For more

information about the API Mediation Layer, Discovery Service, and API Catalog, see API Mediation Layer Overview.

Editor

With the Zowe Editor you can create, edit, and manage files, folders, and datasets. With files and folders, you can also

modify properties such as ownership and tagging. The Editor uses Monaco, a technology shared with the popular

Microsoft Visual Studio Code program. As a result, you can benefit from advanced syntax highlighting and a modern

editing experience. The editor has more features and customization that you can read about on the Editor user guide.

JES Explorer

Use this application to query JES jobs with filters, and view the related steps, files, and status. You can also purge jobs

from this view.

NOTE

z/OSMF is the required authentication provider for JES Explorer.

IP Explorer

With the IP Explorer you can monitor the TCP/IP stacks, view active connections and reserved ports.

MVS Explorer

Most features of the MVS explorer are now incorporated into the "Editor" plug-in listed above, and the community

focuses on future enhancements there, but you can still find the MVS Explorer in a Zowe install and use the features

found below.

Use this application to browse the MVS™ file system by using a high-level qualifier filter. With the MVS Explorer, you can

complete the following tasks:

https://docs.zowe.org/stable/extend/extend-desktop/mvd-configdataservice
https://docs.zowe.org/stable/getting-started/overview
https://docs.zowe.org/stable/user-guide/mvd-editor

List the members of partitioned data sets.

Create new data sets using attributes or the attributes of an existing data set ("Allocate Like").

Submit data sets that contain JCL to Job Entry Subsystem (JES).

Edit sequential data sets and partitioned data set members with basic syntax highlighting and content assist for JCL

and REXX.

Conduct basic validation of record length when editing JCL.

Delete data sets and members.

Open data sets in full screen editor mode, which gives you a fully qualified link to that file. The link is then reusable

for example in help tickets.

NOTE

z/OSMF is the required authentication provider for MVS Explorer.

USS Explorer

Most features of the USS explorer are now incorporated into the "Editor" plug-in listed above, and the community

focuses on future enhancements there, but you can still find the MVS Explorer in a Zowe install and use the features

found below.

Use this application to browse the USS files by using a path. With the USS Explorer, you can complete the following

tasks:

List files and folders.

Create new files and folders.

Edit files with basic syntax highlighting and content assist for JCL and REXX.

Delete files and folders.

NOTE

z/OSMF is the required authentication provider for USS Explorer.

Version: v3.3.x LTS

Using the Editor

With the Zowe Editor, you can create and edit the many types of files.

Specifying a highlighting language

1. Click Language on the editor menu bar. A dropdown menu will be displayed.

2. From the dropdown, select the desired language. Plain Text will be chosen by default if the automatic language

detection is not able to determine the language.

Open a dataset

To open a dataset, follow these steps:

1. From the File menu, select Open Datasets. You can also use (ALT+K).

2. In the Dataset field, specify the name of the dataset you want to open.

3. Click Open

Deleting a file or folder

1. In the file tree, right-click on a file or folder you want to delete.

2. From the right-click menu, click Delete. A warning dialogue will appear.

3. Click Delete

Opening a directory

1. From the File menu, select Open Directory. You can also use (ALT+O).

2. In the Directory field, specify the name of the directory you want to open. For example: /u/zs1234

3. Click Open

The File Explorer on the left side of the window lists the folders and files in the specified directory. Clicking on a folder

expands the tree. Clicking on a file opens a tab that displays the file contents. Double-clicking on a folder will make the

active directory the newly specified folder.

Creating a new directory

1. Right-click on a location in the directory tree where you want to create a new directory.

2. From the right-click menu, click Create a directory....

3. Specify a directory name in the Directory Name field.

4. The Path will be set to the location that you initially right-clicked to open the dialogue. You can specify a different

location in the Path field.

5. Click Create

Creating a new file

To create a new file, complete these steps:

1. From the File menu, select New File. You can also use (ALT+N).

2. From the File menu, select Save to save the newly created file. You can also use (Ctrl+S)

3. In the File Name field, specify the file name for the newly created file.

4. Choose an encoding option from the Encoding dropdown menu. The directory will be prefilled if you are creating the

new file in an existing folder.

5. Click Save

6. To close a file, click the X icon in its tab, double-click on the tab, or use (Alt+W).

Keyboard shortcuts

The following keyboard shortcuts can be used in the editor to navigate or perform actions with only the keyboard.

TAB/Shift + TAB: Cycle through the menu bar, browsing type, search bar, file tree, and editor component.

Individual options within the menu bar and individual nodes within the file tree can be navigated with the arrow

keys and ENTER (to select).

Keyboard Shortcut Command

ALT+K Open a dataset

ALT+O Open a directory

ALT+N Create a new file

ALT+W Close tab

ALT+W+Shift Close all tabs

CTRL+S Save file

ALT+M Navigate Menu bar (use arrow keys)

ALT+P Search Bar focus

ALT+1 Primary editing component focus

ALT+R+Shift Refresh active tab

ALT+PgUp(or <) Switch to left tab

ALT+PgDown(or >) Switch to right tab

ALT+B Show/hide left-hand side file tree

Version: v3.3.x LTS

Using the 3270 Terminal

The 3270 Terminal Display Emulator plug-in provides a user interface that emulates the basic functions of IBM 3270

family terminals. On the back end, the plug-in and the Zowe Application Server connect to any standard TN3270/E

server.

This terminal display emulator operates as a three tier program. Due to web browsers being unable to supply TCP

networking that terminals require, this terminal display emulator does not connect directly to your TN3270 server.

Instead, the Zowe Application Server acts as a bridge, and uses websockets between the server and the browser for

terminal communication. As a result, terminal connections only work when the stack of network programs supports

websockets and the TN3270 server destination is visible to the Zowe Application Server.

The terminal connection can be customized per user and saved for future sessions using the connection toolbar of the

application. The preferences are stored within the configuration dataservice storage, which can also be used to set

instance-wide defaults for multiple users.

You can customize the preferences in the yaml configuration via environment variables:

ZWED_TN3270_PORT : port number

ZWED_TN3270_SECURITY : telnet or tls

ZWED_TN3270_HOST : host name

ZWED_TN3270_ROW : alternate rows

ZWED_TN3270_COL : alternate columns

ZWED_TN3270_MOD : screen mode, following values are supported

1 : 24x80

2 : 32x80

3 : 43x80

4 : 27x132

5 : Dynamic

ZWED_TN3270_CODEPAGE : CCSID, following values are supported

037 , 1047 , 273 , 277 , 278 , 280 , 284 , 290 , 297 , 420 , 424 , 500 , 838 , 870 , 875 , 918 , 924 , 937 , 935 , 930

Example of environment variables:

Keyboard shortcuts

The terminal bundle that is used by tn3270-ng2 has several keyboard shortcuts to execute common TN3270 emulator

functionality. The following Action and shortcut table presents the current list of what function is mapped to which key

combination.

Be aware that some browsers intercept key combinations that are common to browsers, such as Ctrl+ R or Ctrl+ T ,

and that the operating system may also intercept certain combinations such as Windows+ R or Alt+ F4 .

Also, be aware that the key combinations listed are only be handled by the terminal if the terminal has focus, which you

can determine if the terminal's cursor is visible and blinking or not. To gain focus on the terminal, it is sufficient to click

https://docs.zowe.org/stable/extend/extend-desktop/mvd-configdataservice

on the terminal's contents. The difference between focus and not focus may be the difference between F5 being

interpreted as terminal PF5 , or the browser reloading the page.

Action and Shortcut table

Action Keyboard Shortcut Note

Attention Ctrl+ a ATTN - Attention key

Back Tab Shift+ Tab

Backspace Backspace

Cent Sign Ctrl+ [¢

Clear Ctrl+ Shift+ z

Cursor Down

ArrowDown ,

NumpadArrowDown

Cursor Left

ArrowLeft ,

NumpadArrowLeft

Cursor Right

ArrowRight ,

NumpadArrowRight

Cursor Up ArrowUp , NumpadArrowUp

Delete Delete , NumpadDelete

Dup Ctrl+ d DUP

End End , NumpadEnd

Enter Enter , NumpadEnter

Erase End of Field

(EOF)

Ctrl+ e Erases from cursor position to end of field

Erase Field Ctrl+ l Erases entire field

Erase Input Ctrl+ i Erases contents of all input fields

Erase Word Ctrl+ w Erases until next word, including whitespace

Home Home , NumpadHome

Insert Insert , NumpadInsert Toggles insert text mode

Action Keyboard Shortcut Note

New Line
Ctrl+ Enter ,

Ctrl+ NumpadEnter
Moves cursor to field on next row

Null Alt+ n Deletes one character

Not Sign Ctrl+ 6 ¬

PA1 Alt+ 1

PA2 Alt+ 2

PA3 Alt+ 3

PF01 F1

PF02 F2

PF03 F3

PF04 F4

PF05 F5

PF06 F6

PF07 F7

PF08 F8

PF09 F9

PF10 F10

PF11 F11

PF12 F12

PF13 Shift+ F1

PF14 Shift+ F2

PF15 Shift+ F3

PF16 Shift+ F4

PF17 Shift+ F5

Action Keyboard Shortcut Note

PF18 Shift+ F6

PF19 Shift+ F7

PF20 Shift+ F8

PF21 Shift+ F9

PF22 Shift+ F10

PF23 Shift+ F11

PF24 Shift+ F12

Rapid Left Ctrl+ ArrowLeft Move cursor left by 2 positions

Rapid Right Ctrl+ ArrowRight Move cursor right by 2 positions

Reset Alt+ r
Terminal does not lock on bad input, but rejects and auto

resets. No use for reset button currently.

Vertical Bar Ctrl+ 1 ❘

Tab Tab

Key sequences

Key sequences allow users to define their own key sequences. Each key sequence is a recorded set of keys with the

possibility of using the key modifiers (Ctrl, Alt, Shift), function keys (F1, F2, ...) and the combinations (such as Ctrl+E or

Shift+F1). The definition is stored in the _keySequences.json file.

Default key sequences

There is a set of predefined key sequences

Key sequences are accesible via top right menu:

Syntax of the JSON

All key sequences can be redefined by the user

Following syntax is required:

keySequences is an array of individual key sequences

title displayed in the key sequences menu

description is hover help for each item in the key sequences menu

keys is an array of the key strokes

normal for the "typewriter" keys

special for the function, modifiers and other special keys

The value corresponds to the javascript key code

prompt is used for user input and this input is pasted on the current cursor position

ctrl , alt and shift are key modifiers

If you combine normal , special or prompt in one array item, only one action will be made in the order of

normal , special and prompt

Example

Review the following demonstration on two simple key sequences:

Hello, world

Types Hello, world only

ISPF command SWAP NEXT

Presses Home to get on the command line/input field

Ctrl+E deletes the input field

Ctrl+E is predefined in the TN3270 as "EOF - Erase end of field"

Types SWAP NEXT

Hits Enter

The corresponding file _keySequences.json appears as the following:

Version: v3.3.x LTS

Using Zowe API Mediation Layer

There are numerous ways you can use Zowe API Mediation Layer (API ML). Review this topic and its child pages to learn

more about the various ways to use the API Mediation Layer.

For information about the API versioning, see API Catalog and Versioning.

TIP

For testing purposes, it is not necessary to set up certificates when configuring the API Mediation Layer. You can

configure Zowe without certificate setup and run Zowe with zowe.verifyCertificates: DISABLED .

For production environments, certificates are required. Ensure that certificates for each of the following services are

issued by the Certificate Authority (CA) and that all keyrings contain the public part of the certificate for the relevant CA.

z/OSMF

Zowe

The service that is onboarding to Zowe

API Mediation Layer Use Cases

There are two primary use cases for using the API ML:

To access APIs which have already been onboarded to the Mediation Layer via the API Catalog, and leverage their

associated Swagger documentation and code snippets.

To onboard a REST API service to the API ML to contribute to the Zowe community.

See the following topics for detailed information about how to use the API Mediation Layer:

Using Single Sign On (SSO)

Three authentication methods can be used with single sign on:

Authenticating with a JWT token

Authenticating with client certificates

Authenticating with a Personal Access Token

Using multi-factor authentication

User identity verification can be performed by using multi-factor authentication. For more information, see Using multi-

factor authentication (MFA).

API Routing

Various routing options can be used for APIs when using API Mediation Layer:

Routing requests to REST APIs

Routing with WebSockets

https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-versioning
https://docs.zowe.org/stable/user-guide/authenticating-with-jwt-token
https://docs.zowe.org/stable/user-guide/authenticating-with-client-certificates
https://docs.zowe.org/stable/user-guide/api-mediation/authenticating-with-personal-access-token
https://docs.zowe.org/stable/user-guide/api-mediation/using-multi-factor-authentication
https://docs.zowe.org/stable/user-guide/api-mediation/using-multi-factor-authentication
https://docs.zowe.org/stable/user-guide/api-mediation/routing-requests-to-rest-apis
https://docs.zowe.org/stable/user-guide/routing-with-websockets

Using GraphQL APIs

MultiTenancy Configuration

Learning more about APIs

API Mediation Layer makes it possible to view API information is a variety of ways:

Obtaining information about API Services

Using Swagger "Try it out" in the API Catalog

Using Swagger Code Snippets in the API Catalog

Administrating APIs

Using Static API services refresh in the API Catalog

Onboarding a REST API service with the YAML Wizard

Using the Caching Service

As an API developer, you can use the Caching Service as a storage solution to enable resource sharing between service

instances, thereby ensuring High Availability of services. For details, see Using the Caching service.

Using API Catalog

There are various options for using the API Catalog:

Viewing Service Information abd API Documentation in the API Catalog

Changing an expired password via API Catalog

Additional use case when using API Mediation Layer

SMF records

https://docs.zowe.org/stable/user-guide/api-mediation/use-graphql-api
https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation-multi-tenancy
https://docs.zowe.org/stable/user-guide/obtaining-information-about-api-services
https://docs.zowe.org/stable/user-guide/api-mediation-swagger-try-it-out
https://docs.zowe.org/stable/user-guide/api-mediation-swagger-code-snippets
https://docs.zowe.org/stable/user-guide/api-mediation-static-api-refresh
https://docs.zowe.org/stable/user-guide/onboard-wizard
https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation-caching-service
https://docs.zowe.org/stable/user-guide/api-mediation-view-service-information-and-api-doc
https://docs.zowe.org/stable/user-guide/api-mediation-change-password-via-catalog
https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation-smf

Version: v3.3.x LTS

Information roadmap for Zowe API Mediation

Layer

This roadmap outlines information resources that are applicable to the various user roles who are interested in Zowe API

Mediation Layer. These resources provide information about various subject areas, such as learning basic skills,

installation, developing, and troubleshooting for Zowe API Mediation Layer.

The following definition of skill levels about Zowe assist you with gathering the most relevant resources for you.

Beginner: You're starting out and want to learn the fundamentals.

Intermediate: You have some experience but want to learn more in-depth skills.

Advanced: You have lots of experience and are looking to learn about specialized topics.

Fundamentals

Zowe skill level: Beginner

Zowe API Mediation Layer overview

New to API Mediation Layer? This overview topic introduces the key features, main components, benefits, and

architecture of the API Mediation Layer.

Architecture

Review the Zowe architecture to understand how the API Mediation Layer works in the Zowe framework.

Installing

Zowe skill level: Beginner

System requirements

Review this topic to ensure that your system meets the requirements for installing the API Mediation Layer. The API

Mediation Layer is one of the server-side components.

Planning

This article includes details about planning for installation, the Zowe z/OS launch process, and information about the

Zowe runtime directory, instance directory, and keystore directory.

Installing API Mediation Layer

This article provides an overview of the essential steps involved in installing the API Mediation Layer.

Configuring and updating

Zowe skill level: Intermediate

https://docs.zowe.org/stable/getting-started/overview#api-mediation-layer
https://docs.zowe.org/stable/getting-started/zowe-architecture#zowe-architecture
https://docs.zowe.org/stable/user-guide/systemrequirements-zos
https://docs.zowe.org/stable/user-guide/installandconfig
https://docs.zowe.org/stable/user-guide/install-zos

Configuring API Mediation Layer

Advanced API Mediation Layer features configuration

This article is for system programmers who want to configure advanced features of the API Mediation Layer, such

as the Gateway retry policy, connection limits, Gateway timeouts, and other advanced features.

Using Zowe API Mediation Layer

Zowe skill level: Intermediate

Using API Mediation Layer

Learn how to use the API Catalog to view what services are running in the API Mediation Layer. Through the API

Catalog, you can also view associated API documentation corresponding to a service, descriptive information about

the service, and the current state of the service.

Blog: Introducing “Try it out” functionality in the Zowe API Mediation Layer

This blog describes one key functionality of the Zowe API Mediation Layer to validate that services are returning the

expected responses.

Docs: Zowe API reference guide

Discover and learn about Zowe APIs that you can use.

Onboarding APIs

Zowe skill level: Advanced

Extend Zowe API Mediation Layer

Learn how you can extend the Zowe API Mediation Layer. Extenders make it possible to build and onboard additional

API services to the API ML microservices ecosystem. REST APIs can register to the API Mediation Layer, which makes

them available in the API Catalog, and for routing through the API Gateway.

Onboarding overview

This article provides details about onboarding a REST API service to the Zowe API Mediation Layer.

Zowe API ML repository

To start working with the code immediately, check out this code repository.

Security

Zowe skill level: Advanced

API Mediation Layer Security

This article describes how API ML uses Transport Layer Security (TLS). Use this guide to familiarize yourself with the

API ML security concepts.

https://docs.zowe.org/stable/user-guide/advanced-apiml-configuration
https://docs.zowe.org/stable/user-guide/api-mediation/using-api-mediation-layer
https://medium.com/zowe/introducing-try-it-out-functionality-in-the-zowe-api-mediation-layer-930aa9e947bd
https://docs.zowe.org/stable/appendix/zowe-api-reference
https://docs.zowe.org/stable/extend/extend-zowe-overview#extending-zowe-api-mediation-layer
https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview#prerequisites
https://github.com/zowe/api-layer
https://docs.zowe.org/stable/extend/extend-apiml/zowe-api-mediation-layer-security-overview

Zowe API Mediation Layer Single Sign On Overview

This article provides an overview of the API ML single-sign-on feature, the principle participants in the SSO process,

and links to detailed Zowe SSO documentation.

Blog: The ZAAS Client: a library for the API Mediation Layer

This blog introduces you to Zowe Authentication and Authorization Service (ZAAS) Client — a library that contains

methods for retrieval of JWT tokens, PassTickets, as well as verifying JTW token information.

Blog: Single-Sign-On to z/OS REST APIs with Zowe

This blog takes a deeper dive into the SSO feature of API ML.

Blog: Zowe client certificate authentication

**Blog: CLI and Client Certificates

Contributing to Zowe API Mediation Layer

Zowe skill level: Advanced

Contributing guidelines

This document is a summary of conventions and best practices for development within Zowe API Mediation Layer.

Conformance Program

This topic introduces the Zowe Conformance Program. Conformance provides Independent Software Vendors (ISVs),

System Integrators (SIs), and end users greater confidence that their software will behave as expected. As vendors,

you are invited to submit conformance testing results for review and approval by the Open Mainframe Project. If your

company provides software based on Zowe CLI, you are encouraged to get certified today.

Blog: Zowe Conformance Program Explained

This blog describes the Conformance Program in more details.

Troubleshooting and support

Troubleshooting API ML

Learn about the tools and techniques that are available to help you troubleshoot and resolve problems. You can also

find a list of common issues about Zowe API ML.

Error Message Codes

Use the message code references and the corresponding reasons and actions to help troubleshoot issues.

Sumit an issue

If you have an issue that is specific to Zowe API Mediation Layer, you can submit an issue against the api-layer

repo.

https://docs.zowe.org/stable/user-guide/api-mediation-sso
https://medium.com/zowe/the-zaas-client-a-library-for-the-api-mediation-layer-822ea2994388
https://medium.com/zowe/single-sign-on-to-z-os-rest-apis-with-zowe-6e35fd022a95
https://medium.com/zowe/zowe-client-certificate-authentication-5f1c7d4d579
https://medium.com/zowe/zowe-cli-and-client-certificates-dae341f8f52a
https://github.com/zowe/api-layer/blob/master/CONTRIBUTING.md
https://docs.zowe.org/stable/extend/zowe-conformance-program
https://medium.com/zowe/zowe-conformance-program-7f1574ade8ea
https://docs.zowe.org/stable/troubleshoot/troubleshoot-apiml
https://docs.zowe.org/stable/troubleshoot/troubleshoot-apiml-error-codes
https://github.com/zowe/api-layer/issues

Community resources

Slack channel

Join the #zowe-api Slack channel to ask questions about Zowe API ML, propose new ideas, and interact with the

Zowe community.

Zowe API ML squad meetings

You can join one of the Zowe API ML squad meetings to get involved.

Zowe Blogs on Medium

Read a series of blogs about Zowe on Medium to explore use cases, best practices, and more.

https://openmainframeproject.slack.com/
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://medium.com/zowe

Version: v3.3.x LTS

Using Zowe API ML Single Sign On

You can extend Zowe and utilize Zowe Single Sign On (SSO) provided by Zowe API Mediation Layer (API ML) to enhance

system security and improve the user experience.

REQUIRED ROLES: SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

This article provides an overview of the API ML single sign on feature, the principle participants in the SSO process, and

links to detailed Zowe SSO documentation. Zowe Single Sign On is based on single-user authentication which produces

an access token that represents the user in communication with z/OS services accessible through the API Mediation

Layer. The access token is issued by the Zowe Authentication and Authorization Service (ZAAS), which is part of API ML.

ZAAS issues an access token based on valid z/OS credentials. This token can be validated by any component

participating in SSO.

NOTE

Currently, API ML can provide SSO only in a single security domain.

The following diagram illustrates the interactions between the general participants in the single sign on process.

There are two main types of components that participate in Zowe SSO through API ML:

Zowe API ML client

This type of component is user-facing and can obtain user credentials through a user interface (web, CLI,

desktop).

A Zowe API ML client calls API services through API ML.

An example of such clients are Zowe CLI or Zowe Desktop.

API service accessed via Zowe API ML

A service that is registered to API ML and is accessed through the API ML Gateway.

Services are protected by an access token or PassTicket.

The access token or PassTicket can be validated by the called API service.

The following sections describe what is necessary to utilize SSO for both types of components.

Zowe API ML client

The Zowe API ML client needs to obtain an access token via the /login endpoint of ZAAS by providing z/OS

credentials.

A client can call the ZAAS /query endpoint to validate the token and get information from the token. This is useful

when the API client has the token but does not store the associated data such as the user ID.

The API client needs to provide the access token to API services in the form of a Secure HttpOnly cookie with the

name apimlAuthenticationToken , or in the Authorization: Bearer HTTP header as described in Authenticated

Request.

API service accessed via Zowe API ML

This section describes the requirements that an API service needs to satisfy to adopt a Zowe SSO access token.

The token received by the API ML Gateway is first validated and then may be passed directly to the service.

Alternatively, the API ML Gateway can exchange the token for a PassTicket if the API service is configured to expect a

PassTicket.

The API service should validate the token. It can use ZAAS Client or directly call the query endpoint.

The API service can extract information about the user ID by calling the ZAAS /query endpoint.

The alternative is to validate the signature of the JWT token using the public key of the token issuer (e.g. the API ML

Gateway). The API service needs to have the API ML Gateway certificate along with the full CA certification chain in

the API service truststore.

NOTE

The REST API of ZAAS can easily be called from a Java application using the ZAAS Client.

Existing services that cannot be modified

If you have a service that cannot be changed to adopt the Zowe authentication token, the service can utilize Zowe SSO if

the API service is able to handle PassTickets.

For more information, see Enabling single sign on for extending services via PassTicket configuration.

Further resources

Accessing multiple services with SSO

Enabling single sign on for clients via JSON Web Token (JWT) configuration

https://github.com/zowe/sample-spring-boot-api-service/blob/master/zowe-rest-api-sample-spring/docs/api-client-authentication.md#authenticated-request
https://github.com/zowe/sample-spring-boot-api-service/blob/master/zowe-rest-api-sample-spring/docs/api-client-authentication.md#authenticated-request
https://docs.zowe.org/stable/extend/extend-apiml/zaas-client
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-passtickets
https://docs.zowe.org/stable/user-guide/cli-using-integrating-apiml#accessing-multiple-services-with-sso
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-jwt

Version: v3.3.x LTS

Authenticating with a JSON Web Token (JWT)

REQUIRED ROLES: SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

One user authentication method available in Zowe is via JSON Web Token (JWT), whereby a token can be provided by a

specialized service, which can then be used to provide authentication information.

When a client authenticates with API Mediation Layer, the client receives the JWT which can then be used for further

authentication. If z/OSMF is configured as the authentication provider and the client already received a JWT produced by

z/OSMF, it is possible to reuse this token within API ML for authentication.

This article describes how services in the Zowe API ecosystem are expected to accept and use JWTs so that API clients

have a stadardized experience.

TIP

For more information about authenticating with JWTs, see the Medium blog post Single-Sign-On to z/OS REST APIs

with Zowe.

By default, JWTs are produced by z/OSMF and the API Mediation Layer only serves as a proxy. For information about how

to change who and how tokens are produced, see Authentication Providers within Enable Single Sign On for Clients.

JWT-based Login Flow and Request/Response Format

The following sequence describes how authentication through JWTs works:

First, The API client obtains a JWT by using the POST method on the /auth/login endpoint of the API service that

requires a valid user ID and password.

Secondly, the API client stores the JWT or cookie and sends the token with every request as a cookie with the name

apimlAuthenticationToken .

Obtaining a JWT

To obtain a JWT, call the endpoint with the credentials for either basic authentication or the client certificate.

The full path for API ML is: /gateway/api/v1/auth/login , the full URL could have the format:

https://hostname:port/gateway/api/v1/auth/login .

Credentials are provided in the JSON request or in Basic Authentication. The JSON request example looks like:

Successful login returns RC 204 , and an empty body with the token in the apimlAuthenticationToken cookie.

Failed authentication returns RC 401 without WWW-Authenticate .

Example:

https://medium.com/zowe/single-sign-on-to-z-os-rest-apis-with-zowe-6e35fd022a95
https://medium.com/zowe/single-sign-on-to-z-os-rest-apis-with-zowe-6e35fd022a95
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-jwt#using-saf-as-an-authentication-provider

The following output describes the status of the JWT:

Making an authenticated request

You can send a JWT with a request in two ways:

Allow the API client to pass the JWT as a cookie header.

Pass the JWT in the Authorization: Bearer header.

TIP

The first option (using a cookie header) is recommended for web browsers with the attributes Secure and

HttpOnly . Browsers store and send cookies automatically. Cookies are present on all requests, including those

coming from DOM elements, and are compatible with web mechanisms such as CORS, SSE, or WebSockets.

Cookies are more diffcult to support in non-web applications. Headers, such as Authorization: Bearer , can be

used in non-web applications. Such headers, however, are difficult to use and secure in a web browser. The web

application needs to store these headers and attach these headers to all requests where headers are required.

Allow the API client to pass the JWT as a cookie header

One option to send a JWT with the request is for the API client to pass the JWT as a cookie header with the name

apimlAuthenticationToken :

Example:

Pass the JWT in the Authorization: Bearer header

A second option to send a JWT with the request is to pass the JWT in the Authorization: Bearer header.

Example:

Validating JWTs

The API client does not need to validate tokens. API services must perform token validation themselves. If the API client

receives a token from another source and needs to validate the JWT, or needs to check details in the token, such as user

ID expiration, then the client can use the /auth/query endpoint provided by the service.

The JSON response contains the following fields:

creation

expiration

userId

These fields correspond to iss , exp , and sub JWT claims. The timestamps are in ISO 8601 format.

Execute the following curl command to validate the existing JWT, and to retrieve the contents of the token:

The following output describes the status of the JWT:

Refreshing the JWT

API Clients can refresh the existing token to prolong the validity period.

Use the auth/refresh endpoint to prolong the validity period of the token.

The auth/refresh endpoint generates a new token for the user based on the valid JWT. The full path of the

auth/refresh endpoint appears as the following URL:

The new token overwrites the old cookie with a Set-Cookie header. As part of the process, the old token becomes

invalidated and is no longer usable.

NOTES:

The endpoint is disabled by default. For more information, see Enable JWT endpoint.

The endpoint is protected by a client certificate.

The refresh request requires the token in one of the following formats:

Cookie named apimlAuthenticationToken .

Bearer authentication

For more information, see the OpenAPI documentation of the API Mediation Layer in the API Catalog.

The following request receives a valid JWT and returns the new valid JWT. As such, the expiration time is reset.

The following output describes the status of the JWT:

Token format

The JWT must contain the unencrypted claims sub , iat , exp , iss , and jti . Specifically, the sub is the z/OS user ID,

and iss is the name of the service that issued the JWT.

NOTE

For more information about JWT formatting, see the paragraph 4.1 Registered Claim Names in the Internet

Engineering Task Force (IETF) memo that describes JSON Web Tokens.

The JWT must use the RS256 signature algorithm. The secret used to sign the JWT is an asymmetric key generated

during installation.

Example:

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-jwt#enabling-a-jwt-refresh-endpoint
https://tools.ietf.org/html/rfc7519#section-4.1

Version: v3.3.x LTS

Authenticating with client certificates

REQUIRED ROLES: SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

Authentication for integration with API Mediation Layer (API ML) can also be performed by the client when the service

endpoint is called through the API ML Gateway with client certificates. Client certificates in Zowe follow the X.509

standard which provide secure communication of networks and authenticates the identity of a user, device, or server.

X.509 client certification must be enabled and configured. For details about this configuration, see Enabling single sign

on for clients via client certificate configuration.

NOTES:

When calling the login endpoint with basic authentication credentials, as well as with client certificate, the basic

authentication credentials take precedence and the client certificate is ignored.

If you are calling a specific endpoint on one of the onboarded services, API Mediation Layer ignores Basic

authentication. In this case, the Basic authentication is not part of the authenticated request.

For details about how authentication by means of client certificates is performed in the Gateway, see How the Gateway

resolves authentication later in this article.

Configure your z/OS system to support client certificate

authentication for specific users

Register the client certificate with the user IDs in your ESM.

The following commands show options for both the internal API ML mapper and ZSS.

NOTE

If using the internal API ML mapper (default from Zowe v3) and the MAP / CERTMAP option with distinguished name

filters, use the CHCKCERT or equivalent command on the certificate to use the same order and format of the

certificate's distinguished name as displayed.

RACF

Use the following example if you are using the internal API ML mapper:

Activate the DIGTNMAP class:

Create the mapping for the user and a distinguished name filter:

Click here for an example command in RACF.

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-client-certificates
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-client-certificates

<userid>

Specifies the userid that the certificate maps to.

<subject's-distinguished-name-filter>

Specifies the subject name from the user's certificate.

<label>

Specifies the name (label) to use for reference purposes.

Alternatively, if you disabled the internal API ML mapper, use the following command to add the certificate to a

userid:

Use the following example if you are using ZSS:

TIP

To disable the API ML mapper, ensure that you set the parameter

components.gateway.apiml.security.useInternalMapper to false .

ACF2

Use the following example if you are using the internal API ML mapper:

Create the mapping for the user and a distinguished name filter:

<recid>

Specifies the record ID that uniquely identifies a particular record.

<subject's-distinguished-name-filter>

Specifies the subject name from the user's certificate.

<label>

Specifies the name (label) to use for reference purposes.

<userid>

Specifies the userid that the certificate maps to.

Alternatively, if you disabled the internal API ML mapper, use the following command to add the certificate to a

userid:

Use the following example if you are using ZSS:

Top Secret

Use the following example if you are using the internal API ML mapper:

Click here for an example command in ACF2.

Click here for an example command in Top Secret.

Create the mapping for the user and a distinguished name filter:

<userid>

Specifies the userid that the certificate maps to.

<recid>

Specifies the record ID that uniquely identifies a particular record.

<subject's-distinguished-name-filter>

Specifies the subject name from the user's certificate.

Alternatively, if you disabled the internal API ML mapper, use the following command to add the certificate to an

ACID:

INFO

ACID refers to an Accessor ID which is used by Top Secret to manage users and their permissions. For more

information, see ACIDs in the Top Secret documentation.

Use the following example if you are using ZSS:

Additional details are likely described in your security system documentation.

NOTES

The alternative ESM map commands allow mapping a certificate to a user without adding the X.509 certificate

to the ESM database. While this approach is more convenient, it could be considered less secure than adding

the certificate to the ACID, which offers better control and protection.

Ensure that you have the Issuer certificate imported in the truststore or in the SAF keyring. Alternatively, you

can generate these certificates in SAF.

Ensure that the client certificate has the following Extended Key Usage metadata:

OID: 1.3.6.1.5.5.7.3.2

This metadata can be used for TLS client authentication.

Validate the client certificate functionality

To validate that the client certificate functionality works properly, call the login endpoint with the certificate that was set

up using the steps in Configure your z/OS system to support client certificate authentication for a specific user described

previously in this article.

Validate using CURL, a command line utility that runs on Linux based systems:

Example:

cert

Specifies the certificate location

key

Path to the private key

https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-top-secret-for-z-os/16-0/getting-started/product-overview/acids.html

7554

This value is a place holder. Replace this value with the configured API Gateway port in the instance

x.509 Client Certificate authentication is correctly configured if the result of the request is HTTP 200 with an

apimlAuthenticationToken cookie generated.

Your Zowe instance is configured to accept x.509 client certificates authentication.

Java sample application

Note: This code sample requires JDK 17 or a newer version.

You can find a Java sample application in the Zowe API Layer repository. This sample can help you get started with client

certificate authentication.

To run the application, see Run Client Certificate Authentication Sample in the Zowe API Layer repository.

How the Gateway resolves authentication

When sending a request to a service with a client certificate, the Gateway performs the following process to resolve

authentication:

1. The client calls the service endpoint through the API ML Gateway with the client certificate.

2. The client certificate is verified as a valid TLS client certificate against the trusted certificate authorities (CAs) of the

Gateway.

3. The certificate is checked against the CA in the Zowe keyring. If the certificate is valid, the security service (eg RACF

MAP) then checks to see if the certificate is mapped to a userid. .

4. If the id is authenticated and authorized, the downstream service can use the id for authentication to the

downstream service.

When sending a request to the login endpoint with a client certificate, the Gateway performs the following process to

exchange the client certificate for an authentication token:

1. The client calls the API ML Gateway login endpoint with the client certificate.

2. The client certificate is verified to ensure this is a valid TLS client certificate against the trusted CAs of the Gateway.

3. The public part of the provided client certificate is verified against SAF. SAF subsequently returns a user ID that owns

this certificate.

4. The Gateway then performs the login of the mapped user and returns a valid JWT token.

NOTES:

As of Zowe release 3.0.0, the Internal API ML Mapper is the default API that provides this mapping between the

public part of the client certificate and SAF user ID. Alternatively, you can use Z Secure Services (ZSS) to

provide this API for API ML, with the noted exception when using ACF2, although we recommend using the

internal API ML mapper.

For information about ZSS, see the section Zowe runtime in the Zowe server-side installation overview.

https://github.com/zowe/api-layer/blob/v3.x.x/client-cert-auth-sample/src/main/java/org/zowe/apiml/Main.java
https://github.com/zowe/api-layer/blob/v3.x.x/client-cert-auth-sample/README.md
https://docs.zowe.org/stable/user-guide/install-zos

The following diagram shows how routing works with ZSS, in the case where the ZSS API is used for the identity

mapping.

Version: v3.3.x LTS

Authenticating with a Personal Access Token

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

You can use API Mediation Layer to generate, validate, and invalidate a Personal Access Token (PAT) that can enable

access to tools such as VCS without having to use credentials of a specific person. The use of PAT does not require

storing mainframe credentials as part of the automation configuration on a server during application development on

z/OS. Additionally, using a PAT makes it possible to limit access to specific services and users by means of token

revocation when using a token.

To enable the Personal Access Token functionality read: Enable Personal Access Token

Gateway APIs are available to both users as well as security administrators. APIs for users can accomplish the following

functions:

User APIs

Generate a token

Validate a token

Invalidate a specific token

Invalidate all tokens

APIs for security administrators are protected by SAF resource checking and can accomplish the following functions:

Security Administrator APIs

Invalidate all tokens for a user

Invalidate all tokens for a service

Evict non-relevant tokens and rules

NOTES

An SMF record can be issued when a Personal Access Token is generated. For more information, see SMF records

issued by API ML.

To enable Personal Access Token support when using the Caching Service, Infinispan is the required storage

solution. Infinispan is part of Zowe installation. No additional software or installation is required when using this

storage solution.

For detailed information about using the Personal Access Token as part of single sign on, see the section Using the

Personal Access Token to authenticate later in this article.

TIP

For additional information, see the Medium blog post Personal Access Tokens for the Zowe API Mediation Layer.

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-personal-access-token
https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation-smf
https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation-smf
https://medium.com/zowe/personal-access-tokens-for-the-zowe-api-mediation-layer-53e383ff1e61

User APIs

Generate a token

A user can create the Personal Access Token by calling the following REST API endpoint through the Gateway:

POST /auth/access-token/generate

The full path of the /auth/access-token/generate endpoint appears as:

https://{gatewayUrl}:{gatewayPort}/gateway/api/v1/auth/access-token/generate .

The request requires the body in the following format:

validity

Specifies the expiration time of the token. The maximum threshold is 90 days.

scopes

Specifies the access limits on a service level. This parameter introduces a higher level of security in some aspects.

Users are required to provide a scope. If no service is specified, it is not possible to authenticate using the token.

When creation is successful, the response to the request is a body containing the PAT with a status code of 200 . When

creation fails, the user receives a status code of 401 .

Validate a token

The user can validate the Personal Access Token by calling the following REST API endpoint through the Gateway:

POST /auth/access-token/validate

The full path of the /auth/access-token/validate endpoint appears as https://{gatewayUrl}:

{gatewayPort}/gateway/api/v1/auth/access-token/validate .

The request requires the body in the following format:

NOTE

The user has the option of calling this API to validate the token, however, validation is also automatically performed

by the API ML.

When validation is successful, the response to the request is an empty body with a status code of 204 . When validation

fails, the user receives a status code of 401 .

Invalidate a specific token

The user can invalidate the Personal Access Token by calling the following REST API endpoint through the Gateway:

DELETE /auth/access-token/revoke

The full path of the /auth/access-token/revoke endpoint appears as https://{gatewayUrl}:

{gatewayPort}/gateway/api/v1/auth/access-token/revoke .

The request requires the body in the following format:

When the /auth/access-token/revoke endpoint is called, the provided hash of the PAT is stored in the cache by the

Caching Service under the invalidTokens key. As such, the token is invalidated. Access to these entries is protected by

the API ML client certificate.

When invalidation is successful, the response to the request is an empty body with a status code of 204 . When

invalidation fails, the user receives a status code of 401 .

Invalidate all tokens

The user can invalidate all Personal Access Tokens by calling the following REST API endpoint through the Gateway:

DELETE /auth/access-token/revoke/tokens

The full path of the /auth/access-token/revoke/tokens endpoint appears as https://{gatewayUrl}:

{gatewayPort}/gateway/api/v1/auth/access-token/revoke/tokens .

The body can optionally provide a timestamp as part of the request. Use the following format for the body:

If the body is not provided, the timestamp value defaults to the current date.

When the /auth/access-token/revoke/tokens endpoint is called, the provided user rule is stored in the cache by the

Caching Service under the invalidUsers key. As such, all of the tokens of the user are invalidated. Access to these

entries is protected by the client certificate of the API ML.

When invalidation is successful, the response to the request is an empty body with a status code of 204 . When

invalidation fails, the user receives a status code of 401 .

Security Administrator APIs

Invalidate all tokens for a user

If a security breech is suspected, the security administrator can invalidate all the tokens based on criteria as established

by rules. Such criteria define the level of access control and can restrict access in advance. Rule based access

restriction can be applied by either user ID or service scopes.

NOTE

Rules are entries used to revoke the tokens either by users or by services. Such rule entries for services appear in

the following format:

Rule entries for users appear in the following format:

The Security Administrator with specific access to SAF resources can invalidate all tokens bound to a specific user by

calling the following REST API endpoint through the Gateway:

DELETE /auth/access-token/revoke/tokens/users

The full path of the /auth/access-token/revoke/tokens/users endpoint appears as https://{gatewayUrl}:

{gatewayPort}/gateway/api/v1/auth/access-token/revoke/tokens/users .

The request requires the body in the following format:

userId

Specifies the user the revocation is applied to.

timestamp

Specifies the date of revocation (the default value is the current time) in milliseconds. The timestamp is used to

specify that tokens created before the date specified in the timestamp are invalidated. As such, any subsequent

tokens created after that date are not affected by the user rule.

By calling this endpoint, the user rule is stored in the cache by the Caching Service under the invalidUsers key.

When invalidation is successful, the response to the request is an empty body with a status code of 204 . When

invalidation fails, the user receives a status code of 401 .

Invalidate all tokens for a service

A security administrator who has specific access to SAF resources can invalidate all tokens bound to a specific service by

calling the following REST API endpoint through the Gateway:

DELETE /auth/access-token/revoke/tokens/scope

The full path of the /auth/access-token/revoke/tokens/scope endpoint appears as https://{gatewayUrl}:

{gatewayPort}/gateway/api/v1/auth/access-token/revoke/tokens/scope .

The request requires the body in the following format:

Invalidation of all tokens is possible by using rules based on service scopes.

serviceId

Specifies the service to which the revocation should be applied (e.g. APPL IDs).

timestamp

Specifies the date of revocation (the default value is the current time) in milliseconds. A timestamp is used to state

that tokens created before the date specified in the timestamp are invalidated. As such, any subsequent tokens

created after that date are not affected by the service rule.

Calling this endpoint stores the service rule in the cache by the Caching Service under the invalidScopes key.

When invalidation is successful, the response to the request is an empty body with a status code of 204 . When

invalidation fails, the user receives a status code of 401 .

Evict non-relevant tokens and rules

The Security Administrator with specific access to SAF resources can evict non-relevant invalidated tokens and rules

from the cache by calling the following REST API endpoint through the Gateway:

DELETE /auth/access-token/evict

The full path of the /auth/access-token/evict endpoint appears as https://{gatewayUrl}:

{gatewayPort}/gateway/api/v1/auth/access-token/evict .

The /auth/access-token/evict endpoint evicts all invalidated tokens which were expired and all the rules related to the

expired tokens.

The main purpose of the eviction API is to ensure that the size of the cache does not grow unbounded. The token

verification process requires processing of all rules, including those which may no longer be applicable. As such,

verification processing may result in needless associated costs if there are stored rules which are no longer relevant.

When eviction is successful, the response to the request is an empty body with a status code of 204 . When eviction fails

due to lack of permissions, the administrator receives a status code of 403 .

Using the Personal Access Token to authenticate

There are four ways the API client can use the Personal Access Token to authenticate as part of the Single Sign On in

which a service is specified in the scopes at the time when the token is issued:

Using the Authorization: Bearer request header.

Example:

Using a Secure HttpOnly cookie with the name apimlAuthenticationToken .

Example:

Using a Secure HttpOnly cookie with the name personalAccessToken .

Example:

Using a request header with the name PRIVATE-TOKEN .

Example:

In these examples, the API client is authenticated.

If the API client tries to authenticate with a service that is not defined in the token scopes, the X-Zowe-Auth-Failure

error header is set and passed to the southbound service. The error message contains a message that the provided

authentication is not valid.

Version: v3.3.x LTS

Authenticating with OIDC

REQUIRED ROLES: SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

The OpenID Connect (OIDC) protocol adds an identity layer on top of the OAuth2 Authorization protocol.

OIDC authentication, together with the z/OS Identity Propagation mechanism, is the foundation of the API Mediation

Layer (API ML) Identity Federation. In this article, OIDC is often referred to as the provider, while the token-related

functionality is actually provided by the OAuth2 component of the OIDC implementation.

You can configure Zowe API ML to authenticate users by accepting Access Tokens issued by an external OIDC provider.

This configuration is useful in advanced deployments of Zowe where client applications need to access mainframe as

well as enterprise/distributed systems while simultaneously offering single sign-on (SSO) across system boundaries.

This article details the API ML OIDC authentication functionality, and describes how to configure the OIDC Authentication

feature.

NOTE

There is a limitation with respect to performing authentication using Z Secure Services (ZSS) with ACF2 systems. If

you are using ACF2, use the recommended internal API ML mapper described in the API ML OIDC configuration

section.

Usage

Authentication flow

Prerequisites

ESM configuration

API ML configuration

OIDC client configuration

OIDC resource server configuration

Troubleshooting

Usage

API ML functions as an OIDC client application, enabling users to initiate the OIDC authentication flow. After successful

user login, the OIDC provider grants the client application a JWT Access Token along with a JWT Identity Token. The

access token is then returned to the user agent in the "apimlAuthenticationToken" cookie. The user agent can pass this

Access Token with subsequent requests to mainframe services routed through the API ML Gateway. The API ML Gateway

then validates the OIDC Access Token. If the token is valid, the user identity from that token is mapped to the mainframe

identity of the user. The API ML Gateway can then create mainframe user credentials (e.g. JWT, PassTicket) according to

the service's authentication schema configuration or forward a valid OIDC access token if the user is not mapped. The

request is routed to the target API services with correct mainframe user credentials.

Authentication Flow

https://openid.net/specs/openid-connect-core-1_0.html
https://www.rfc-editor.org/rfc/rfc6749
https://www.redbooks.ibm.com/redbooks/pdfs/sg247850.pdf

The following diagram illustrates the interactions between the participants of the OIDC based API ML authentication

process.

Workflow description between OICD participants

1. The user accesses the agent.

2. The user agent requests the client application without valid authentication or an access token.

3. The client redirects the user agent to the login end-point of the distributed OIDC provider.

4. The user is asked to provide valid credentials (authentication factors).

5. The user provides credentials.

6. The agent sends these credentials to the OIDC provider for validation.

7. After successful validation of all authentication factors, the OIDC provider grants the client an Access Token.

8. The client application replies with an access token in the set-cookie header.

9. The user agent can then request from API ML Gateway the needed mainframe resources presenting the access token

in the request.

10. The Gateway validates the access token in one of two ways:

i. By cryptographically validating the token using the public key retrieved from the authorization server's JSON

Web Key Set (JWKS) endpoint, matching the token's key ID with the key IDs provided.

(components.gateway.apiml.security.oidc.validationType: JWK).

Notes:

The URL to the specific authorization server's JWKS endpoint should be set using the property

components.gateway.apiml.security.oidc.jwks.uri .

The interval can be set using the property

components.gateway.apiml.security.oidc.jwks.refreshInternalHours . (The default value is one hour.)

ii. By querying the UserInfo endpoint to verify the token's validity and retrieve user information

(components.gateway.apiml.security.oidc.validationType: endpoint).

Note: The URL to the specific authorization server's UserInfo endpoint should be set using the property

components.gateway.apiml.security.oidc.userInfo.uri .

11. The Gateway caches the valid access token.

12. The Gateway maps the distributed identity from the access token to the z/OS identity.

When user mapping exists

13. The API ML Gateway generates mainframe user credentials (Zowe JWT, SAF IDT, or PassTicket) which are expected

by the target mainframe service.

14. Calls the API with credentials.

15. Services validates generated mainframe credentials.

16. The requested data is returned.

17. The requested data is returned to the user agent.

When user mapping does not exist

14. The API ML Gateway calls the requested mainframe service/s with the access token in the OIDC-token header.

15. The service validates the OIDC-token .

16. The requested data is returned.

17. The requested data is returned to the user agent.

Prerequisites

Ensure that the following prerequisites are met:

Users who require access to mainframe resources using OIDC authentication have a mainframe identity managed by

SAF/ESM.

SAF/ESM is configured with mapping between the mainframe and distributed user identities. For details, see the

section ESM configuration in this topic.

If you are using Zowe release 2.14 or a later release, ensure that the API ML Gateway is configured to use the

internal mapper functionality. For information about enabling the API ML mapper, see Configure internal API ML

mapper. Alternatively, enable ZSS in the Zowe installation, however using the internal mapper is the recommended

method. ZSS is enabled by default.

OIDC provider prerequisites

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-client-certificates#configure-internal-api-ml-mapper
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-client-certificates#configure-internal-api-ml-mapper

Client Application configuration in the OIDC provider

Depending on the OIDC provider and client application capabilities, configuration of the OIDC provider varies. For

example, web applications with a secure server side component can use code grant authorization flow and can

be granted a Refresh Token, whereas a Single Page Application running entirely in the User Agent (browser) is more

limited regarding its security capabilities.

TIP

Consult your OIDC provider documentation for options and requirements available for your type of client

application.

Users have been assigned to the Client Application

To access mainframe resources, users with a distributed authentication must either be directly assigned by the OIDC

provider to the client application, or must be part of group which is allowed to work with the client application.

ESM configuration prerequisites

The user identity mapping is defined as a distributed user identity mapping filter, which is maintained by the System

Authorization Facility (SAF) / External Security Manager (ESM). A distributed identity consists of two parts:

1. A distributed identity name

2. A trusted registry which governs that identity

Administrators can use the installed ESM functionality to create, delete, list, and query a distributed identity mapping

filter or filters.

Ensure that all the security configuration prerequisites are met by following the steps described in configure the main

Zowe server to use distributed identity mapping.

Use the commands specific to your ESM to create a distributed identity mapping filter.

NOTE

User specified parameters are presented in the section Parameters in the ESM commands.

For RACF

For more details about the RACMAP command, see RACMAP command.

For Top Secret

Click here for RACF configuration details.

Click here for Top Secret configuration details.

https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-distributed-identity-mapping
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-distributed-identity-mapping
https://www.ibm.com/docs/en/zos/2.3.0?topic=rcs-racmap-create-delete-list-query-distributed-identity-filter

For more details about mapping a distributed identity username and a distributed registry name to a Top Secret

ACID, see IDMAP Keyword - Implement z/OS Identity Propagation Mapping.

For ACF2

For more details about mapping a distributed user to a logonid, see IDMAP User Profile Data Records.

Parameters in the ESM commands

userid

Specifies the ESM user id.

distributed-identity-user-name

Specifies the user ID for distributed-identity-registry.

distributed-identity-registry-name

Specifies the registry value under which the user is defined in the ESM.

label-name

Specifies the name for the distributed-identity mapping filter.

Example for RACF:

Alternatively, API ML provides a Zowe CLI plug-in to help administrators generate a JCL for creating the mapping filter

specific for the ESM installed on the target mainframe system. These JCLs can be submitted on the corresponding ESM to

create a distributed identity mapping filter.

For details about how to use the plug-in tool to set up mapping in the ESM of your z/OS system, see the Identity

Federation CLI plug-in documentation.

API ML OIDC configuration

OIDC client configuration

The Gateway service can be configured to provide OIDC client functionality and initiate the OIDC authentication flow to

obtain an access token. Provide the following configuration in your zowe.yaml file:

provider-id

The ID of the Identity provider. Currently supported options are okta and entra .

components.gateway.spring.security.oauth2.client.registration.<provider-id>.issuer

The URL of the Token issuer.

Example: https://dev-okta.com/oauth2 .

components.gateway.spring.security.oauth2.client.registration.<provider-id>.clientId

The Client application ID.

Click here for ACF2 configuration details.

https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-top-secret-for-z-os/16-0/administrating/issuing-commands-to-communicate-administrative-requirements/keywords/idmap-keyword-implement-z-os-identity-propagation-mapping.html
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-acf2-for-z-os/16-0/administrating/administer-records/user-profile-records/idmap-user-profile-records.html
https://docs.zowe.org/stable/user-guide/cli-idfplugin
https://docs.zowe.org/stable/user-guide/cli-idfplugin

components.gateway.spring.security.oauth2.client.registration.<provider-id>.clientSecret

The Client application secret.

components.gateway.spring.security.oauth2.client.provider.<provider-id>.authorizationUri

The URL for the authorization request.

components.gateway.spring.security.oauth2.client.provider.<provider-id>.tokenUri

The URL to obtain the token.

components.gateway.spring.security.oauth2.client.provider.<provider-id>.userInfoUri

The URL to retrieve user information.

components.gateway.spring.security.oauth2.client.provider.<provider-id>.userNameAttribute

The JWT attribute to locate the user ID.

components.gateway.spring.security.oauth2.client.provider.<provider-id>.jwkSetUri

The URL to retrieve the JSON Web Key Set.

TIP

Consult your OIDC provider documentation for options and requirements available for your type of client

application.

OIDC resource server configuration

Use the following procedure to enable the feature to use an OIDC Access Token as the method of authentication for the

API Mediation Layer Gateway.

TIP

You can leverage the Zowe CLI Identity Federation (IDF) Plug-in for Zowe CLI to extend Zowe CLI to make it easier to

map mainframe users with an identity provided by an external identity provider. This plug-in is designed to work

with the ESMs: IBM RACF, Broadcom ACF2, and Broadcom Top Secret.

For more information about the Zowe CLI Identity Federation Plug-in, see the README file in the api-layer repo.

In the zowe.yaml file, configure the following properties:

components.gateway.apiml.security.oidc.enabled

Set the value to true to enable OIDC resource server functionality for authentication.

components.gateway.apiml.security.oidc.registry

Specifies the SAF registry used to group the identities recognized as having OIDC identity mapping. The registry

name is the string used during the creation of the mapping between the distributed and mainframe user identities.

For more information, see distributed-identity-registry-name value used in the ESM configuration.

components.gateway.apiml.security.oidc.validationType

Specifies the validation type for OIDC authentication functionality, which is set to JWK by default. To enable access

token validation using a remote endpoint, set this property to endpoint . When set to endpoint , the Gateway uses

the URI sepecified in the property userInfo to validate access tokens.

For endpoint validation type, configure following options

https://github.com/zowe/api-layer/edit/v3.x.x/zowe-cli-id-federation-plugin/README.md

components.gateway.apiml.security.oidc.userInfo.uri

Specifies the URI obtained from the authorization server's metadata where the Gateway queries the userInfo

endpoint for access token validation.

For JWK validation type, configure following options

components.gateway.apiml.security.oidc.jwks.uri

Specifies the URI obtained from the authorization server's metadata where the Gateway will query for the

JWK used to sign and verify the access tokens.

components.gateway.apiml.security.oidc.jwks.refreshInternalHours

(Optional) Specifies the frequency in hours to refresh the JWK keys from the OIDC provider. Defaults to one

hour.

Example for OKTA:

Troubleshooting

API ML fails to validate the OIDC access token with the Distributed Identity

Provider

Symptom

The Gateway log contains the following ERROR message:

Failed to validate the OIDC access token. Unexpected response: XXX.

XXX

is the HTTP status code returned by the Identity Provider.

Explanation

The HTTP code is one of the 40X variants that provides the reason for the failure.

Solution

Correct the Gateway configuration according to the code returned by the OIDC Identity Provider.

The access token validation fails with HTTP error

Symptom

The OIDC provider returns an HTTP 40x error code.

Explanation

The client application is not properly configured in the API ML Gateway.

Solution

Check that the URL components.gateway.apiml.security.oidc.jwks.uri contains the key for OIDC token validation. If

oidc.validationType is set to endpoint , ensure that the components.gateway.apiml.security.oidc.userInfo.uri is

properly configured and valid.

TIP

API ML Gateway exposes a validate token operation which is suitable during the OIDC setup. The call to the

endpoint /gateway/api/v1/auth/oidc-token/validate verifies if the OIDC token is trusted by API ML. Note that the

Gateway service does not perform the mapping request to the ESM when the /gateway/api/v1/auth/oidc-

token/validate endpoint is called.

Use the following curl command to make a REST request with the OIDC token to the validate token endpoint:

An HTTP 204 code is returned if the validation passes. Failure to validate returns an HTTP 40x error.

AZURE ENTRA ID OIDC NOTES:

API ML uses the sub claim of the ID Token to identify the user, and to map to the mainframe account. Note that the

structure of the sub claim varies between the Azure token and the OKTA ID token:

The Azure token sub is an alphanumeric value.

For more information, see the topic Use claims to reliably identify a user in the Microsoft Learn documentation.

The OKTA ID token has an email in the sub claim.

For more information about Entra ID token format see ID token claims reference in the Microsoft documentation.

Version: v3.3.x LTS

Using multi-factor authentication (MFA)

Zowe offers the option to use multi-factor authentication (MFA) systems, which require users to provide multiple

authentication factors during logon to verify the user's identity. When using multi-factor authentication, it is necessary

that each authentication factor be from a separate category of credential types. While multi-factor authentication is

supported by Zowe, there are limitations for this feature to function properly. This topic explains the limitations of using

MFA in Zowe and recommendations to address these limitations.

The Zowe API Mediation Layer, Zowe App Framework, and all apps present in the SMP/E or convenience builds support

out-of-band MFA. Users are required to enter an MFA assigned token or passcode into the password field of the Desktop

login screen or authentication to the API Catalog.

Alternatively, a user can access one of the authentication endpoints such as /gateway/auth/login within the API

Mediation Layer or via App-servers /auth REST API endpoint.

When using MFA with Zowe CLI or the API ML Catalog, users are required to log in with their mainframe user name and

MFA token.

Prerequisite

If you use z/OSMF as your authentication provider, ensure that you meet the following prerequisite to use MFA with Zowe

CLI or API ML Catalog:

z/OSMF APAR for MFA must be installed on the system. For more information, see this APAR in IBM Support.

Known Limitations and Recommendations

Unintentional Reuse of MFA Token

When z/OSMF is used as a security provider, it is possible to reuse MFA tokens, whereby it is possible to receive a JWT

token based on previously used MFA token. This presents a security risk.

This issue can be resolved by configuring z/OSMF to work properly with API ML. For details about how to make the

changes to z/OSMF settings, see the section Disable Chache in z/OSMF in the article Configuring z/OSMF.

No Notification when Additional Input is Required

Neither Zowe CLI nor API Catalog issue a notification when a user is required to provide additional input. This can occur

in cases such as when a user signon attempt triggers the requirements of a New Pin or Next Token. The user must

resolve this situation outside of Zowe. Depending on the current authentication factor enabled (RSA SecurID or RADIUS),

the user can use TSO console or MFA Self-service facilities.

We recommend you first try to access self-service facilities and resolve the issue there. If you are unable to access your

self-service facilities, contact your system administrator.

TIPS:

https://www.ibm.com/support/pages/apar/PH39582
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf#disable-cache-in-zosmf

For more information about how to manage multi-factor authentication credentials in AAM, see Configure the

Global Factor for Enterprise Multi-Factor Authentication with IBM RACF in the Advanced Authentication

Mainframe 2.0 Broadcom documentation.

For more information about how to manage multi-factor authentication credentials in IBM Z MFA, see IBM Z

Multi-Factor Authentication.

Additionally, Zowe API ML can be configured to accept OIDC/OAuth2 user authentication tokens. In this

particular case, MFA support is built into the OIDC provider system. This support alternative does not rely on the

mainframe MFA technology, but is equally secure.

For more information about different ways to sign on with the RADIUS credentials, see Sign On When Using

RADIUS Credentials with IBM RACF.

Token Expiration when Stored in the Authorization Dialog in "Try it out"

When using the API Catalog, you have the option to use the "Try it out" functionality to test a protected endpoint. In this

case, you are given the option to provide and store MFA credentials in the Authorization dialog. As the MFA token has a

short lifetime, we do not recommend storing your MFA token when using this feature.

You can, however, continue to use your credentials in the Authorization dialog when you set a fixed password, rather

than using an MFA token. Alternatively, you can store your credentials in the Authorization dialog if your account is

configured to bypass MFA mode. In this case, authentication is performed through the mainframe credentials of the user.

https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-advanced-authentication-mainframe/2-0/installing/complete-configuration-tasks/configure-product-manually/configure-enterprise-multi-factor-authentication/configure-the-global-factor-for-enterprise-multi-factor-authentication-with-ibm-racf.html
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-advanced-authentication-mainframe/2-0/installing/complete-configuration-tasks/configure-product-manually/configure-enterprise-multi-factor-authentication/configure-the-global-factor-for-enterprise-multi-factor-authentication-with-ibm-racf.html
https://www.ibm.com/products/ibm-multifactor-authentication-for-zos
https://www.ibm.com/products/ibm-multifactor-authentication-for-zos
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-advanced-authentication-mainframe/2-0/using-radius-authentication/sign-on-when-using-radius-credentials-with-ibm-racf.html
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-advanced-authentication-mainframe/2-0/using-radius-authentication/sign-on-when-using-radius-credentials-with-ibm-racf.html

Version: v3.3.x LTS

Routing requests to REST APIs

API consumers can access any services onboarded to the API Mediation Layer through a single port. In this context,

'service' refers to one or more instances that share the same API and are onboarded under the same service Id. Some

services provide versioned APIs, while other services provide an unversioned API. From the consumer side, the API

Mediation Layer takes care of situations in which one instance is down and/or ditributing the load between different

instances of a service.

Types of services include both versioned and nonversioned services:

Versioned services

Routing with service ID and version

Nonversioned services

Using only the service ID

Under certain conditions it is possible to route to a specific instance of service.

Terminology

Service

A service provides one or more APIs, and is identified by a service ID. Note that sometimes the term "service

name" is used to mean the service ID.

The default service ID is provided by the service developer in the service configuration file.

A system administrator can replace the service ID with a deployment environment specific name using

additional configuration that is external to the service deployment unit. Most often, configuration is performed in

a JAR or WAR file.

Services are deployed using one or more service instances, which share the same service ID and

implementation.

URI (Uniform Resource Identifier)

The URI is a string of characters used to identify a resource. Each URI must point to a single corresponding resource

that does not require any additional information, such as HTTP headers.

Basic Routing

The basic method of routing is based on the service ID. For services that have multiple versions of an API, the secondary

parameter is the version of the API that the user wants to reach.

API ML Routing to the Versioned service

The URI identifies the resource, but does not identify the instance of the service as unique when multiple instances of

the same service are provided, such as when a service is running in high-availability (HA) mode. To get to a specific

instance, it is necessary to access the instance with a specific API ML configuration and header X-Instance-Id.

In addition to the basic Zuul routing, the Zowe API Gateway supports versioning in which the user can specify a major

version. The Gateway routes a request only to an instance that provides the specified major version of the API.

The /api/ prefix is used for REST APIs.

The prefix /ui/ applies to web UIs

The prefix /ws/ applies to WebSockets

The prefix /graphql/ applies to the GraphQL API

The URL expected by the API Gateway has the following format:

https://{gatewayHost}:{port}/{serviceId}/api/v{majorVersion}/{resource}

Example:

The following address shows the original URL of a resource exposed by a service:

The following address shows the API Gateway URL of the resource:

The following diagram illustrates how basic routing works:

Implementation details for routing

Zowe architecture with high availability enablement on

Sysplex

The following diagram illustrates the difference in locations of Zowe components when deploying Zowe into a Sysplex

with high availability enabled as opposed to running all components on a single z/OS system.

Zowe has a high availability feature built-in. To enable this feature, you can define the haInstances section in your YAML

configuration file.

The preceding diagram shows that ZWESLSTC started two Zowe instances running on two separate LPARs. These LPARs

can be on the same or different sysplexes.

Sysplex distributor port sharing enables the API Gateway 7554 ports to be shared, which makes it possible for

incoming requests to be routed to either the Gateway on LPAR A or LPAR B.

The discovery servers on each LPAR communicate with each other and share their registered instances, which allows

the API Gateway on LPAR A to dispatch APIs to components either on its own LPAR, or alternatively to components on

LPAR B. As indicated in the diagram, each component has two input lines: one from the API Gateway on its own

LPAR, and one from the Gateway on the other LPAR. When one of the LPARs goes down, the other LPAR remains

operating within the sysplex, thereby providing high availability to clients that connect through the shared port

irrespective of which Zowe instance is serving the API requests.

The zowe.yaml file can be configured to start Zowe instances on more than two LPARS, and also to start more than one

Zowe instance on a single LPAR, thereby providing a grid cluster of Zowe components that can meet availability and

scalability requirements.

The configuration entries of each LPAR in the zowe.yaml file control which components are started. This configuration

mechanism makes it possible to start just the desktop and API Mediation Layer on the first LPAR, and start all of the

Zowe components on the second LPAR. Because the desktop on the first LPAR is available to the gateway of the second

LPAR, all desktop traffic is routed to the second LPAR.

The caching services for each Zowe instance, whether on the same LPAR, or distributed across the sysplex, are

connected to each other by the same shared VSAM data set. This arrangement allows state sharing so that each

instance behaves similarly to the user irrespective of where their request is routed.

To learn more about Zowe with high availability enablement, see Configuring Sysplex for high availability.

API Versioning

Service instances provide one or more different API versions. One important assumption is that one service instance

does not provide two versions with the same major version. No assumptions are made regarding which versions are

provided and how. As such, an instance can provide only one version and that another version is provided by a different

instance, and other services can have instances that provide multiple versions.

The API user specifies only the major version in the URI. The API Catalog needs to differentiate between different full

versions internally and be able to return a specific full version or return documentation for the highest version of the

specified major version that is supported by all running services.

Guidelines

The version of the API is not dependent on the product release.

Two last versions are supported.

Major version

This version is specified by the user of the API in the URI, and increased only when a backward incompatible change

is introduced. This circumstance is rare because the REST APIs should be designed to allow extensibility.

Minor version

This version is not specified in the URI but the user should know what is it. It is important to display the correct level

of documentation. The minor version is increased when the API is extended with a new feature (if you use a new

resource available in v1.2, the request fails on v1.1). If there are multiple instances of the services that have

different minor versions, the service together will state that the lowest minor version is available.

Example:

Instance A provide v1.3 and v2.2. Instance B was not yet upgraded and provides v1.2 and v2.1. Subsequently, the

service provides v1.2 and v2.1.

Patch version

The Patch version is not specified in the URI and does not indicate a difference in the API. A patch version is used

only when the API documentation is patched or a bug was fixed with no change in the API.

https://docs.zowe.org/stable/user-guide/configure-sysplex

Version: v3.3.x LTS

Routing with WebSockets

In WebSocket routing, the API ML Gateway acts as both a WebSocket server for the client requesting this connection, and

as a WebSocket client.

The following schema describes the interactions between client-side and server-side components where the Gateway

has a double role as both client and server.

TIP

We recommend that clients implement a ping-like mechanism to maintain the opened WebSocket sessions and not

rely on the web browser to perform this action.

Security and Authentication

Subprotocols

High availability

Idle Timeout

Diagnostics

Limitations

Security and Authentication

The API Gateway usually uses TLS with the wss protocol. Services that use TLS enable the API Gateway to use wss to

access these services. Services that do not use TLS require the API Gateway to use the ws protocol without TLS. The API

Gateway also supports basic authentication via WebSocket.

Subprotocols

In addition to plain WebSocket support, API Mediation Layer also supports WebSocket subprotocols. Currently, only

STOMP v1.2 and STOMP v1.1 are supported and tested.

NOTE

It is possible to update the list of currently supported WebSocket subprotocols. Update the API Gateway

configuration using the environment variable SERVER_WEBSOCKET_SUPPORTEDPROTOCOLS with the value of comma-

separated subprotocol names. Support for additional subprotocols is not guaranteed as these subprotocols are not

being tested.

Example:

High availability

In the high availability scenario, a WebSocket session is established between client and a selected Gateway. This session

is then tied to this instance for its entire duration.

Idle Timeout

The WebSocket client on the API ML Gateway has a default Idle timeout of one hour. If a WebSocket session between the

Gateway WebSocket Client and the Service's WebSocket Server is inactive for the entire period, the connection is closed.

To customize this setting, set the following property in zowe.yaml:

NOTE

This setting is global for the API ML Gateway.

Diagnostics

The list of active routed WebSocket sessions is available at the Actuator endpoint websockets . On localhost , it is

available at https://localhost:10010/application/websockets.

The actuator endpoint is enabled with debugging enabled in the API ML Gateway.

Limitations

Different HTTP status code errors may result. The WebSocket session starts before the session starts between the

Gateway and the service. When a failure occurs when connecting to a service, the WebSocket session terminates with

the WebSocket close code and a description of the failure that occurred between the Gateway and the Service rather

than an HTTP error code.

https://localhost:10010/application/websockets

Version: v3.3.x LTS

Using GraphQL APIs

GraphQL is a query language for APIs that provides descriptions of the data in your APIs, and allows for specific queries

to facilitate API development. Routing for such APIs is possible within the Zowe ecosystem, however at the present time,

Zowe itself does not provide any GraphQL APIs.

For more information about configuring routing to API ML, see the following articles:

Implementing routing to the Gateway

Routing Requests to REST API

TIP

For information about how to use GraphQL, see GraphQL Best Practices in the GraphQL product documentation.

For information about how to use HTTP to deliver the GraphQL interface, see Serving over HTTP in the GraphQL

product documentation.

Difference between GraphQL APIs and traditional REST APIs

REST APIs operate on the principle of resource-based endpoints. Each endpoint in a REST API corresponds to a specific

resource (like a user or product), and the type of request (GET , POST , PUT , DELETE) dictates the operation performed on

that resource. This approach leads to a straightforward and uniform interface but often results in the over-fetching or

under-fetching of data. Over-fetching occurs when the fixed data structure of an endpoint returns more information than

the client needs, while under-fetching happens when the client must make additional requests to gather all the

necessary data. Additionally, REST APIs rely heavily on HTTP status codes for error handling and utilize standard HTTP

methods for caching and statelessness.

By contrast, GraphQL offers a more flexible and efficient way of working with data. Unlike REST, which uses multiple

endpoints, GraphQL uses a single endpoint through which clients can make versatile queries. These queries are tailored

to retrieve exactly the data required, eliminating over-fetching and under-fetching issues inherent in REST. GraphQL's

strongly typed system, defined by a schema, ensures that the data conforms to a specific structure, providing a contract

between the server and client. This approach simplifies data retrieval for complex, nested data and allows for more

precise error handling within the responses. However, GraphQL's flexibility can lead to more complex queries and

demands careful consideration regarding performance, especially in designing how queries are resolved on the server

side.

Routing to GraphQL example

The following routing example applies only to services extending API ML that provide GraphQL APIs.

Use the following format to map to a GraphQL API:

Example:

https://docs.zowe.org/stable/extend/extend-apiml/implementing-routing-to-the-api-gateway
https://docs.zowe.org/stable/user-guide/api-mediation/routing-requests-to-rest-apis
https://graphql.org/learn/best-practices/
https://graphql.org/learn/serving-over-http/

routes:

gatewayUrl: "api/v1/graphql" serviceUrl: "/graphql"

In this example, the service has a service ID of helloworldservice that exposes the following endpoints:

GraphQL https://gateway/helloworldservice/api/v1/graphql routed to https://hwServiceHost:port/graphql/

where:

The gatewayUrl is matched against the prefix of the URL path used at the Gateway https://gateway/urlPath

urlPath is serviceId/prefix/resourcePath .

The service ID is used to find the service host and port.

The serviceUrl is used to prefix the resourcePath at the service host.

NOTE

The service ID is not included in the routing metadata. Instead, the service ID is in the basic Eureka metadata.

How GraphQL Works

GraphQL operates through the type system you define for your data and uses the following structure:

Schema Definition

Define a 'schema' or a model of the data that can be queried through the API. This schema acts as a contract

between the client and the server.

Query

Clients send queries to your GraphQL server. These queries specify what data the client needs.

Resolving Queries

The server processes these queries according to the schema and returns the appropriate results.

Key Concepts of GraphQL

Queries and Mutations

In GraphQL, queries are used for reading data, while mutations are used for writing data. This clear separation

makes understanding and maintaining the API simpler.

Real-time Data with Subscriptions

GraphQL supports subscriptions, which allow clients to subscribe to real-time updates, essential for dynamic content

applications.

Strongly Typed

GraphQL APIs are strongly typed so that every operation is checked and validated against the schema, leading to

more reliable and predictable APIs.

Displaying GraphQL in API Catalog

Since Zowe v3, it is possible to configure the service to display an interactive documentation UI inside the API Catalog

services' detail page.

This capability is enabled in the API Catalog by default. It requires the service to onboard to the Discovery Service with

apiml.apiInfo.api-<version>.graphqlUrl set to the endpoint where the service exposes the GraphQL API.

Version: v3.3.x LTS

Multitenancy Configuration

Zowe supports management of multiple tenants, whereby different tenants can serve different purposes or different

customers. The use case for multi-tenant support is when a service provider manages sysplexes/monoplexes for multiple

customers. This configuration makes it possible to have a single access point for all customers, and properly route and

authenticate across different domains.

Overview of API MLs

The following diagram illustrates communication between the API Mediation Layers and Zowe in multiple domains. Note

that some API MLs may be running in a sysplex (HA), while others may be in a monoplex (non-HA).

The diagram illustrates a Multitenacy environment where the API MLs in Domain(2-N) are registered to API ML in Domain-

1. The API ML in Domain-1 may be running on z/OS, or off z/OS, for example in Kubernetes. This API ML serves as a single

point of access to all API Mediation Layers registered in this and, by extension, to all services registered in those API MLs.

The API MLs in Domain(2-N) are installed on z/OS systems with the standard Zowe API ML running either in HA (sysplex)

or non-HA (monoplex). These API MLs are registered to API ML in Domain-1.

Multitenancy component enablement settings

In the multitenancy environment, certain Zowe components may be enabled, while others may be disabled. The

multitenancy environment expects one API ML (for example API ML in Domain-1) that handles the discovery and

registration as well as routing to the other API MLs (API MLs in Domain(2-N)) installed in any other specific domains.

Onboarding a Gateway service in one domain to the Discovery

service of API ML in another domain

A Gateway from any domain can onboard Gateways of any other domains. Onboarding this service can be achieved

similar to additional registrations of the Gateway. This section describes the dynamic configuration of the yaml file and

environment variables, and how to validate successful configuration.

Dynamic configuration via zowe.yaml

Dynamic configuration via Environment variables

Dynamic configuration via zowe.yaml

1. In zowe.yml, set the following property for the Gateway of API MLs in Domain(2-N) to dynamically onboard to the

Discovery service of API ML in Domain-1:

components.gateway.apiml.service.additionalRegistration

Use the following example as a template for how to set the value of this property in zowe.yaml.

Example:

NOTES:

Ensure that each API ML instance is defined in a separated record. Do not combine multiple API ML instances in

a single record. In the case of a high availability setup, the value discoveryServiceUrls may contain multiple

URLs.

We highly recommend to provide all available Discovery URLs in the value discoveryServiceUrls .

Always provide the direct address to the system. Do not use the DVIPA address. Using this DVIPA address could

lead to unexpected behaviour.

Use hostnames sys1 and sys2 for the LPAR in the sysplex.

2. (Optional) Configure the Gateway to forward client certificates.

Use this step to enable the domain(2-N) Gateway to use this client certificate for authentication.

Set the certificatesUrl property to ensure that only Gateway-forwarded certificates are used for client certificate

authentication. This URL returns a certificate chain from the Gateway.

Dynamic configuration via Environment variables

The list of additional registrations is extracted from environment variables. You can define a list of objects by following

YML -> Environment translation rules.

The previous example can be substituted with the following variables:

#

in ZWE_CONFIGS_APIML_SERVICE_ADDITIONALREGISTRATION_#_* specifies the ID of API ML instance.

NOTES:

Ensure that each API ML instance is defined in a separated record. Do not combine multiple API ML instances in

a single record. In the case of a high availability setup, the value discoveryServiceUrls may contain multiple

URLs. We highly recommend to provide all available Discovery URLs in the value discoveryServiceUrls .

Always provide the direct address to the system. Do not use the DVIPA address. Using this address could lead to

unexpected behaviour.

Use hostnames sys1 and sys2 for the LPAR in the sysplex.

This Zowe configuration transforms the zowe.yaml configuration file into the environment variables described previously.

Validating successful configuration

The corresponding Gateway service in domain(2-N) should appear in the Eureka console of the Discovery service in the

domain-1 API ML.

To see details of all instances of the ‘GATEWAY’ application, perform a GET call on the following endpoint of the

Discovery service in domain-1 API ML:

Establishing a trust relationship between the API MLs

For routing to work in a multitenancy configuration, as represented in the previous diagram where "Domain API ML 2"

and "Domain API ML 3" are registered to "Domain API ML 1", "Domain API ML 1" must trust "Domain API ML 2" and

"Domain API ML 3". This trust is required for successful registration into the Discovery Service component of Domain API

ML 1.

To accept routed requests, "Domain API ML 2" and "Domain API ML 3" must trust the "Domain API ML 1" Gateway where

Domains API ML 2 and 3 are registered to. It is necessary that the root and, if applicable, intermediate public certificates

are shared between these domain API Mediation Layers.

The following diagram shows the relationship between the API MLs.

As illustrated in this example diagram, The API MLs are installed on systems X, Y, and Z.

To establish secure communications, "Domain API ML 2" and "Domain API ML 3" use different private keys signed with

different public keys. These API MLs do not trust each other.

In multitenancy set up, in order for all API MLs to register with "Domain API ML 1", it is necessary that "Domain API ML 1"

has all public keys from the certificate chains of all registered API MLs:

DigiCert Root CA

DigiCert Root CA1

DigiCert CA

These public keys are required for the "Domain API ML 1" to establish trust with "Domain API ML 2" and "Domain API ML

3".

"Domain API ML 1" uses a private key which is signed by the local CA public key for secure communication.

"Domain API ML 2" and "Domain API ML 3" require a local CA public key to accept routing requests from "Domain API ML

1". Without these local CA public keys "Domain API ML 1" requests will not be trusted by the registered API MLs. All

added certificates are indicated in the diagram inside the red dashed lines.

Commands to establish trust between the API MLs

The following commands are examples of establishing a trust relationship between API MLs in Multitenancy Configuration

for both PKCS12 certificates and when using keyrings.

1. Import the root and, if applicable, the intermediate public key certificate of registered "Domain API ML 2" and

"Domain API ML 3" API MLs running on systems Y and Z into the truststore of the "Domain API ML 1" running on

system X.

PKCS12

For PKCS12 certificates, use the following example of keytool commands:

keytool -import -file sysy/keystore/local_ca/local_ca.cer -alias gateway_sysy -keystore

sysx/keystore/localhost/localhost.truststore.p12

keytool -import -file sysz/keystore/local_ca/local_ca.cer -alias gateway_sysz -keystore

sysx/keystore/localhost/localhost.truststore.p12

Keyring

For keyrings, use the following examples of commands specific to your ESM to add certificates from the dataset and

connect these certificates to the keyring used by the "Domain APIML 1":

For RACF:

Verify:

For ACF2:

Verify:

For Top Secret:

Verify:

Click here for an example of keytool commands for PKCS12 certificates.

Click here for command details for RACF.

Click here for command details for ACF2.

Click here for command details for Top Secret.

2. Import root and, if applicable, intermediate public key certificates of the API ML running on system X into the

truststore of the API MLs running on systems Y and Z.

PKCS12

For PKCS12 certificates, use the following example of the keytool commands:

keytool -import -file x/keystore/local_ca/local_ca.cer -alias gateway_x -keystore

y/keystore/localhost/localhost.truststore.p12

keytool -import -file x/keystore/local_ca/local_ca.cer -alias gateway_x -keystore

z/keystore/localhost/localhost.truststore.p12

Keyring

For keyring certificates, use the following examples of commands specific to your ESM to add certificates from the

dataset, and connect these certificates to the keyrings used by registered API MLs:

For RACF:

Verify:

For ACF2:

Verify:

For Top Secret:

Verify:

You completed certificates setup for multitenancy configuration, whereby registered API MLs can trust the API ML where

they are registered and vice versa.

Click here for example keytool commands for PKCS12 certificates.

Click here for command details for RACF.

Click here for details for ACF2.

Click here for command details for Top Secret.

Using the /registry endpoint in the Central Cloud Gateway

The /registry endpoint provides information about services onboarded to all registered Gateways. This section

describes the configuration, authentication, authorization, example of requests, and responses when using the

/registry endpoint. The /registry endpoint provides information about services onboarded to all registered

Gateways. This section describes the configuration, authentication, authorization, example of requests, and responses

when using the /registry endpoint.

Configuration for /registry

The /registry endpoint is disabled by default. Use the configuration property apiml.gateway.registry.enabled=true

or environment variable APIML_GATEWAY_REGISTRY_ENABLED=TRUE to enable this feature. The /registry endpoint is

disabled by default. Use the configuration property apiml.gateway.registry.enabled=true or environment variable

APIML_GATEWAY_REGISTRY_ENABLED=TRUE to enable this feature.

Authentication for /registry

The /registry endpoint is authenticated by the client certificate. The Gateway accepts certificates that are trusted. The

username is obtained from the common name of the client certificate.

Unsuccessful authentication returns a 401 error code.

Authorization with /registry

Only users configured by the following environment variable are allowed to use the /registry endpoint.

APIML_SECURITY_X509_REGISTRY_ALLOWEDUSERS=USER1,user2,User3

This parameter makes it possible to set multiple users as a comma-separated list.

Unsuccessful authorization returns a 403 error code.

Requests with /registry

There are two endpoints that provide information about services registered to the API ML. One endpoint is for all APIMLs,

and the other endpoint is for the specific APIML. Choose from the following GET calls:

GET /gateway/api/v1/registry

This request lists services in all API MLs.

GET /gateway/api/v1/registry/{apimlId}

This request lists services in the API ML of the specific apimlId given.

GET /gateway/api/v1/registry/{apimlId}?apiId={apiId}&serviceId={serviceId}

This request gets the specific service from the API ML in the specific apimlId.

Response with /registry

Click here for an example of the response with /registry

Example:

Response with /registry{apimlId}

This response should contain information about all services in an API ML with the specific apimlId.

Example:

GET /gateway/api/v1/registry/apiml2

Response with GET /gateway/api/v1/registry/{apimlId}?apiId={apiId}&serviceId=
{serviceId}

This response should contain information about a specific service in an APIML with the specific apimlId.

Example:

GET /gateway/api/v1/registry/apiml2?apiId=zowe.apiml.gateway&serviceId=catalog

Validating successful configuration with /registry

Use the /registry endpoint to validate successful configuration. The response should contain all the API MLs

represented by apimlId , and information about onboarded services.

Troubleshooting multitenancy configuration

ZWESG100W

Cannot receive information about services on API Gateway with apimlId 'apiml1' because: Received fatal alert:

certificate_unknown; nested exception is javax.net.ssl.SSLHandshakeException: Received fatal alert: certificate_unknown

Reason

Cannot connect to the Gateway service.

Action

Make sure that the external Gateway service is running and the truststore of the both Gateways contains the

corresponding certificate.

Click here for an example response

Click here for an example response

Version: v3.3.x LTS

Obtaining Information about API Services

As an API Mediation Layer user, information about API services can be obtained for various purposes. The following list

presents some of the use cases for using the API Mediation Layer:

To display available services based on a particular criterion (API ID, hostname, or custom metadata)

To locate a specific API service based on one or more specific criteria (for example the API ID)

To obtain information that permits routing through the API Gateway such as baseUrl or basePath

To obtain information about an API service, the service APIs, or instances of the service

This article provides further detail about each of these use cases.

Obtaining Information about API Services

Using API ID in API ML to locate APIs in different instances

Protecting Service Information

Using API Endpoints

Obtaining Information about a Specific Service

Obtaining Information about All Services

Obtaining Information about All Services with a Specific API ID

Response Format

Using API ID in API ML to locate APIs in different instances

The API ID uniquely identifies the API in API ML. The API ID can be used to locate the same APIs that are provided by

different service instances. The API developer defines this ID.

Protecting Service Information

Information about API services is considered sensitive as it contains partial information about the internal topology of the

mainframe system. As such, this information should be made accessible only by authorized users and services.

Access to this information requires authentication using mainframe credentials, as well as verification of access to

resources through SAF. The resource class and resource is defined in the ZWESECUR job. Dor more information about

ZWESECUR job, see Addresing z/OS requrements for Zowe.

The security administrator needs to permit READ access to the APIML.SERVICES resource in the ZOWE resource class to

access the information about API services.

In IBM RACF, access to service information is specified in the following parameter:

In Top Secret:

In ACF2:

The API Gateway can be configured to check for SAF resource authorization in several ways. For more information, see

SAF Resource Checking.

https://docs.zowe.org/stable/user-guide/configure-zos-system
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-saf-resource-checking

Using API Endpoints

Obtaining Information about a Specific Service

Use the following method to get information about a specific service:

GET /gateway/api/v1/services/{serviceId}

where:

{serviceId} is the service ID of the API service (Example: apicatalog)

This method returns a JSON response that describes the service. For more information, see Response Format.

Obtaining Information about All Services

Use the following method to get information about all services:

GET /gateway/api/v1/services

This method returns a JSON response with a list of all services. For more information, see Response Format.

Obtaining Information about All Services with a Specific API ID

Use the following method to get information about all services with a specific API ID:

GET /gateway/api/v1/services?apiId={apiId}

where:

{apiId} is the API ID that represents required API (e.g. zowe.apiml.apicatalog)

This method returns a JSON response with a list of services provided by a specified API ID. For more information, see

Response Format.

Response Format

This section provides basic information about the structure of the response. The full reference on the field in the

response is presented in the API Catalog.

The apiml section provides information about the following points:

The service in the service subsection is displayed.

The APIs that are provided by the service in the apiInfo section. This section presents each major API version that

is provided by at least one instance. For each major version, the lowest minor version is displayed.

The authentication methods that are supported by all instances are displayed.

API clients can use this information to locate the API based on API ID. baseUrl or basePath are used to access the API

through the API Gateway.

The instances section contains more details about the instances of the service. An API service can provide more

application specific details in customMetadata that can be used by API clients. Do not use information in this section for

use cases that API Gateway supports, such as routing or load balancing.

Example:

Version: v3.3.x LTS

Using Swagger "Try it out" in the API Catalog

The API Catalog makes it possible for users to call service APIs through the Try it out functionality. There are 2 types of

endpoints:

Public endpoints

Endpoints that are accessible without entering user credentials.

Protected endpoints

Endpoints that are only accessible by entering user credentials. These endpoints are marked with a lock icon.

Example:

Before making requests to protected endpoints, authorize your session by clicking the lock icon and complete the

required information in the Authorization modal:

Example:

To demonstrate Try it out, we use the example of the Swagger Petstore.

Example:

Make a request

Follow this procedure to make a request.

1. Expand the POST Pet endpoint.

2. Click Try it out.

Example:

After you click Try it out, the example value in the Request Body field becomes editable.

3. In the Example Value field, change the first id value to a random value. Change the second name value to a value

of your choice, such as the name of a pet.

4. Click Execute.

Example:

The API Catalog Swagger UI submits the request and shows the curl that was submitted. The Responses section

shows the response.

Example:

Version: v3.3.x LTS

Using Swagger Code Snippets in the API Catalog

As part of the Try it out functionality, the API Catalog provides Code Snippets in different languages for each service

API operation. The following languages are supported:

C

C#

Go

Java

JavaScript

Node.js

PHP

Python

cURL

Each of these languages supports a specific HTTP Snippet library (i.e. Java Unirest, Java okhttp etc.).

The basic code snippets provide REST API call samples. To show to the user the real usage of the SDKs, the service

onboarder can specify a customized snippet as part of the service configuration:

Example:

Example:

Generate the code snippets

Use the following procedure to generate code snippets:

Click Try it out and execute the request, as described in the previous section.

The API Catalog generates the basic code snippets, shown under the code snippet tab. If the service onboarder has also

provided customized code snippets, these snippets are displayed in the snippet bar under a title prefixed with

Customized .

Example:

Version: v3.3.x LTS

Using Static API services refresh in the API

Catalog

The API Catalog enables users to manually refresh static service APIs. Use the Refresh Static APIs option if you change

a static service API and want these changes to be visible in the API Catalog without restarting the Discovery Service.

Example:

To refresh the status of a static service, click the Refresh option located in the upper right-hand side of the API Catalog

UI. Successful requests return a pop-up notification that displays the message, The refresh of static APIs was

successful! .

Example:

If the request fails, a dialog appears with an error message that describes the cause of the fail.

Example:

NOTE

The manual Refresh Static APIs option applies only to static service APIs. Changes to the status of services that

are onboarded to allow for dynamic discovery require a restart of the specific services where changes are applied. It

is not necessary to restart the API Catalog or the Discovery Service.

Version: v3.3.x LTS

Onboarding a REST API service with the YAML

Wizard

As an API developer, you can use the Yaml Onboarding Wizard to simplify the process of onboarding new REST API

services to the Zowe API Mediation Layer. The wizard offers a walkthrough of the required steps to create a correct

configuration file which is used to set the application properties and Eureka metadata.

Onboarding your REST service with the Wizard

Use the following procedure to onboard your REST service with the Wizard.

1. In the dashboard of the API Catalog, click the Onboard New API dropdown located in the navbar.

2. Choose the type of onboarding according to your preference (static or via enablers).

3. (Optional) To prefill the fields, click Choose File to upload a complete or partial YAML file. The YAML file is validated

and the form fields are populated.

4. Fill in the input fields according to your service specifications.

5. Address each of the categories in the dialog dropdown.

6. Click Save to apply your changes.

7. Validate successful onboarding with the following step according to your onboarding method.

For static onboarding, the following validation message appears after successful onboarding:

For onboarding using an enabler, click Copy to save the generated yaml file to your clipboard. Then paste this

yaml file in your project's service-configuration.yml file.

If you see your service in the list of API Catalog available services, you have onboarded your service successfully.

Version: v3.3.x LTS

Using the Caching Service

As an API developer, you can use the Caching Service as a storage solution to enable resource sharing between service

instances, thereby ensuring High Availability of services. The Caching Service makes it possible to store, retrieve, and

delete data associated with keys. The Caching Service is designed to make resource sharing possible for services that

cannot be made stateless by using following backends:

Using Infinispan that is part of Caching Service

Using Redis running off-platform

{Deprecated} Using VSAM

{Development Use Only} Using InMemory

NOTE

In the current implementation of the Caching Service, Infinispan is recommended for the storage of key/value pairs

for production, as it has the best performance characteristics without additional services.

The Caching Service is available only for internal Zowe applications, and is not exposed to the internet. The Caching

service supports a hot-reload scenario in which a client service requests all available service data.

Using the Caching Service

Architecture

Storage methods

Infinispan (recommended)

VSAM (deprecated)

Redis

InMemory

How to start the Service

Methods to use the Caching Service API

Configuration properties

Authentication

Direct calls

Routed calls through API Gateway

Architecture

A precondition to provide for High Availability of all components within Zowe is the requirement that these components

be either stateless, or for the resources of the service, to be offloaded to a location accessible by all instances of the

service. This condition also applies to recently started instances. Some services, however, are not and cannot be

stateless. The Caching Service is designed for these types of services.

REST APIs make it possible to create, delete, and update key-value pairs in the cache. Other APIs read a specific key-

value pair or all key-value pairs in the cache.

Information from cached APIs is stored as a JSON in the following format:

Storage methods

The Caching Service supports the following storage solutions, which provide the option to add custom implementation.

For information about configuring your storage method for the Caching Service for high availability, see Configuring the

Caching Service for high availability.

Infinispan (recommended)

Infinispan is a storage solution that can also run on the z/OS platform. It can store data structures in key-value pairs, has

high-availability support, and is highly performant.

For more information about the Infinispan storage access method, see Using Infinispan as a storage solution through the

Caching service.

VSAM (deprecated)

VSAM can be used to organize records into four types of data sets: key-sequenced, entry-sequenced, linear, or relative

record. Use VSAM as the storage solution for production. VSAM is used primarily for applications and is not used for

source programs, JCL, or executable modules. ISPF cannot be used to display or edit VSAM files.

For more information about the VSAM storage access method, see Using VSAM as a storage solution through the

Caching Service

Redis

Redis is a common storage solution that runs outside of the z/OS platform. It can store data structures in key-value pairs,

has high-availability support, and is highly performant.

For more information about the Redis storage access method, see Using Redis as a storage solution through the Caching

Service.

InMemory

The InMemory storage method is a method suitable for testing and integration verification. Be sure not to use InMemory

storage in production. The key/value pairs are stored only in the memory of a single instance of the service. As such, the

key/value pairs do not persist.

How to start the Service

By default, the Caching Service starts along with the other Zowe components. To prevent the Caching Service from

starting, set components.caching-service.enabled to false in zowe.yaml .

Methods to use the Caching Service API

To apply a method to the Caching Service, use the following API path:

/cachingservice/api/v1/cache/${path-params-as-needed}

https://docs.zowe.org/stable/user-guide/configure-caching-service-ha
https://docs.zowe.org/stable/user-guide/configure-caching-service-ha
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-infinispan
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-infinispan
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-vsam
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-vsam
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-redis
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-redis

Use the following methods with the Caching Service API:

POST /cache

Creates a new key in the Cache

GET /cache

Returns all key/value pairs for specific service

PUT /cache/{key}

Updates the existing value for the given key

GET /cache/{key}

Returns the existing value for the given key

DELETE /cache/{key}

Deletes a key/value pair

Configuration properties

The Caching Service uses the standard application.yml structure for configuration. The service is built on top of the

Spring enabler. As such, it dynamically registers to the API Mediation Layer. The service appears in the API Catalog under

the tile, "Zowe Applications".

caching.storage.size

This property limits the size of the Caching Service. In the VSAM and InMemory implementations, this property

represents the number of records stored before the eviction strategy is initiated. The default value is 100 .

Note: Different implementations may implement this property differently.

caching.storage.evictionStrategy

This parameter specifies service behavior when the limit of records is reached. The default value is Reject .

where:

reject

rejects the new item with the HTTP status code 507 when the service reaches the configured maximum number

removeOldest

removes the oldest item in the cache when the service reaches the configured maximum number

NOTE

For more information about how to configure the Caching Service in the application.yml , see Add API

Onboarding Configuration.

When using VSAM, ensure that you set the additional configuration parameters. For more information about

setting these parameters, see Using VSAM as a storage solution through the Caching Service.

Authentication

Direct calls

https://docs.zowe.org/stable/extend/extend-apiml/onboard-spring-boot-enabler
https://docs.zowe.org/stable/extend/extend-apiml/onboard-spring-boot-enabler
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-vsam

The Caching Service requires TLS mutual authentication. This verifies authenticity of the client. Calls without a valid

client certificate generate a 403 response code: Forbidden . This requirement is disabled when

VERIFY_CERTIFICATES=false in zowe-certificates.env configuration file.

The call must have a header X-Certificate-DistinguishedName containing information about the certificate's

distinguished name. This header is added by the API Gateway. For a direct call, this header needs to be added manually.

Calls without this header produce a 401 response code: Unauthorized .

Routed calls through API Gateway

Caching service registers with the following authentication scheme to Discovery service:

The result is that the Gateway attempts mutual authentication with the Client. If authentication is succesful, the Client's

certificate information is propogated to X-Certificate- headers. With this scheme, the Gateway uses its server/client

certificate for the routed call to the Caching Service.

Version: v3.3.x LTS

Viewing Service Information and API

Documentation in the API Catalog

Use the API Catalog to view services, API documentation, descriptive information about the service, the current state of

the service, service endpoints, and detailed descriptions of these endpoints.

NOTE

Verify that your service is running. At least one started and registered instance with the Discovery Service is needed

for your service to be visible in the API Catalog.

Follow these steps:

1. Use the search bar to find the service that you are looking for. Services that belong to the same product family are

displayed on the same tile.

Example: Sample Applications, Endevor, SDK Application

2. Click the tile to view header information, the registered services under that family ID, and API documentation for that

service.

NOTES:

The state of the service is indicated in the service tile on the dashboard page. If no instances of the service

are currently running, the tile displays a message that no services are running.

At least one instance of a service must be started and registered with the Discovery Service for it to be

visible in the API Catalog. If the service that you are onboarding is running, and the corresponding API

documentation is displayed, this API documentation is cached and remains visible even when the service

and all service instances stop.

Descriptive information about the service and a link to the home page of the service are displayed.

Example:

3. Select the version (v1, v2) to view the documentation of a specific API version.

Example:

4. Expand the endpoint panel to see a detailed summary with responses and parameters of each endpoint, the

endpoint description, and the full structure of the endpoint.

Example:

NOTES:

If a lock icon is visible on the right side of the endpoint panel, the endpoint requires authentication.

The structure of the endpoint is displayed relative to the base URL.

The URL path of the abbreviated endpoint relative to the base URL is displayed in the following format:

Example:

/{yourServiceId}/api/v1/{endpointName}

The path of the full URL that includes the base URL is also displayed in the following format:

https://hostName:basePort/{yourServiceId}/api/v1/{endpointName}

Both links target the same endpoint location.

Version: v3.3.x LTS

Changing an expired password via API Catalog

In case of expiration of a mainframe password, the API Catalog, when using SAF as authentication provider offers the

possibility to set a new password. When your password expires, you are prompted with a form and a warning message:

You can now insert a new password. In order to submit the request for password change, you need to repeat the new

password to prevent the risk of a typo. It is possible that your mainframe installation has specific rules for passwords,

such as length, and special characters. When the submitted password does not meet these requirements, an error

messag is issued with the chance to insert another new password.

After you repeat the new password, you are able to request the change again. The number of retries depends on the

security manager setup of your zOS.

Once you successfully change the password, you are informed with a green pop-up message indicating Your mainframe

password was successfully changed . You can now use the new password for authentication.

Version: v3.3.x LTS

Updating user password

You can use Zowe API ML to update a mainframe password. The mainframe password change is possible through the

Gateway REST API.

NOTE

This feature is also available in the API Catalog. For more information about how to update the mainframe password

via API Catalog, see Change expired password via API Catalog.

To use the password updating functionality in the REST API, add the parameter newPassword on the login endpoint

/gateway/api/v1/auth/login in a POST call to this endpoint.

The Gateway service returns a valid JWT with the response code 204 as a result of successful password change. The

user is then authenticated and can consume APIs through the Gateway. A response code of 401 is thrown if it is not

possible to change the password for any reason.

Use the following request body format in the POST REST call against the URL /gateway/api/v1/auth/login :

NOTE

A common practice is to set a limit to the number of password changes permissible in the ESM. This value is set by

the parameter MINCHANGE for PASSWORD . The password can be changed once. Subsequently, it is necessary to wait

the specified time period before the password can be changed again.

Example:

MINCHANGE=120

120

Specifies the number of days before the password can be reset

NOTE

The SAF authentication provider provides details about the expired password, and therefore enables the API Catalog

to ask for password change. The z/OSMF authentication provider does not provide this functionality. Password

changes are only possible through the REST API.

https://docs.zowe.org/stable/user-guide/api-mediation-change-password-via-catalog

Version: v3.3.x LTS

SMF records

API Mediation Layer can issue SMF type 83, 230, or 231 security-related audit records. You can use SMF records to assist

with auditing events when a Personal Access Token is created.

To enable this functionality on your Zowe instance, see the configuration procedure.

It is possible to customize some predefined values in the SMF record. For more information, see the full list of

configurable parameters.

Note: Record type 83 is a RACF processing record. This record type can be replaced by other SMF types depending on

the ESM:

ACF2 - SMF type 230

TSS - SMF type 231

Configure the main Zowe server to issue SMF records

This security configuration is necessary for API ML to be able to issue SMF records. A user running the API Gateway must

have read access to the RACF general resource IRR.RAUDITX in the FACILITY class. To set up this security configuration,

submit the ZWESECUR JCL member. For users upgrading from version 1.18 and lower, use the configuration steps that

correspond to the ESM.

To check whether you already have the auditing profile defined, issue the following command and review the output to

confirm that the profile exists and that the user ZWESVUSR who runs the ZWESLSTC started task has READ access to this

profile.

If you use RACF, issue the following command:

If you use Top Secret, issue the following command:

If you use ACF2, issue the following commands:

If the user ZWESVUSR who runs the ZWESLSTC started task does not have READ access to this profile, follow the procedure

that corresponds to your ESM:

If you use RACF, update permission in the FACILITY class.

Follow these steps:

i. Add user ZWESVUSR permission to READ .

ii. Activate changes.

If you use Top Secret, add user ZWESVUSR permission to READ . Issue the following command:

If you use ACF2, add user ZWESVUSR permission to READ . Issue the following commands:

SMF record configurable parameters

The following list of parameters can be used to modify the default SMF record values. Default values for these

parameters can be overwritten in zowe.yaml . For more information, see how to configure rauditx parameters.

Parameter Description Type
Default

value

rauditx.fmid FMID of the product or component issuing the SMF record string AZWE001

rauditx.component Name of the product or component issuing the SMF record string ZOWE

rauditx.subtype
SMF type 83 record subtype assigned to the component. For

more information, see description of subtypes
integer 2

rauditx.event
Event code. For more information, see description of event

codes
integer 2

rauditx.qualifier.success
Event Code Qualifier for success. The value can be between 0

and 255
integer 0

rauditx.qualifier.failed
Event Code Qualifier for failure. The value can be between 0 and

255
integer 1

Configure rauditx parameters

Use the following procedure to change the rauditx.fmid parameter. This procedure can be applied to any SMF record

configurable parameters.

Follow these steps:

1. Open the zowe.yaml configuration file.

2. Find or add the property zowe.environments.RAUDITX_FMID and set your desired value.

3. Restart Zowe.

https://www.ibm.com/docs/en/zos/2.5.0?topic=records-record-type-83-security-events
https://www.ibm.com/docs/en/zos/2.5.0?topic=descriptions-event-codes-event-code-qualifiers
https://www.ibm.com/docs/en/zos/2.5.0?topic=descriptions-event-codes-event-code-qualifiers

Version: v3.3.x LTS

Using Zowe CLI

In this section, learn how to use Zowe CLI, including how to connect to the mainframe, manage profiles, integrate with

the API Mediation Layer, and more.

You can use the CLI interactively from a command window on any computer on which it is installed, or run it in a

container or automation environment.

TIP

Text colors could be difficult to read in some terminals. If this is the case, we suggest either adjusting the terminal

settings, or setting the FORCE_COLOR environment variable to 0 . For other accessibility options, check the

accessibility settings for your operating system or terminal.

Supported platforms

CPU architecture

x64

Apple Silicon (M1+)

Operating systems

MacOS 10.15+

Unix-like:

CentOS 8+

Debian 11+

Red Hat Enterprise Linux (RHEL) 8+

Ubuntu 20.04+

Windows 10+

Package/resource managers

NodeJS LTS versions

npm versions applicable to NodeJS LTS versions

pnpm

Yarn

SHARE YOUR FEEDBACK

Using Zowe CLI on z/OS Unix Systems Services is not supported at this time. If you would like to use it on USS in the

future, show your interest by voting for the enhancement in the Zowe CLI GitHub repository.

https://www.centos.org/
https://www.debian.org/
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://ubuntu.com/
https://nodejs.org/en
https://www.npmjs.com/
https://pnpm.io/
https://yarnpkg.com/
https://www.ibm.com/docs/en/zos/2.4.0?topic=descriptions-zos-unix-system-services
https://github.com/zowe/zowe-cli/issues/1680

Version: v3.3.x LTS

Zowe CLI authentication methods

Zowe CLI supports multiple methods of authenticating to mainframe services, including basic authentication, tokens for

single sign-on, client certificates, and multi-factor authentication.

Configure the authentication method you want to use across multiple mainframe services in a base profile stored in your

configuration file.

If you configure multiple authentication methods for a specific service, set the order of precedence with the profile

property authOrder .

NOTE

To authenticate to a service, configure credentials to the associated service profile. If you have multiple

credentials in your configuration, add an authOrder property to that profile to specify which type of

authentication (and credentials) should be used for that service.

Order of precedence

You can configure the order that Zowe CLI follows to search for an available authentication method, or you can leave the

default order of precedence used by the service you are connecting to.

To configure a different order of precedence, add the authOrder property to the profile for the service to which you want

to connect.:

authOrder possible values:

basic to use basic authentication

bearer to use a token not being sent to API ML

cert-pem to use a client certificate

token to use a token

none to not require authentication

The sequence of the values for the authOrder property represent the order of precedence.

Checking availability of authentication

The authOrder property defines the order used to find the first available authentication type.

IMPORTANT

If an authentication method is found and fails, the authOrder property does not prompt the system to use the next

authentication type listed in the property values.

https://docs.zowe.org/stable/appendix/zowe-glossary#base-profile
https://docs.zowe.org/stable/extend/extend-cli/cli-authentication-mechanisms#default-order-of-precendence

In the preceding example, Zowe CLI is configured to look for the first available authentication method in the order

outlined in the authOrder property.

This means that if basic authentication is set up, Zowe CLI uses the user ID and password for authentication. If only a

token is available, Zowe CLI still checks for basic authentication, does not find it, and checks the configuration for token

information. If the token information is not found, Zowe CLI then checks for the third authentication type, a certificate.

Using basic authentication

The advantage of basic authentication (using a username and password) is the simplicity of set up: In most cases you

can use Zowe CLI (or Zowe Explorer) to connect to mainframe services without additional configuration on the server.

Other authentication methods would likely require further configuration.

Basic authentication is the default authentication method defined in the default base profile when you issue the zowe

config init command in Zowe CLI to create your team configuration.

If you change your authentication method and want to switch back to using basic authentication:

1. Use a text editor to update the zowe.config.json file to define the authentication as basic authentication (see the

highlighted lines) in the base profile:

NOTE

The base profile name (see Line 1) can be different in your configuration file. The preceding example shows the

default name for a project team config. The default for a global team config is global_base . To check your base

profile name, issue the zowe config list defaults command in the command terminal.

2. For Zowe CLI, issue commands to set the values for user and password in the end user's personal computer:

Zowe CLI prompts for these values and masks them as they are typed. By default, these values are stored in the

PC's secure vault.

If you are using a global team configuration file (located in your home directory), add --global-config to the end

of the command.

Using a token for Single Sign-On (SSO)

SSO lets you use a single token to access all your mainframe services through API Mediation Layer. Tokens provide more

security because they have limited lifespans and can be immediately revoked when needed.

SSO is configured with Zowe API ML, which generates an authentication token to access the mainframe. To log in to API

ML, use either a username and password or a client certificate. To use a service through API ML, update its service profile

to include its API base path.

Logging in with username and password

Provide your username and password to generate a token and log in to API ML:

1. Log in to API ML:

For users who do not have a base profile that has been used to log into API ML, this creates a new base profile that is

set as the default base profile in your configuration file.

For users who have a default base profile already used to log into API ML, this updates the existing default base

profile with a new token.

2. When prompted, enter the following information:

Host

Port for the API ML instance

Username

Password (can be a PIN concatenated with a second factor for MFA)

A base profile is created or updated with your token, which is stored on your computer in place of a username and

password:

With token authentication set in your base profile, you can omit your username and password when you issue

commands.

If you do not want to store the token on your PC, append the --show-token option to the login command in Step 1.

This returns the token value in your terminal for you to use on subsequent commands.

If you already created a base profile, you might not be prompted for the host and port.

3. If you do not have a profile for the service, respond to Zowe CLI prompts for connection information to create a

profile for the service.

TIP

To establish a base path, see instructions for Zowe team configuration or Zowe V1 profiles.

If you already have a profile in your configuration for the service you want to connect to, use a text editor to open

the applicable configuration file and replace the port property with a basePath property to enable the use of API

ML.

A profile with a port number:

A profile with a base path:

If you use the --show-token option with the login command in Step 1, you must manually supply the token on

each command using the --token-value option. For example:

data-set <searchPattern>

Specifies the data set search criteria (for example, <IBMUSER.*>)

--token-value <123>

Specifies the token value supplied in Step 2.

NOTES

Tokens expire after a period of time defined by your security administrator. When a token expires, you must log

in to API ML again to get a new token.

If you omit connection details from a service profile, such as a zosmf profile, the CLI uses the information from

your base profile.

You can choose to specify all connection details on a service profile and connect directly to the service. Routing

through API ML is not required.

Logging in with a client certificate

Use a client certificate to generate a token and log in to API ML:

--host <APIML Host>

Specifies the API ML host.

--port <APIML Port>

Specifies the API ML port.

--cert-file <PEM Public Certificate Path>

Specifies the path for the PEM public certificate.

--cert-key-file <PEM Private Key File Path>

Specifies the path to the PEM private key.

Zowe CLI obtains a security token from API ML and adds that token to the base profile in the applicable configuration file.

NOTE

If you have multiple types of configuration files and base profiles, see How configuration files and profiles work

together to learn which configuration and profile would be used to store the API ML token. To learn how to log in or

out of a base profile, see Specifying a base profile.

Logging out

Log out to remove the token from your base profile and prompt the API ML to invalidate the token:

This command sends a request to the API ML to invalidate the token. Log in again to obtain a new token.

If you used the --show-token option and never stored your token in profile, add --token-value <123> (where <123> is

the value of the token) to this command to invalidate the token.

Accessing a service through API ML

To access mainframe services with SSO through API ML using the token in your base profile, use the basePath property

in your service profile to indicate the base path of the API on the API ML instance that you want to access.

https://docs.zowe.org/stable/user-guide/cli-using-understand-profiles-configs#how-configuration-files-and-profiles-work-together
https://docs.zowe.org/stable/user-guide/cli-using-understand-profiles-configs#how-configuration-files-and-profiles-work-together
https://docs.zowe.org/stable/user-guide/cli-using-integrating-apiml#specifying-a-base-profile

To establish a base path, see instructions for Zowe team configuration.

NOTE

Ensure that you do not provide username, password, host, or port directly on the service commands or profiles.

Supplying those options causes the CLI to ignore the API ML token in your base profile and access the service

directly.

Specifying a base path with Zowe team configuration

Use the following steps to specify a base path with Zowe team configuration:

1. Note the complete path for a service registered to API ML.

For example:

The format of base paths can vary based on how API ML is configured at your site.

2. Using the example in Step 1, access the API ML instance by creating or updating a service profile, or issuing a

command, with the base path value of <yourServiceId>/api/v1 . Your service profile uses the token and credentials

stored in your default base profile.

To create or update a service profile with the preceding base path in a project team configuration file:

If you are using a global team configuration file (located in your home directory), add --global-config to the end

of the command.

Commands issued with this profile are routed through API ML to access an appropriate instance of your service.

Specifying a base path with Zowe V1 profiles

See the Integrating with API Mediation Layer in the Zowe V1 documentation.

Using client certificates

Certificates are a long lasting type of authentication, rather than a password or token that can expire in hours, days, or

months. A certificate is authenticated by matching a public and private key.

To use a client certificate for authentication:

1. Specify the path to the certificate file in the relevant profile :

<certPath>

Specifies the location on your computer where the certificate is stored.

If you are using a global team configuration file (located in your home directory), add --global-config to the end

of the command.

2. Configure the file path to the private key:

<certKeyPath>

https://docs.zowe.org/stable/appendix/zowe-glossary#team-configuration
https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles#zowe-cli-profile-types
https://docs.zowe.org/zowe-docs-v1.28.x.pdf

Specifies the location on your computer where the private key is stored.

TIP

Add the --secure option to the preceding commands to avoid saving certificate file paths as plain text in your

configuration file.

Using multi-factor authentication (MFA)

MFA adds an extra layer of security because it requires users to supply their password and an additional verification

method.

In Zowe, MFA can apply to basic authentication and single sign-on when logging in with username and password.

It is important to understand how MFA functions at your site in order to set it up. Typically, a user needs an authenticator

app to obtain a temporary code that is typically appended to, or replaces, the password. The system administrator must

configure the application so it is set up for a Zowe user.

NOTE

MFA codes are different from SSO tokens. SSO tokens are an alternative to passwords and last longer than a

temporary MFA code, which is combined with a password.

Version: v3.3.x LTS

Displaying help

Zowe CLI has a command-line help system that details the commands, actions, and options available in the product.

Top-level help

To view top-level help, open a command-line and issue the following command:

An example of the Zowe CLI response:

Alternatively, to display a full list of all available commands:

TIP

All Zowe CLI commands begin with zowe .

Group, action, and object help

Append the global --help option to learn about a specific command group, action, or object.

For example, issue the following command to learn about the create action in the zos-files group:

Launching local web help

Launch an interactive form of help content in a web browser. When you issue the following command, web help is

custom-generated to include commands for all of your currently installed plug-ins:

TIP

Append --help-web to a specific command or action to launch directly into the appropriate web help page.

Viewing web help in other ways

There are several methods to view Zowe CLI web help:

Use a web browser

Extract from a ZIP file

Download a PDF file

https://docs.zowe.org/stable/web_help/index.html
https://docs.zowe.org/stable/zowe_web_help.zip
https://docs.zowe.org/stable/CLIReference_Zowe.pdf

Version: v3.3.x LTS

How command precedence works

You can provide your mainframe connection details (username, password, etc.) to Zowe CLI in several ways. Zowe CLI

abides by a command option order of precedence that provides flexibility when issuing commands and writing scripts.

When you issue a command, the CLI searches for your command arguments in the following order:

1. Options that you specify on individual commands.

2. Environment variables that you define in the computer's operating system.

For more information, see Using environment variables.

3. Service profiles that you create (that is, a z/OSMF profile or another mainframe service).

4. Base profiles that you create. These can contain credentials for use with multiple services and/or an API ML login

token.

5. Default option value.

Command precedence in action

If you omit an option from the command line, Zowe CLI searches for an environment variable that contains a value for

the option. If no environment variable exists, the CLI checks your service profiles for the value. If necessary, the CLI

then searches base profiles, which provide values to service profiles to avoid specifying the same options (such as a

username and password) in multiple service profiles.

NOTE

If you do not provide a value using one of these methods, the default value is used. If a required option value is not

located, a syntax error message such as Missing Positional Argument or Missing Option displays.

https://docs.zowe.org/stable/user-guide/user-guide/cli-using-using-environment-variables
https://docs.zowe.org/stable/appendix/zowe-glossary#service-profile
https://docs.zowe.org/stable/appendix/zowe-glossary#base-profile

Version: v3.3.x LTS

Understanding core command groups

Zowe CLI contains command groups that focus on specific business processes.

Zowe CLI commands are organized in a hierarchical structure. Command groups contain actions that let you perform

actions on specific objects. For each action that you perform on an object, you can specify options that affect the

operation of the command.

For example, the zos-files command group can let you perform actions on data sets such as create , edit , rename ,

and more.

Review the following Zowe CLI command groups to understand the actions available to them.

auth

The auth command group lets you connect to the Zowe API Mediation Layer authentication service and obtain a token,

or disconnect from the authentication service and revoke the token.

NOTE

For more information about auth syntax, actions, and options, open Zowe CLI and issue the following command:

config

The config command group lets you manage project and global team configurations, and JSON projects; and convert

profiles (service profiles and base profiles) to team configs.

NOTE

For more information about config syntax, actions, and options, open Zowe CLI and issue the following command:

daemon

The daemon command groups let you perform operations that control the daemon-mode functionality of the Zowe CLI.

Daemon-mode runs the CLI command processor as a background process to improve performance.

NOTE

For more information about daemon syntax, actions, and options, open Zowe CLI and issue the following command:

IMPORTANT

Using daemon mode contains various limitations and configuration requirements, depending on the operating

system where the daemon is running. For more information, see Preparing for installation in Using daemon

mode.

plugins

The plugins command group lets you install and manage third-party plug-ins for the product. Plug-ins extend the

functionality of Zowe CLI in the form of new commands.

With the plugins command group, you can perform the following tasks:

Install or uninstall third-party plug-ins.

Display a list of installed plug-ins.

Validate that a plug-in integrates with the base product properly.

NOTE

For more information about plugins syntax, actions, and options, open Zowe CLI and issue the following command:

provisioning

The provisioning command group lets you perform IBM z/OSMF provisioning tasks with templates and provisioned

instances from Zowe CLI.

With the provisioning command group, you can perform the following tasks:

Provision cloud instances using z/OSMF Software Services templates.

List information about the available z/OSMF Service Catalog published templates and the templates that you used to

publish cloud instances.

List summary information about the templates that you used to provision cloud instances. You can filter the

information by application (for example, DB2 and CICS) and by the external name of the provisioned instances.

List detail information about the variables used (and their corresponding values) on named, published cloud

instances.

NOTE

For more information about provisioning syntax, actions, and options, open Zowe CLI and issue the following

command:

zos-console

The zos-console command group lets you issue commands to the z/OS console by establishing an extended Multiple

Console Support (MCS) console.

https://docs.zowe.org/stable/user-guide/cli-using-using-daemon-mode
https://docs.zowe.org/stable/user-guide/cli-using-using-daemon-mode

With the zos-console command group, you can perform the following tasks:

IMPORTANT

Before you issue z/OS console commands with Zowe CLI, security administrators should ensure that they provide

access to commands that are appropriate for your organization.

Issue commands to the z/OS console.

Collect command responses and continue to collect solicited command responses on demand.

NOTE

For more information about zos-console syntax, actions, and options, open Zowe CLI and issue the following

command:

zos-files

The zos-files command group lets you interact with data sets on z/OS systems.

With the zos-files command group, you can perform the following tasks:

Create partitioned data sets (PDS) with members, physical sequential data sets (PS), and other types of data sets

from templates. You can specify options to customize the data sets you create.

Download mainframe data sets and edit them locally in your preferred Integrated Development Environment (IDE).

Upload local files to mainframe data sets.

List available mainframe data sets.

Interact with VSAM data sets directly, or invoke Access Methods Services (IDCAMS) to work with VSAM data sets.

NOTE

For more information about zos-files syntax, actions, and options, open Zowe CLI and issue the following

command:

zos-jobs

The zos-jobs command group lets you submit jobs and interact with jobs on z/OS systems.

With the zos-jobs command group, you can perform the following tasks:

Submit jobs from JCL that reside on the mainframe or a local file.

List jobs and spool files for a job.

View the status of a job or view a spool file from a job.

NOTE

For more information about zos-jobs syntax, actions, and options, open Zowe CLI and issue the following

command:

zos-logs

The zos-logs command group retrieves the z/OS operations logs.

With the zos-logs command group, you can perform the following task:

List z/OS operations logs within a specified time frame.

NOTE

For more information about zos-logs syntax, actions, and options, open Zowe CLI and issue the following

command:

zos-ssh

The zos-ssh command group lets you issue Unix System Services shell commands by establishing an SSH connection to

an SSH server. The zos-ssh command group was previously named zos-uss .

With the zos-ssh command group, you can perform the following task:

IMPORTANT

Before you issue z/OS UNIX System Services commands with Zowe CLI, security administrators must provide access

for your user ID to login via SSH.

Issue z/OS UNIX System Services shell commands over an SSH connection and stream back the response.

NOTE

For more information about zos-ssh syntax, actions, and options, open Zowe CLI and issue the following command:

zos-tso

The zos-tso command group lets you issue TSO commands and interact with TSO address spaces on z/OS systems.

With the zos-tso command group, you can perform the following tasks:

Execute REXX scripts

Create a TSO address space and issue TSO commands to the address space.

Review TSO command response data in Zowe CLI.

NOTE

For more information about zos-tso syntax, actions, and options, open Zowe CLI and issue the following command:

zos-workflows

The zos-workflows command group lets you create and manage z/OSMF workflows on a z/OS system.

With the zos-workflows command group, you can perform the following tasks:

Create or register a z/OSMF workflow based on the properties on a z/OS system.

Start a z/OSMF workflow on a z/OS system.

Delete or remove a z/OSMF workflow from a z/OS system.

List the z/OSMF workflows for a system or sysplex.

NOTE

For more information about zos-workflows syntax, actions, and options, open Zowe CLI and issue the following

command:

zosmf

The zosmf command group lets you work with Zowe CLI profiles and get general information about z/OSMF.

With the zosmf command group, you can perform the following tasks:

Verify that your profiles are set up correctly to communicate with z/OSMF on your system. For more information, see

Testing connections to z/OSMF.

Get information about the current z/OSMF version, host, port, and plug-ins installed on your system.

NOTE

For more information about zosmf syntax, actions, and options, open Zowe CLI and issue the following command:

https://docs.zowe.org/stable/user-guide/cli-install-verify-your-installation#testing-connections-to-zosmf

Version: v3.3.x LTS

Issuing your first command

Typically, users rely on team configuration to connect to the mainframe and issue commands.

But if you have just installed Zowe CLI and have not yet configured your profiles, you can provide all connection options

directly in the command line to access a service.

For example, issue the following command to list all data sets under the name ibmuser on the specified system:

If you omit username, password, host, or port, and a value cannot be found in your configuration, Zowe CLI prompts

you to enter a value.

However, this is not the most efficient way to communicate with the mainframe. To avoid having to enter connection

details with every command repeatedly, use team profiles.

https://docs.zowe.org/stable/appendix/zowe-glossary#team-configuration

Version: v3.3.x LTS

Team configurations

Zowe CLI is configured through the use of profiles stored and managed in configuration files.

Types of configuration files

Both team and user configurations can be applied either globally or per project, as described in the following definitions:

A team configuration file stores team profiles and is used by a group of people who need the same properties to

run commands.

The most frequently used configuration type due to its versatility and efficient maintenance.

A user configuration file stores user profiles and is used for one person who needs their own unique properties to

run commands.

The necessity for user configuration is rare, and setting up a user configuration should not be a priority unless

there is a specific need for one.

A project configuration file resides in a directory of your choice. It contains project team profiles and project user

profiles.

Zowe CLI commands executed within that directory use the profiles from the project configuration. Similarly,

when the directory is opened as a Visual Studio Code workspace, Zowe Explorer uses the project config for

profiles.

A global configuration file resides in the ZOWE_CLI_HOME directory (YourUserHomeDirectory/.zowe, by default). It

contains global team profiles and global user profiles.

Global config profiles are used for any Zowe CLI command regardless of the directory in which the command is

run. The profiles are always available in Zowe Explorer regardless of the location of the current Visual Studio

Code workspace.

Zowe CLI profile types

Configuration files are made up of multiple profiles that can be used by Zowe CLI. These profiles contain credentials

and/or settings that are applied by the commands issued in the CLI.

Service profiles let you store connection information for specific mainframe service, such as IBM z/OSMF. Plug-ins

can introduce other service profile types to a configuration file, such as the cics profile to connect to IBM CICS.

Base profiles let you store connection information for use with one or more services. Depending on your

configuration file type, the base profile can be either a global_base or project_base profile. Typically, there is only

one base profile in a configuration file.

Service profiles can pull information from a base profile as needed, so that you can specify a common username and

password only once. A base profile can optionally store tokens to connect to the Zowe API Mediation Layer, which

improves security by enabling Multi-Factor Authentication (MFA) and Single Sign-on (SSO).

Parent profiles let you nest service profiles that share some of the same properties and values into groups. There

can be multiple parent profiles within a configuration file. This makes it possible to define shared properties (for

example, hostname or credentials) only once in your configuration file, rather than duplicating values for each

service profile. Parent profiles and nested service profiles are useful when your configuration uses multiple kinds of

authentication or if your configuration is used to connect to multiple hosts.

Updating secure credentials

To change an existing username or password used by a team config profile, use the zowe config secure command for a

quick update:

1. Open the Zowe CLI command prompt.

2. To update values for secure fields in a project team configuration file:

To update values for secure fields in a global team configuration file:

Prompts request new values for all secure fields defined in the configuration file. In most cases, these properties

include a username or password, but some users may include other fields, such as a token value or connection

properties.

3. Respond to prompts as needed. Press Enter to leave the value unchanged.

New values are saved in the secure credential store. After the last secure value is submitted, the user returns to the

system command prompt.

For more ways to secure credentials in config profiles, see Managing credential security.

https://docs.zowe.org/stable/user-guide/appendix/zowe-glossary#secure-credential-store
https://docs.zowe.org/stable/user-guide/user-guide/cli-using-team-managing-credential-security

Version: v3.3.x LTS

Benefits of team configuration

Team configuration can make the initial setup of Zowe CLI more efficient by making service connection details easier to

share and maintain within your organization.

Consider the following benefits of using team configuration for roles across your dev team:

For a team leader, or Dev-Ops advocate, sharing global team configurations managed from one location, such

as a software change management system. This allows multiple team members to use the same configurations

stored in a repository or server.

For a Dev-Ops advocate or team leader, quickly onboarding new application developers by sharing the

configuration file that your team uses with the new team member.

For an application developer in a small shop where you have the dual roles of application developer and a Dev-

Ops advocate, having the flexibility to create team or user configurations that are most suitable for your

needs.

For a team member or application developer, efficiently managing connection details in one location.

https://docs.zowe.org/stable/user-guide/appendix/zowe-glossary#team-configuration

Version: v3.3.x LTS

Editing team configurations

After you initialize team configuration, the newly created team profiles need additional details before they can be shared

and applied in your environment. This could include information such as a port number or user credentials.

You might also need to modify the configuration file to create new profiles for accessing mainframe services.

Adding, modifying team profiles

To define additional mainframe services and other profiles in an existing global team configuration file:

1. Open the ~/.zowe/zowe.config.json file in a text editor or an IDE (such as Visual Studio Code) on your computer.

2. Edit the file by adding to or modifying the profiles listed in the profiles object.

Each profile contains connection and other frequently needed information for accessing various mainframe services,

as in the following example:

Available service profile types

A profile contains all, or most, of the information you need to connect to a specific mainframe service. Your configuration

can have multiple profiles, and these can consist of different profile types and even different kinds of a particular profile

type, depending on the connection information.

There are three basic profile types:

service profiles

base profiles

parent profiles

You can learn more about how service, base, and parent profiles work in Zowe CLI profile types.

Core z/OS service profiles

The three z/OS services that Zowe CLI and Zowe Explorer profiles connect to:

z/OSMF profiles connect with the IBM z/OS Management Facility service.

TSO profiles connect with the Time Sharing Option service.

SSH profiles connect with the Secure Shell service.

Zowe CLI plug-in service profiles

Other kinds of service profiles can be used to configure connections for Zowe CLI plug-ins. A base profile, on the other

hand, contains connection data that can be shared across multiple service profiles.

To determine the types of plug-in service profiles that can be used in Zowe CLI configuration, refer to the tables on this

page or check the Zowe CLI plug-in command groups listed in the Zowe web help. Most group names match the plug-in

https://docs.zowe.org/stable/user-guide/user-guide/cli-using-initializing-team-configuration
https://docs.zowe.org/stable/user-guide/cli-using-creating-profiles
https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles#zowe-cli-profile-types
https://docs.zowe.org/stable/web_help/index.html

profile name.

Profile properties

Every profile in a configuration file includes specific information, such as properties and their values, to communicate

with its respective mainframe service. The values for properties are defined by your specific connection information.

The available properties for z/OS services and Zowe-conformant plug-ins profiles are listed in the following tables:

base

Property Description Allowed

host Host name of service on the mainframe. string

port Port number of service on the mainframe. number

user User name to authenticate to service on the mainframe. string

password Password to authenticate to service on the mainframe. string

rejectUnauthorized

Reject self-signed certificates.

Default: true

boolean:

true

false

tokenType
The type of token to get and use for the API. Omit this option to use the default

token type, which is provided by zowe auth login .
string

tokenValue The value of the token to pass to the API. string

certFile

The file path to a certificate file to use for authentication.

Note:

The CLI does not support certificate files that require a password. For more

information, see PEM certificate files.

string

certKeyFile The file path to a certificate key file to use for authentication string

ca7

Property Description Allowed

host Host name of the CA7 API service that is running on the mainframe system. string

port Port for the CA7 API service that is running on the mainframe system. number

https://docs.zowe.org/stable/troubleshoot/cli/troubleshoot-cli-credentials#pem-certificate-files

Property Description Allowed

user
User name for authenticating connections to the CA7 API service that is running on

the mainframe system.
string

password
Password for authenticating connections to the CA7 API service that is running on

the mainframe system.
string

basePath

The base path for your API Mediation Layer instance. Specify this option to

prepend the base path to all resources when making REST requests. Do not

specify this option if you are not using an API Mediation Layer.

string

protocol Specifies protocol to use for CA7 connection.

string:

http

https

rejectUnauthorized

Reject self-signed certificates.

Default: true

boolean:

true

false

cics

Property Description Allowed

host The CMCI server host name string

port

The CMCI server port

Default: 1490

number

user Your username to connect to CICS string

password Your password to connect to CICS string

regionName The name of the CICS region name to interact with string

cicsPlex The name of the CICSPlex to interact with string

rejectUnauthorized

Reject self-signed certificates.

Default: true

boolean:

true

false

protocol

Specifies CMCI protocol.

Default: https

string:

http

https

db2

Property Description Allowed

host The Db2 server host name string

port The Db2 server port number number

user The Db2 user ID (may be the same as the TSO login) string

password The Db2 password (may be the same as the TSO password) string

database The name of the database string

sslFile Path to the root CA Certificate file string

dbm-db2

Property Description Allowed

host
Specifies the DBM Data Service REST API server host name or TCP/IP address to

use.
string

port

Specifies the DBM Data Service REST API server TCP/IP port number.

Default: 7300

number

user

Specifies the mainframe user name that you want to use to connect to the

mainframe systems during execution of the Zowe CLI commands. This user

name can be the same as your TSO login ID.

string

password

Specifies the mainframe password for the user name that is used to connect to

the mainframe systems during execution of the CLI commands. This password

can be the same as your TSO password.

string

protocol

Specifies the communication protocol between zowe dbm-db2 client and DBM

Data Service.

Default: https

string:

http

https

rejectUnauthorized

Determines whether the dbm-db2 command is accepted or rejected when a self-

signed certificate is returned by the DBM Data Service.

Default: true

boolean:

true

false

environmentList Specifies a string of one or more entries consisting of a Db2 subsystem ID and a

DBM Data Service REST API server host name or TCP/IP address. Use a comma

to separate entries. The same Db2 subsystem can be used in multiple DBM Data

Service environments. For more information about configuring the DBM Data

object

Property Description Allowed

Service, see the Database Management Solutions for Db2 for z/OS

documentation.

Default:

{

 "ssid1": "env1@host1:port1",

 "ssid2": "env2@host2:port2"

}

jobCards

Specifies a string array of z/OS JCL JOB statements.

Default:

//DB2DVOPS JOB CLASS=A,

// MSGCLASS=X

array

workDatasetPrefix

Specifies the prefix (high-level qualifier) in z/OS work data set names.

Default: ${user}.dbmdb2

string

deleteWorkDatasets

Specifies whether to delete work data sets on a mainframe after the request is

fulfilled.

Default: true

boolean:

true

false

overwriteOutputFiles

Specifies whether to overwrite output files if they exist.

Default: false

boolean:

true

false

authid

Specifies the primary Db2 authorization ID that is used to establish a connection

between Db2 and a process.

Default: ${user}

string

sqlid

Specifies the authorization ID that is used in generated SET CURRENT SQLID

statements.

Default: ${user}

string

https://techdocs.broadcom.com/db2mgmt
https://techdocs.broadcom.com/db2mgmt

Property Description Allowed

terminationCharacter

Specifies the SQL termination character to use in DDL generation when the

default termination character conflicts with the SQL statements that are used in

triggers, XML indexes, and routines (external SQL functions and native SQL

stored procedures). The default termination character is a semi-colon (;). You

cannot specify a comma, double quote, single quote, left or right parentheses,

or an underscore.

Default: ;

string

basePath

The base path for your API Mediation Layer instance. Specify this option to

prepend the base path to all DBM DS resources when making REST requests. Do

not specify this option if you are not using an API Mediation Layer.

string

dbm-db2-options

Property Description Allowed

authid
Specifies the primary Db2 authorization ID that is used to establish a connection

between Db2 and a process.
string

changeSet

Specifies the creator and name of an existing RC/Migrator global change set that

changes Db2 objects during a command execution.

Format:

<change-set-creator.change-set-name>

For more information about global change services, see the RC/Migrator

documentation.

Note:

If change-set and change-set-file are both specified, specifications in change-

set-file take precedence.

string

changeSetValues Specifies the global change specifications that modify Db2 object attributes

during a command execution.

Format:

<object-attribute> <from-value> <to-value>

The <object-attribute> consists of four characters. The first two characters

identify the object type. The last two characters identify the specific attribute.

Wildcard characters are supported in <from-value> and <to-value>. If the same

<object-attribute> is specified multiple times, the first occurrence takes

precedence.

array

https://techdocs.broadcom.com/db2rcmig
https://techdocs.broadcom.com/db2rcmig

Property Description Allowed

For a full list of attributes, see Global Change Set Attributes in the RC/Migrator

documentation.

Example:

The following example demonstrates changes to the table schema (creator) and

tablespace names:

TBCR TEST% PROD%

TBTS TESTTS% PRODTS%

Note:

- If change-set and change-set-file are both specified, specifications in change-

set-file take precedence.

- The changeSetValues options-profile option has the same behavior as the

change-set-file command option.

Default:

-- DDL changes for a table with dependent objects.

-- Note: Replace CHANGEME with your database name.

ALDB * CHANGEME

ALCR * ${user}

TBTC * ${user}

IXTC * ${user}

VWTC * ${user}

VWFS * ${user}

SYTC * ${user}

ASTC * ${user}

TGSC * ${user}

TGOW * ${user}

TGTC * ${user}

TGTO * ${user}

TGQU * ${user}

TGFS * ${user}

TGQS * ${user}

SQSC * ${user}

RTSC * ${user}

RTPO * ${user}

RTQU * ${user}

deleteWorkDatasets
Specifies whether to delete work data sets on a mainframe after the request is

fulfilled.

boolean:

true

false

https://techdocs.broadcom.com/db2rcmig
https://techdocs.broadcom.com/db2rcmig

Property Description Allowed

description Specifies a 1- to 25-character description for the RC/Migrator compare strategy. string

id

Specifies the 1- to 8-character name of the RC/Migrator compare strategy that is

created on the target Db2 subsystem during a command execution.

Format:

The name must begin with a non-numeric character and contain the following

characters only: uppercase letters from A to Z, numbers from 0 to 9, and special

characters $, #, and @.

string

jobCards Specifies a string array of z/OS JCL JOB statements. array

matchSet

Specifies the creator and name of an existing RC/Migrator automapping mask

set. Matching is used to pair objects in a DDL file to objects that are defined on

a Db2 subsystem. Matching determines whether the change-set or rule-set

options are applied.

Format:

<match-set-creator.match-set-name>

For more information about mask services, see the RC/Migrator documentation.

Note:

If --match-set and --match-set-file are both specified, specifications in

match-set-file take precedence.

string

matchSetValues Specifies the mapping mask specifications. Matching is used to pair objects in a

DDL file to objects that are defined on a Db2 subsystem. For example, a mask

specification can account for different schema naming patterns across

environments. Matching determines whether the change-set or rule-set

options are applied.

Format:

<object-type> <source-name-mask> <target-name-mask>;

STOGROUP <name> <name>

DATABASE <name> <name>

TABLESPACE <database.name> <database.name>

TABLE <schema.name> <schema.name>

INDEX <schema.name> <schema.name>

VIEW <schema.name> <schema.name>

SYNONYM <schema.name> <schema.name>

ALIAS <schema.name> <schema.name>

TRIGGER <schema.name> <schema.name>

SEQUENCE <schema.name> <schema.name>

FUNCTION <schema.name[.version]> <schema.name[.version]>

array

https://techdocs.broadcom.com/db2rcmig

Property Description Allowed

PROCEDURE <schema.name[.version]> <schema.name[.version]>

Note:

- <name> must be between 1 and 128 characters. For DATABASE and

TABLESPACE, <name> must be between 1 and 8 characters.

- <schema> must be between 1 and 128 characters.

- <version> must be between 1 and 64 characters.

A mask specification can include the following wildcard characters:

Percent sign (%) indicates that zero or more characters can occupy that position

and all remaining positions to the end of the name, or to the next character. The

percent sign can be used anywhere in the name. However, the source and

target characters must match exactly.

Hyphen or dash (-) indicates that any character can occupy that position, but a

character must exist at that position, and the source and target character must

match exactly. The hyphen can be repeated in several places in the name.

Asterisk (*) indicates matching values. An asterisk cannot be used with other

characters.

Use a semicolon to separate mask specifications. Multiple mask specifications

for the same object type are supported.

Example:

The following example demonstrates different ways of matching the table

MYNAME.MYTABLE to the table YOURNAME.YOURTABLE:

TABLE MY%.%TABLE YOUR%.%TABLE;

TABLE MYN-M-.MYT% YOURN-M-.YOURT%;

TABLE MYNAME.MYTABLE YOURNAME.YOURTABLE;

TABLE *.MYTABLE *.YOURTABLE;

For a list of mask specifications, see the RC/Migrator documentation.

Note:

- If --match-set and --match-set-file are both specified, specifications in

match-set-file take precedence.

- The matchSetValues options-profile option has the same behavior as the

match-set-file command option.

modification Specifies a named set of server-managed default parameter values that control

the execution behavior of the zowe dbm-db2 commands. For example, you can

use a modification to identify a set of default values that differ from the current

set of default values.

string

https://techdocs.broadcom.com/db2rcmig

Property Description Allowed

For more information about using the modification option, see the DBM Data

Service documentation.

overwriteOutputFiles Specifies whether to overwrite output files if they exist.

boolean:

true

false

ruleSet

Specifies the creator and name of an existing RC/Migrator rule set that overrides

Db2 object attributes in the target Db2 subsystem with the corresponding

values from the input DDL file. The changes only apply to existing objects, as

determined by match-set processing.

Format:

<rule-set-creator.rule-set-name>

For more information about rule database services, see the RC/Migrator

documentation.

string

sqlid
Specifies the authorization ID that is used in generated SET CURRENT SQLID

statements.
string

sourceDb2

Specifies the source Db2 subsystem or data sharing group where the objects

that you want to use in a command are located.

Note:

If you specify the data sharing group, the first active Db2 subsystem in the

group is used.

string

targetDb2

Specifies the target Db2 subsystem or data sharing group where you want to

use a command.

Note:

If you specify the data sharing group, the first active Db2 subsystem in the

group is used.

string

terminationCharacter

Specifies the SQL termination character to use in DDL generation when the

default termination character conflicts with the SQL statements that are used in

triggers, XML indexes, and routines (external SQL functions and native SQL

stored procedures). The default termination character is a semi-colon (;). You

cannot specify a comma, double quote, single quote, left or right parentheses,

or an underscore.

string

type
Specifies the type of DDL statements that you want to generate. You can

generate CREATE or DROP statements.

string:

drop

create

https://techdocs.broadcom.com/db2mgmt
https://techdocs.broadcom.com/db2mgmt
https://techdocs.broadcom.com/db2rcmig
https://techdocs.broadcom.com/db2rcmig

Property Description Allowed

verify

Specifies whether to verify that the objects to be created do not exist on the

Db2 subsystem and that the related objects that are required for successful

creation of the objects exist on the Db2 subsystem or in the input DDL.

Default: no

string:

yes

no

workDatasetPrefix Specifies the prefix (high-level qualifier) in z/OS work data set names. string

endevor

Property Description Allowed

host The hostname of the endevor session string

port The port number of the endevor session number

user The username of the endevor session string

password The password of the user string

protocol

The protocol used for connecting to Endevor Rest API

Default: https

string:

http

https

basePath

The base path used for connecting to Endevor Rest API

Default: EndevorService/api/v2

string

rejectUnauthorized If set, the server certificate is verified against the list of supplied CAs

boolean:

true

false

reportDir

The default path where any reports will be written to, either absolute or relative to

current directory

Default: .

string

endevor-location

Property Description Allowed

instance

The STC/datasource of the session

Default: ENDEVOR

string

Property Description Allowed

environment

The Endevor environment where your project resides

Default: DEV

string

system The Endevor system where the element resides string

subsystem The Endevor subsystem where your element resides string

type Name of the Endevor element's type string

stageNumber The Endevor stage where your project resides

string:

1

2

comment The Endevor comment you want to use when performing an action string

ccid The Endevor CCID you want to use when performing an action string

maxrc

The return code of Endevor that defines a failed action

Default: 8

number

override-

signout

Always override element signout, without having to specify the override signout

option on each command

Default: false

boolean:

true

false

file-extension

The strategy for deciding what file extension to use during a bulk retrieve or

workspace synchronization. Must be one of the following:

none:

File name is equal to element name, no extension is added.

file-ext:

The file extension defined in the Type definition is used; If not defined, no extension is

added.

type-name:

The type name is used as the file extension.

mixed:

The file extension defined in Type definition is used; If not defined, the type name is

used instead.

Default: mixed

string:

none

type-

name

file-ext

mixed

ims

Property Description Allowed

host The IMS Operations API server host name. string

port The IMS Operations API server port. number

imsConnectHost
The hostname of your instance of IMS Connect. This is typically the hostname of

the mainframe LPAR where IMS Connect is running.
string

imsConnectPort
The port of your instance of IMS Connect. This port can be found in your IMS

Connect configuration file on the mainframe.
number

plex The name of the IMS plex. string

user The web server user name where the IMS Operations API resides. string

password The web server user password where the IMS Operations API resides. string

basePath

The base path for your API Mediation Layer instance. Specify this option to

prepend the base path to all z/OSMF resources when making REST requests. Do

not specify this option if you are not using an API Mediation Layer.

string

protocol

Specifies protocol.

Default: https

string:

http

https

rejectUnauthorized

Reject self-signed certificates.

Default: true

boolean:

true

false

jclcheck

Property Description Allowed

host Host name of the JCLCheck API service that is running on the mainframe system. string

port

Port for the JCLCheck API service that is running on the mainframe system.

Default: 12697

number

user
User name for authenticating connections to the JCLCheck API service that is

running on the mainframe system.
string

password
Password for authenticating connections to the JCLCheck API service that is

running on the mainframe system.
string

Property Description Allowed

basePath

The base path for your API Mediation Layer instance. Specify this option to

prepend the base path to all resources when making REST requests. Do not

specify this option if you are not using an API Mediation Layer.

Default: cajclcheck/api/v1

string

rejectUnauthorized

Reject self-signed certificates.

Default: true

boolean:

true

false

protocol

Specifies protocol to use for JCLCheck connection.

Default: https

string:

http

https

jclcheckOptions

The desired set of JCLCheck runtime options. Specify the options exactly as you

would on the PARM= or OPTIONS DD on a batch run of JCLCheck. See the JCLCheck

runtime options documentation for details on available runtime options. If you

specify options that change the format of the JCLCheck reports, you should

request --raw-output . Changing the format of the report will affect the ability to

produce a structured API response.

string

mat

Property Description Allowed

protocol

Specifies the protocol defined for the MAT REST API server.

Default: https

string:

http

https

hostname
Specifies the hostname or IP address defined for the MAT REST API server (e.g.

127.0.0.0 or localhost).
string

port Specifies the server port (e.g. 8080). number

user Your mainframe username. string

password Your mainframe password. string

basePath

The base path for your API Mediation Layer instance. Specify this option to

prepend the base path to all resources when making REST requests. Do not

specify this option if you are not using an API Mediation Layer.

string

rejectUnauthorized

Reject self-signed certificates.

Default: true

boolean:

true

false

Property Description Allowed

listingDir

Specifies the directory where you want to store the registered program listings

(e.g. c:\listings) for your immediate source code inspection. You can use the

advantage of automated listing registration with MAT and listing retrieval through

Endevor® footprints for Cobol, C/C++, and Assembler programs. When a source

program listing is registered with MAT, you can enhance the histogram analysis

data with the program listing details that pertain to the specific CSECT and

program statement. The listing is transfered to the specified directory, which

enables you to navigate directly to the line of the source code in you VS Code IDE

and inspect the program statement. To use the listing retrieval option through

Endevor® footprints, you need to have the Endevor® Web Services installed and

configured and specify the Endevor® web server details in the MAT database

configuration.

string

mq

Property Description Allowed

host
The host name used to access the IBM MQ REST API. This might be the host name

of the IBM MQ mqweb server, or the Zowe API Mediation Layer..
string

port
The port number used to access the IBM MQ REST API. This might be the port

number of the IBM MQ mqweb server, or the Zowe API Mediation Layer.
number

user The mainframe (MQ) user name, which can be the same as your TSO login. string

password The mainframe (MQ) password, which can be the same as your TSO password. string

rejectUnauthorized

Reject self-signed certificates.

Default: false

boolean:

true

false

protocol

Specifies the MQ protocol.

Default: https

string:

http

https

omspool

Property Description Allowed

account z/OS TSO/E accounting information. string

spoolhlq High level qualifier of OM Spool installation. string

Property Description Allowed

subsys

OM Spool subsystem name.

Default: ESF

string

outds
The SYSTSPRT data set allocated by CAI.CBQ4JCL(BQ4JZOWE). It must be unique for each

Zowe CLI user interacting with OM Spool.
string

clist The data set containing ESFZOWE REXX exec. string

omview

Property Description Allowed

protocol

Protocol of the target OM Web Viewer instance.

Default: https

string:

http

https

host Hostname or ip address of the target OM Web Viewer instance. string

port

Port of the target OM Web Viewer instance.

Default: 443

number

basePath

Context name of the target OM Web Viewer instance.

Default: web-viewer

string

user User name used to authenticate against the target OM Web Viewer instance. string

password Password used to authenticate against the target OM Web Viewer instance. string

ops

Property Description Allowed

host The hostname of the server where OPS/MVS Web Services / REST API is running. string

port The port number for OPS/MVS Web Services / REST API. number

user
Your z/OS user name that is used to authenticate to OPS/MVS Web Services / REST

API.
string

password
Your z/OS password that is used to authenticate to OPS/MVS Web Services / REST

API.
string

Property Description Allowed

protocol

The protocol that is used for connecting to OPS/MVS Web Services / REST API.

Default: https

string:

http

https

rejectUnauthorized

If set to true, the server certificate is verified against the list of supplied CAs. If set

to false, certificate verification is not performed.

Default: true

boolean:

true

false

subsystem

Specifies the subsystem ID of the OPS/MVS instance to which commands will be

directed. This parameter is ignored by the show status and show subsystem

commands.

Default: OPSS

string

restApi

If set to true, the plug-in executes the command against the OPS/MVS REST API. If

set to false, the plug-in executes against the OPS/MVS Web Services.

Default: false

boolean:

true

false

basePath

If set to true, the plug-in executes the command against the OPS/MVS REST API. If

set to false, the plug-in executes against the OPS/MVS Web Services.

Default: false

string

pma

Property Description Allowed

job_acct Specifies z/OS TSO/E accounting information. Values: numeric characters (0-9) string

job_class Your z/OS class information. Values: alphanumeric characters (A-Z, 0-9) string

job_mclass

Specifies the MSGCLASS parameter value and assigns the job log to the specified output

class. The specified MSGCLASS value is used in all JCLs that PMA runs while you execute

the commands. If you do not provide the job_mclass parameter, the default MSGCLASS

value is used. Values: alphanumeric characters (A-Z, 0-9)

Default: A

string

job_load
Specifies the PMA loadlib data set name that you defined during the PMA customization

(&HLQ.CEETLOAD)
string

job_pmahlq
Specifies your PMA HLQ to access the KSDSALT, KSDSJOB, and KSDSEXC VSAM files that

ensure the collection of the necessary data
string

rse

Property Description Allowed

host The z/OS host name running the Zowe REST API. string

port

The server port used by the REST API.

Default: 6800

number

user The user name for the Zowe REST API operations. string

password The password of the user for the Zowe REST API operations. string

rejectUnauthorized

Reject self-signed certificates.

Default: true

boolean:

true

false

basePath

The base path of the API for the REST API operations.

Default: rseapi

string

protocol

Only HTTPS supported for a TLS handshake to access REST API.

Default: https

string:

https

encoding
The encoding for download and upload of z/OS data set and USS files. The

encoding should be specified in the form of "IBM-1047".
string

tokenType JWT type assigned to profile when "zowe rse auth login" is used for authentication. string

tokenValue
JWT value assigned to profile when "zowe rse auth login" is used for

authentication.
string

tokenExpiration
JWT expiration assigned to profile when "zowe rse auth login" is used for

authentication.
string

ssh

Property Description Allowed

host The z/OS SSH server host name. string

port

The z/OS SSH server port.

Default: 22

number

Property Description Allowed

user Mainframe user name, which can be the same as your TSO login. string

password Mainframe password, which can be the same as your TSO password. string

privateKey
Path to a file containing your private key, that must match a public key stored in

the server for authentication
string

keyPassphrase Private key passphrase, which unlocks the private key. string

handshakeTimeout How long in milliseconds to wait for the SSH handshake to complete. number

sysview

Property Description Allowed

host The hostname of the SYSVIEW REST API string

port The port number of the SYSVIEW REST API number

user Your z/OS username used to authenticate to the SYSVIEW REST API string

password Your z/OS password used to authenticate to the SYSVIEW REST API string

rejectUnauthorized If set, the server certificate is verified against the list of supplied CAs

boolean:

true

false

ssid

SSID of the SYSVIEW instance.

Default: GSVX

string

basePath

The base path for your API Mediation Layer instance. Do not specify this option if

you are not using an API Mediation Layer.

Default: /api/v1

string

sysview-format

Property Description Allowed

contextFields Context fields to display. Defaults to hiding all context array

overview Display the overview section boolean:

true

Property Description Allowed

false

info Display the information area, if any

boolean:

true

false

pretty Display formatted data

boolean:

true

false

blankIfZero Show a blank space instead of 0 values

boolean:

true

false

truncate

Truncate displays that are too wide for the console

Default: false

boolean:

true

false

tso

Property Description Allowed

account Your z/OS TSO/E accounting information. string

characterSet

Character set for address space to convert messages and responses from UTF-8 to

EBCDIC.

Default: 697

string

codePage

Codepage value for TSO/E address space to convert messages and responses from

UTF-8 to EBCDIC.

Default: 1047

string

columns

The number of columns on a screen.

Default: 80

number

logonProcedure

The logon procedure to use when creating TSO procedures on your behalf.

Default: IZUFPROC

string

regionSize

Region size for the TSO/E address space.

Default: 4096

number

Property Description Allowed

rows

The number of rows on a screen.

Default: 24

number

zftp

Property Description Allowed

host The hostname or IP address of the z/OS server to connect to. string

port

The port of the z/OS FTP server.

Default: 21

number

user Username for authentication on z/OS string

password Password to authenticate to FTP. string

secureFtp

Set to true for both control and data connection encryption, control for

control connection encryption only, or implicit for implicitly encrypted control

connection (this mode is deprecated in modern times, but usually uses port

990).

Note: Unfortunately, this plug-in's functionality only works with FTP and FTPS,

not SFTP which is FTP over SSH.

Default: true

boolean,null

rejectUnauthorized
Reject self-signed certificates. Only specify this if you are connecting to a secure

FTP instance.
boolean,null

servername
Server name for the SNI (Server Name Indication) TLS extension. Only specify if

you are connecting securely
string,null

connectionTimeout

How long (in milliseconds) to wait for the control connection to be established.

Default: 10000

number

encoding The encoding for download and upload of z/OS data set. string

zosmf

Property Description Allowed

host The z/OSMF server host name. string

port

The z/OSMF server port.

Default: 443

number

user Mainframe (z/OSMF) user name, which can be the same as your TSO login. string

password Mainframe (z/OSMF) password, which can be the same as your TSO password. string

rejectUnauthorized

Reject self-signed certificates.

Default: true

boolean:

true

false

certFile The file path to a certificate file to use for authentication string

certKeyFile The file path to a certificate key file to use for authentication string

basePath

The base path for your API Mediation Layer instance. Specify this option to

prepend the base path to all z/OSMF resources when making REST requests. Do

not specify this option if you are not using an API Mediation Layer.

string

protocol

The protocol used

Default: https

string:

http

https

encoding
The encoding for download and upload of z/OS data set and USS files. The default

encoding if not specified is IBM-1047.
string

responseTimeout

The maximum amount of time in seconds the z/OSMF Files TSO servlet should run

before returning a response. Any request exceeding this amount of time will be

terminated and return an error. Allowed values: 5 - 600

number

Version: v3.3.x LTS

Creating profiles

Configuration profiles are used to connect to different mainframe services, and you can structure each profile based on

how that connection is made.

For example, profiles can be nested to share the same connection information, or keep different information separate.

Services can be accessed directly by Zowe CLI, or they can be accessed through the API Mediation Layer.

Review the following scenarios to help determine the profile types best suited for your environment.

As a team leader, you can share the configuration you create with your team members so they can easily access

mainframe services.

Accessing LPARs that contain services that share the same

credentials

In the following configuration, nested profiles (highlighted in the example) use the credentials from the same base

profile to access services directly on multiple LPARs:

Accessing LPARs that contain services that do not share the

same credentials

In the following configuration, profiles are highlighted to show they are nested to use the credentials from parent profiles

for different LPARs to access services directly on multiple LPARs.

Accessing LPARs that access services through one API Mediation

Layer

In the following configuration, services are accessed through API ML (where multi-factor authentication (MFA) or single

sign-on (SSO) is achievable) using token-based authorization stored in a base profile (highlighted in the example).

Accessing LPARs that access services through one API Mediation

Layer using certificate authentication

In the following configuration, services are accessed through API ML using certificate authentication stored in a base

profile (highlighted in the example).

Accessing services through multiple API ML gateways

There are different ways to access mainframe services through multiple API ML gateways, depending on how you

organize the profiles in your configuration. Determine the method to use by the requirements of your client component.

In Zowe CLI, profiles do not need to be nested in order to use multiple API ML gateways. Nested profiles are required for

Zowe Explorer for VS Code.

Select one of the following tabs to see the configuration possible for the client components.

Zowe CLI, Zowe Explorer for VS Code Zowe CLI alternative

In the following configuration, profiles are highlighted to show they are nested so their connection information can be

used with multiple API ML gateways.

To authenticate to a specific API ML gateway from this configuration, issue the zowe auth login apiml --base-profile

lpar1 or zowe auth login apiml --base-profile lpar2 commands.

Version: v3.3.x LTS

Sharing team configuration

As a team leader, or DevOps advocate, you might want to share a team configuration globally in the following scenarios:

You want to share profiles with application developers so that they can work with a defined set of mainframe

services. The recipient of the file places it in their local ~/.zowe folder manually before issuing CLI commands.

You want to add the profiles to your project directory in a software change management (SCM) tool, such as GitHub.

When you store the profiles in an SCM tool, application developers can pull the project to their local computer and

use the defined configuration. Zowe CLI commands that you issue from within the project directory use the

configuration scheme for the project automatically.

You want to enable test automation in a CI/CD pipeline, which lets your pipelines make use of the project

configuration.

Team leaders can share team configuration files using several methods:

Shared network drive

Project repository (for example, GitHub)

Web server

Network drive

To use a network drive to share a team configuration file:

1. Store the configuration files on a shared network drive.

2. Open a command line prompt and issue the following command:

<DriveLetter>

Specifies the drive letter of the shared network drive

<FolderPath>

Specifies the directory path on the drive

NOTE

You can specify any path that file management applications, such as Windows Explorer and Finder, can access.

For example, a UNC network path (\\<HostName>\SharedZoweConfig\zowe.config.json) or local file path

(C:\Users\<UserName>\Downloads\zowe.config.json).

Project repository and web server

To import the team configuration file from a GitHub repository and a web server:

1. Store the configuration files in a project repository or on a web server.

2. Issue the following command:

Project repository (such as GitHub)

<user>

Specifies the user ID

<password>

Specifies the password for the user ID

<githubUrl>

Specifies the URL to the GitHub repository

<repoName>

Specifies the name of the repository

<branch>

Specifies the name of the branch that contains the configuration file

<folderPath>

Specifies the path to the configuration file

Web server

NOTE

You can host team configuration files on private and public web servers. The user name and password are

required for only private URLs. However, to maintain the highest level of security, you should not store

team configuration files on public URLs.

<user>

Specifies the user ID

<password>

Specifies the password for the user ID

<hostname>

Specifies the host name of the system

<folderPath>

Specifies the path to the team configuration file

TIP

To import the schema automatically from shared drives and from web servers, store the schema in the same

directory as the zowe.config.json file. In the configuration file, reference the schema as a relative path at

the top of the configuration file.

Example:

Version: v3.3.x LTS

Initializing user configuration

As an application developer or Zowe CLI user, you can manage your connection details efficiently and in one location.

Typically, that means the use of a team configuration file. An important convenience of team configuration is that it is

easier to share connection information. Another advantage (whether you work in a team or are the sole developer in

your organization) is that team configuration is optimized to leverage the broadest capabilities of Zowe CLI.

However, there might come a time when applying your own user configuration file could make sense.

The necessity of user configuration is rare, and setting up a user configuration file should not be a priority unless there is

a specific need for one. For example, user configuration can be helpful when only one user needs access to a highly

restricted project.

If you do want to use user configuration, it is advised that you create your zowe.config.user.json file after you have a

global team configuration zowe.config.json file in place.

To learn more about how profiles and different configuration files work, see How Zowe CLI uses configurations.

Creating user profiles

Generate a user configuration file that overrides the values defined in the global zowe.config.json file:

1. If you do not already have a global team configuration file, open a command line prompt and issue the following

command to generate one:

The configuration file zowe.config.json is created in the ZOWE_CLI_HOME directory.

2. Respond to subsequent prompts to create connection profiles for mainframe services.

3. Generate the global user configuration file:

The configuration file zowe.config.user.json is created in the ZOWE_CLI_HOME directory.

When created, the user configuration file contains profiles with no properties and the defaults object is empty.

Refer to the following example.

4. Use a text editor or IDE (such as Visual Studio Code) to add your connection details as properties in the

zowe.config.user.json file to either override the same properties in zowe.config.json , or to add new connection

details.

https://docs.zowe.org/stable/user-guide/cli-using-understand-profiles-configs

Version: v3.3.x LTS

How Zowe CLI uses configurations

When you run a command, Zowe CLI needs specific information, or properties, in order to perform the command action.

There are two common ways that properties and their values can be provided to Zowe CLI. One method is to manually

include this information with each command when it is issued, as in the example command below:

Including properties with every command can be tedious, because a lot of information can be required. This can lead to

typos and mistakes.

Another way of specifying these properties — using configuration files — can make things easier. A configuration file

contains profiles with properties that Zowe CLI can use when you run a command.

If configuration files were used in the example above, the user would have needed to issue only the command:

zowe zos-files list data-set "SYS1.PARMLIB*"

Learning the terminology

As of Zowe V2, Zowe CLI relies on the profiles stored in configuration files to obtain connection information.

Both user and team profiles are stored in configuration files, and these configuration files can either be project

configuration files or global configuration files. It is helpful to understand how these differ.

A user configuration file stores user profiles and is used for one person who needs their own unique properties to

run commands.

A team configuration file stores team profiles and is used by a group of people who need the same properties to

run commands.

A global configuration file resides in the ZOWE_CLI_HOME directory (YourUserHomeDirectory/.zowe, by default). It

contains global user profiles and global team profiles.

A project configuration file resides in a directory of your choice. It contains project user profiles and project team

profiles.

All configuration files are saved in .json format.

How configuration files and profiles work together

There may be instances where a user has all four types of files in their system, and all four configurations are referred to

simultaneously by Zowe CLI for a particular command.

This can mean working with files that have conflicting configurations. One file can specify that a certain profile property

has a value of ABC , while another file uses XYZ as a value.

When the same properties have different values across multiple configuration files, Zowe CLI follows a two-step check to

determine which configurations apply:

1. Does the configuration file have a more narrow or a more broad scope?

2. Is the configuration file more specific or less specific?

Zowe CLI considers a user configuration file to have a more specific use than a team configuration file, and a project

configuration file have a narrower scope than a global configuration file, which has a broader scope.

When checking all possible configuration file types, Zowe CLI categorizes files in the manner below:

This order is applied no matter the directory in which you issue a Zowe CLI command. As a user, it can be easy to trace

this logic when configuration files are all either in your ZOWE_CLI_HOME directory (broad scope) or your project directory

(narrow scope).

But when there are configuration files across directories (meaning, in a project directory and a home directory), tracking

how these files work together can seem more complicated.

Read on to go over some examples.

Using a profile found in multiple configuration files

Consider a user that has all configuration file types, as in the following scenario:

specificity type file type profile property value

narrow scope/more specific project user config file One ABC red

narrow scope/less specific project team config file Two XYZ yellow

broad scope/more specific global user config file Three MNO green

broad scope/less specific global team config file Two XYZ blue

In the case above, if Zowe CLI needs the MNO property to carry out a command, it refers to the global user configuration

file to apply the green value because it is the only configuration file that has this particular property. No need to

compare the specificity of files here.

On the other hand, if a Zowe CLI command needs the information in the Two profile, it can seem like there are two

possible values, yellow and blue . In this case Zowe CLI knows to use yellow by following the rules of specificity: The

project team file has a narrower scope than the global team file.

Zowe CLI takes the following steps:

1. Finds the XYZ property in both Two profiles.

2. Ignores the blue value for the XYZ property because the global configuration file has a broad scope.

3. Uses the yellow value for the XYZ property because the project configuration file has a narrow scope.

Using multiple properties found in multiple profiles

Consider a more layered scenario. Again, assume you have all four configuration file types, but the following conditions

apply:

There are multiple profiles across all four configuration file types.

Some profiles appear in multiple configurations. Other profiles show up in only one file.

There are multiple properties shared across several profiles.

Some properties are found in only one profile.

In this scenario, the following profiles, properties, and values exist, displayed in the format profile: property: value:

Project User

Configuration File

Project Team

Configuration File

Global User

Configuration File

Global Team

Configuration File

abc: direction: north abc: direction: east abc: direction: south
abc: direction: west

abc: numbers: 123

def: shape: triangle def: shape: square def: shape: circle

ghi: texture: bumpy

jkl: temperature: cold

mno: fruit: banana

pqr: distance: near

The table below shows how Zowe CLI determines which profiles, properties, and values to use in a command.

Configuration files in

use

Specificity rules

Profiles,

properties

and values used

global user profile

global team profile

When the same property exists within the same profile in

both config files, the property value from the global user

config is used.

abc: direction:

south

abc: numbers: 123

def: shape: circle

Configuration files in

use

Specificity rules

Profiles,

properties

and values used

When the same profile exists in both config files, but a

property of that profile exists in only one file, that property

is used.

If a profile exists in only one config file, that profile is used

in its entirety.

ghi: texture: bumpy

pqr: distance: near

project team profile

global user profile

global team profile

When a profile exists in all three config files, the project

team profile is used.
*

If a profile exists in only one config file, that profile is used

in its entirety.

abc: direction: east

def: shape: square

ghi: texture: bumpy

mno: fruit: banana

pqr: distance: near

project user profile

project team profile

global user profile

global team profile

When the same profile with the same properties exists in

all four config files, the property values from the project

user config is used.

When the same profile exists in all four config files, the

project files override the global files. If a property of the

profile exists in only one of the two project configurations,

that property is used.
*

If a profile exists in only one config file, that profile is used

in its entirety.

abc: direction:

north

def: shape: triangle

ghi: texture: bumpy

jkl: temperature:

cold

mno: fruit: banana

pqr: distance: near

* If the same profile exists in both a global configuration file and a project configuration file, the project configuration

profile completely replaces the global profile. This is true even when the project profile has fewer properties in the same

profile found in the global file.

The preceding rules apply when profiles have the same name. To maintain the same set of properties in two different

profiles, give each profile a different name so that Zowe CLI uses a specific profile, if needed.

For more information on how configuration files work together, see How Zowe CLI team configuration files are merged

together.

https://github.com/zowe/zowe-cli/blob/master/docs/How_config_files_are_merged.md
https://github.com/zowe/zowe-cli/blob/master/docs/How_config_files_are_merged.md

Version: v3.3.x LTS

Managing credential security

Secure credential storage

The Zowe CLI Secure Credential Store (SCS) Plug-in was deprecated in Zowe V2, rendering the zowe scs command

group obsolete.

Secure credential encryption is included with the Zowe CLI core application. When a command using a profile with

missing user and password information is issued, Zowe CLI prompts you to enter the username and password. Both are

then stored securely by default.

For other ways to store credentials securely, use the zowe config command group. See the following instructions.

Configuring secure properties

Create a configuration file and set its secure properties (such as usernames and passwords):

1. Open the Zowe CLI command prompt.

2. To initialize a project team configuration file in the current working directory:

To initialize a project user configuration file in the current working directory:

To initialize a global team configuration file in the ZOWE_CLI_HOME directory:

To initialize a global user configuration file in the ZOWE_CLI_HOME directory:

A configuration file is created, if one does not already exist.

Additionally, the user and password fields are added to the generated base profile's secure array for that

configuration file. Zowe CLI stores the username and password in the secure credential store.

3. If needed, add other fields to the secure array.

Use a text editor or an IDE (such as Visual Studio Code) to edit the configuration file.

Issue the zowe config set --secure <property-path> command to secure a specific property in a specific

profile.

For example, in a global configuration file, zowe config set profiles.global_base.properties.password

pw123 --secure adds the password property to the global_base profile's secure array and saves the password

pw123 in the secure credential store.

If you issue the command for a property that is already secured, the CLI prompts you to enter a new property

value.

The values for these properties are saved in the secure credential store.

https://docs.zowe.org/stable/appendix/zowe-glossary#secure-credential-store

Updating secure properties

Update secure credentials in an existing config profile:

1. Open the Zowe CLI command prompt.

2. To update values for secure fields in a project team configuration file:

To update values for secure fields in a project user configuration file:

To update values for secure fields in a global team configuration file:

To update values for secure fields in a global user configuration file:

Prompts request new values for all secure fields defined in the configuration file. In most cases, these properties

include a username or password, but some users may include other fields, such as a token value or connection

properties.

3. Respond to prompts as needed. Press Enter to leave the value unchanged.

New values are saved in the secure credential store. After the last secure value is submitted, the user returns to the

system command prompt.

Setting secure properties programmatically

When configuring secure properties with scripts or workflow pipelines, use the zowe config set command. See Step 3

in Configuring secure properties for instructions on how to use the command.

Version: v3.3.x LTS

Storing properties automatically

When you issue a command that is missing a required option value for a property (for example, host or password) the

CLI prompts you to enter the option value.

The autoStore property in the zowe.config.json file lets you store the option values for properties automatically. When

you specify the autoStore property in zowe.config.json to true , the value that you enter when prompted is stored for

future commands to use. The values for secure fields are stored securely in the credential vault (if configured

accordingly), and the other values are written to zowe.config.json on disk.

The default value of the autoStore property is true . However, if you do not want to store properties automatically, set

the value of autoStore to false .

A value of false prompts for missing values on all commands that you issue.

Version: v3.3.x LTS

Integrating API ML with Zowe CLI

The Zowe API Mediation Layer (API ML) provides a secure single point of access to a defined set of mainframe services.

API ML provides API management features such as high-availability, consistent security, and a single sign-on (SSO) and

multi-factor authentication (MFA) experience.

The recommended way to interact with API ML is through the use of tokens.

Tokens allow you to access services through API ML without reauthenticating every time you issue a command. Tokens

provide secure interaction between the client and server. When you issue commands to API ML, the mediation layer

routes requests to an appropriate API instance based on system load and available API instances.

Tokens can be obtained by logging into API ML with a username and password, or a client certificate.

How token management works

When you log in with Zowe CLI, an API ML token is supplied and stored on your computer to be used in place of a

username and password. The token provides a secure handshake with API ML when you issue commands so that you do

not need to reauthenticate until the token expires.

NOTE

Zowe CLI also supports standard token implementations such as Java Web Tokens (JWT) and Lightweight Third-Party

Authentication (LTPA).

Logging in with username and password

Provide your username and password to generate a token and log in to API ML:

1. Log in to API ML:

For users who do not have a base profile that has been used to log into API ML, this creates a new base profile that is

set as the default base profile in your configuration file.

For users who have a default base profile already used to log into API ML, this updates the existing default base

profile with a new token.

2. When prompted, enter the following information:

Username

Password (can be a PIN concatenated with a second factor for MFA)

Host

Port for the API ML instance

A base profile is created or updated with your token, which is stored on your computer in place of a username and

password. When you issue commands, you can omit your username, password, host, and port.

https://docs.zowe.org/stable/appendix/zowe-glossary#base-profile

If you do not want to store the token on your PC, append the --show-token option to the login command in Step 1.

This returns the token value in your terminal for you to use on subsequent commands.

If you already created a base profile, you might not be prompted for the host and port.

3. If you do not have a profile for the service, respond to Zowe CLI prompts for connection information to create a

profile for the service.

TIP

To establish a base path, see instructions for Zowe V2 profiles or Zowe V1 profiles.

If you already have a profile in your configuration for the service you want to connect to, use a text editor to open

the applicable configuration file and replace the port property with a basePath property to enable the use of API

ML.

A profile with a port number:

A profile with a base path:

If you use the --show-token option with the login command, you must manually supply the token on each

command using the --token-value option. For example:

<searchPattern>

Specifies the data set search criteria (for example, <IBMUSER.*>)

<123>

Specifies the token value supplied in Step 2.

NOTES

Tokens expire after a period of time defined by your security administrator. When a token expires, you must log

in to API ML again to get a new token.

If you omit connection details from a service profile, such as zosmf profile, the CLI uses the information from

your base profile.

You can choose to specify all connection details on a service profile and connect directly to the service. Routing

through API ML is not required.

Logging in with a client certificate

Use a client certificate to generate a token and log in to API ML:

<APIML Host>

Specifies the API ML host.

<APIML Port>

Specifies the API ML port.

<PEM Public Certificate Path>

Specifies the path for the PEM public certificate.

<PEM Private Certificate Path>

Specifies the path to the PEM private certificate.

Zowe CLI procures a security token from API ML and adds that token to the base profile in the applicable configuration

file.

NOTE

If you have multiple types of configuration files and base profiles, see How configuration files and profiles work

together to learn which configuration and profile would be used to store the API ML token.

Logging out

Log out to prompt the API ML token to expire and remove it from your base profile:

This causes the token to expire. Log in again to obtain a new token.

If you used the --show token option and never stored your token in profile, add the --token-value option to this

command to invalidate the token.

Specifying a base profile

Base profiles contain mainframe connection information that is used by the service profiles in your configuration. There

can be multiple base profiles in the same configuration file, including a default base profile. This could be the case, for

example, if you run different systems for development and testing and use a different base profiles for each.

The zowe auth login apiml and zowe auth logout apiml commands use your configuration's default base profile

when issued without additional options.

However, you might need to use a different base profile. To do so, add the --base-profile option to specify the base

profile that you want to use when logging in or out of API ML.

Use --base-profile to log in to API ML and save your token in a specific base profile that is not the default base

profile:

Logging in with a username and password:

Logging in with a client certificate:

Use --base-profile when issuing commands with API ML:

Use --base-profile to log out of API ML and invalidate your token:

Accessing a service through API ML

https://docs.zowe.org/stable/user-guide/cli-using-understand-profiles-configs#how-configuration-files-and-profiles-work-together
https://docs.zowe.org/stable/user-guide/cli-using-understand-profiles-configs#how-configuration-files-and-profiles-work-together

To access mainframe services through API ML using the token in your base profile, use the basePath property in your

service profile to indicate the base path of the API on the API ML instance that you want to access.

To establish a base path, see instructions for Zowe V2 profiles.

NOTE

Ensure that you do not provide username, password, host, or port directly on the service commands or profiles.

Supplying those options causes the CLI to ignore the API ML token in your base profile and access the service

directly.

Specifying a base path with Zowe team configuration

Use the following steps to specify a base path with Zowe team configuration:

1. Note the complete path for a z/OSMF instance registered to API ML.

For example:

The format of base paths can vary based on how API ML is configured at your site.

2. Using the example in Step 1, access the API ML instance by creating or updating a service profile, or issuing a

command, with the base path value of ibmzosmf/api/v1 . Your service profile uses the token and credentials stored

in your default base profile.

To create or update a service profile with the preceding base path in a project team configuration file:

If you are using a global team configuration file (located in your home directory), add --global-config to the end

of the command.

Commands issued with this profile are routed through API ML to access an appropriate z/OSMF instance.

Specifying a base path with Zowe V1 profiles

See Integrating with API Mediation Layer in the Zowe V1 documentation.

Accessing multiple services with SSO

If multiple services are registered to the API Mediation Layer at your site, Zowe CLI lets you access the services with

Single Sign-on (SSO). Log in once to conveniently access all available services.

Edit your configuration file so that each service profile includes the basePath property and the corresponding value.

Ensure that you do not provide username, password, host, or port in the service profiles. Supplying those options causes

the CLI to ignore the token in your base profile and directly access the service.

For information about registering an API service at your site, see Developing for API Mediation Layer.

Accessing services through SSO and a service not through API ML

A scenario might exist where you log in to API ML with SSO, but you also want to access a different service directly.

In this case, your zowe.config.json file might look like the following client configuration:

https://docs.zowe.org/stable/appendix/zowe-glossary#team-configuration
https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles#zowe-cli-profile-types
https://docs.zowe.org/zowe-docs-v1.28.x.pdf
https://docs.zowe.org/stable/user-guide/extend/extend-apiml/onboard-overview

zowe.config.json

In the preceding configuration, the base profile my_one_base_profile (Lines 10-16) includes connection information to

be used by the two z/OSMF service profiles, zosmf_thru_apiml (Lines 17-23) and zosmf_direct (Lines 24-33). Use

zosmf_thru_apiml to connect to z/OSMF with API ML and zosmf_direct to connect to z/OSMF directly.

Use the configuration example to connect with z/OSMF using API ML's SSO feature:

1. Add a base profile that includes the information that API ML needs to connect to z/OSMF, like the host and port.

Include the port property and value to avoid entering the port number manually when logging into API ML.

2. Add a service profile for z/OSMF that includes the basePath property.

The base path indicates the starting point for the z/OSMF REST API.

Omit the host and port because these are supplied by the base profile.

3. Log in to API ML.

This creates an authentication token that is stored on your computer. The tokenType property is also added to

your base profile.

4. Issue commands.

If you have multiple base profiles in your configuration, use the --base-profile option to specify which base

profile to use with API ML.

Use the configuration example to connect to z/OSMF directly:

1. Ensure that the base profile includes the information to connect directly to z/OSMF, like the host.

Leave the port information as it was set for API ML.

2. Add a service profile for z/OSMF that includes the port property and value.

This port number should match the port on the mainframe through which applications can access the z/OSMF

REST services. This port number overrides the port in the base profile.

3. Issue commands.

If you have multiple base profiles in your configuration, use the --base-profile option to specify which base

profile to use for the host.

Accessing services through SSO and a service through API ML but not SSO

You might want to access multiple services with SSO, but also access a service through API ML that is not SSO-enabled.

To perform SSO for the first set of services, edit your configuration file so that these service profiles include the

basePath property and the corresponding value. Ensure that you do not provide username, password, host, or port in

the service profiles. Supplying those options causes the CLI to ignore the token in your base profile and directly access

the service.

To access the service that is not SSO-enabled, add the basePath property and value to that service profile and also

include a secure array containing user and password . (The credentials are stored in your computer's secure vault.)

This ensures that the request is routed to API ML, but user and password that you provide in the non-SSO service profile

overrides the credentials in your base profile. This lets you sign in to the individual service.

Version: v3.3.x LTS

Working with certificates

Certificates authorize communication between a server and client, such as z/OSMF and Zowe CLI. The client CLI must

"trust" the server to successfully issue commands. Use one of the following methods to let the CLI communicate with the

server.

Configure certificates signed by a Certificate Authority (CA)

System administrators can configure the server with a certificate signed by a Certificate Authority (CA) trusted by

Mozilla. When a CA trusted by Mozilla exists in the certificate chain, the CLI automatically recognizes the server and

authorizes the connection.

FIND OUT MORE

Using certificates with z/OS client/server applications in the IBM Documentation.

Configuring the z/OSMF key ring and certificate in the IBM Documentation.

Certificate management in Zowe API Mediation Layer

Mozilla Included CA Certificate List

Extend trusted certificates on client

If your organization uses self-signed certificates in the certificate chain (rather than a CA trusted by Mozilla), you can

download the certificate to your computer and add it to the local list of trusted certificates. Provide the certificate locally

using the NODE_EXTRA_CA_CERTS environment variable.

Organizations might want to configure all client computers to trust the self-signed certificate.

FIND OUT MORE

The blog post Zowe CLI: Providing NODE_EXTRA_CA_CERTS outlines the process for using environment variables to

trust a self-signed certificate.

Bypass certificate requirement

If you do not have server certificates configured at your site, or you want to trust a known self-signed certificate, you can

append the --reject-unauthorized false flag to your CLI commands. Setting the --reject-unauthorized flag to

false rejects self-signed certificates and essentially bypasses the certificate requirement.

IMPORTANT

Understand the security implications of accepting self-signed certificates at your site before you use this command.

To bypass the certificate requirement, open a command line window and issue the following command with your

information:

https://www.ibm.com/docs/en/zos/2.5.0?topic=certificates-using-zos-clientserver-applications
https://www.ibm.com/docs/en/zos/2.5.0?topic=configurations-configuring-zosmf-server-certificate-key-ring
https://docs.zowe.org/stable/extend/extend-apiml/certificate-management-in-zowe-apiml
https://wiki.mozilla.org/CA/Included_Certificates
https://medium.com/@dkelosky/zowe-cli-providing-node-extra-ca-certs-117727d936e5

<host>

Specifies the host name.

<port>

Specifies the port number.

<username>

Specifies the user name.

<password>

Specifies the user password.

Version: v3.3.x LTS

Using environment variables

NOTE

For information on how to modify Zowe CLI default environment variables, see Configuring Zowe CLI environment

variables.

You can define environment variables to execute commands more efficiently. Store a value such as your password in an

environment variable, then issue commands without specifying your password every time.

The term environment can refer to your operating system, container environment, or automation server such as Jenkins.

Consider assigning a variable in the scenarios outlined in the following table. See Formatting environment variables for

instructions.

Use case Example Benefit

Store a commonly

used value.

Specify your mainframe username as an

environment variable.

Issue commands without the --user

option, and Zowe CLI automatically uses

the value defined in the environment

variable.

Override a value in

existing profiles.

Override a value previously defined in multiple

profiles. Specify the new value as a variable to

override the value in profiles.

Avoid recreating each profile.

Secure credentials in

an automation server

or container

Set environment variables for use in scripts

that run in your CI/CD pipeline. You can also

define sensitive information in the Jenkins

secure credential store.

Hide passwords and other sensitive

information from plaintext in logs.

Store credentials securely in CI/CD pipelines

You can use environment variables when running CI/CD pipelines to load credentials that are securely stored.

To do so, use the ZOWE_OPT_ prefix to turn a Zowe CLI command option into the proper format for a Zowe CLI

environment variable. For instructions, see Formatting environment variables.

The environment variables to use environment variables for a username and password are ZOWE_OPT_USER and

ZOWE_OPT_PASSWORD .

Include the username and password environment variables in CI/CD pipelines that run Zowe CLI, as in the following

example Jenkinsfile that uses the Jenkins credential store:

For more information on Jenkins credential storage, see Using credentials and Using a Jenkinsfile.

https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev
https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev
https://docs.zowe.org/stable/user-guide/cli-using-formatting-environment-variables
https://docs.zowe.org/stable/user-guide/cli-using-formatting-environment-variables
https://www.jenkins.io/doc/book/using/using-credentials/
https://www.jenkins.io/doc/book/pipeline/jenkinsfile/#for-secret-text-usernames-and-passwords-and-secret-files

Version: v3.3.x LTS

Formatting environment variables

Transform an option into the proper format for a Zowe CLI environment variable, then define a value to the variable.

Transform option names according to the following rules:

Prefix environment variables with ZOWE_OPT_ .

Convert lowercase letters in arguments/options to uppercase letters.

Convert hyphens in arguments/options to underscores.

TIP

Refer to your operating system documentation for information about how to set and get environment variables. The

procedure varies between Windows, Mac, and various versions of Linux.

Examples of transformed CLI options

The following table provides examples of CLI options and the corresponding environment variable to which you can

define a value:

Command

Option
Environment Variable Use Case

--user ZOWE_OPT_USER
Define your mainframe username to an environment variable

to avoid specifying it on all commands or profiles.

--reject-

unauthorized
ZOWE_OPT_REJECT_UNAUTHORIZED

Define a value of true to the --reject-unauthorized flag

when you always require the flag and do not want to specify it

on all commands or profiles.

--editor ZOWE_OPT_EDITOR

Define an editor that Zowe CLI uses to open files. The value

can be either the editor's executable file location or the name

of a program (for example, notepad on Windows or nano on

Linux).

Version: v3.3.x LTS

Setting environment variables in an automation

server

You can use environment variables in an automation server, such as Jenkins, to write more efficient scripts and make use

of secure credential storage. Automation tools such as Jenkins automation server usually provide a mechanism for

securely storing configuration (for example, credentials). In Jenkins, you can use withCredentials to expose credentials

as an environment variable (ENV) or Groovy variable.

You can set environment variables by using one of the following options:

The SET command within your scripts

The Jenkins web interface to navigate to Manage Jenkins > Configure System > Global Properties and define

an environment variable in the Jenkins GUI.

For an example of using the web interface, see the following image:

Version: v3.3.x LTS

Using the prompt feature

Zowe CLI uses a command-line "prompt" feature to request you to provide required option values. The CLI always

prompts for host, port, username, and password information if not supplied in commands or profile configuration.

You can also manually enable the prompt for any option. This is helpful to mask sensitive information on the screen while

you type. You can enable a one-time prompt, or you can choose to always prompt for a particular option.

Enabling a one-time prompt

To enable a one-time prompt:

1. Open the Zowe CLI command prompt.

2. Specify an option or positional argument as prompt* :

Zowe CLI responds with a prompt for the information.

3. Enter the correct value at the prompt.

The prompt hides the user's input as it is entered into the command line.

Always prompting for a particular option

Always prompting can be a good practice when your environment's security protocols prevent storing credentials on a

personal computer, or expire passwords frequently (as with multi-factor authentication).

To always prompt for a particular option:

1. Use a text editor to open the configuration file that contains the profile to be modified.

2. In the profile, save prompt* as the plain-text value for the profile properties for which you want to be prompted:

3. Test the prompt by running a command using the modified profile.

Zowe CLI prompts for the configured properties, such as the user ID and password in the following example:

The prompt hides the user's input as it is entered into the command line.

Version: v3.3.x LTS

Writing scripts

You can combine multiple Zowe CLI commands in bash or shell scripts to automate actions on z/OS. Implement scripts to

enhance your development workflow, automate repetitive test or build tasks, and orchestrate mainframe actions from

continuous integration/continuous deployment (CI/CD) tools such as Jenkins or TravisCI.

NOTE

The type of script that you write depends on the programming languages that you use and the environment where

the script is executed. The following is a general guide to Zowe CLI scripts. Refer to third-party documentation to

learn more about scripting in general.

To write a script:

1. Create a new file on your computer with the extension .sh. For example, testScript.sh .

NOTE

On Mac and Linux, an extension is not required. To make the file executable, issue the command chmod u+x

testScript .

2. For Mac and Linux only: At the top of the file, specify the interpreter that your script requires. For example, type

#!/bin/sh or #!/bin/bash .

NOTE

The command terminal that you use to execute the script depends on what you specify at the top of your script.

Bash scripts require a bash interpreter (bash terminal), while shell scripts can be run from any terminal.

3. Write a script using a series of Zowe CLI commands.

TIP

You can incorporate commands from other command-line tools in the same script. You might choose to "pipe"

the output of one command into another command.

4. From the appropriate command terminal, issue a command to execute the script. The command you use to execute

script varies by operating system.

The script runs and prints the output in your terminal. You can run scripts manually, or include them in your automated

testing and delivery pipelines.

Sample script library

Refer to the Zowe CLI Sample Scripts repository for examples that cover a wide range of scripting languages and use

cases.

Example: Clean up Temporary Data Sets

https://github.com/zowe/zowe-cli-sample-scripts

The script in this example lists specified data sets, then loops through the list of data sets and deletes each file. You can

use a similar script to clean up temporary data sets after use.

NOTE

Run this script from a bash terminal.

Example: Submit Jobs and Save Spool Output

The script in this example submits a job, waits for the job to enter output status, and saves the spool files to local files

on your computer.

NOTE

Run this script from a bash terminal.

Version: v3.3.x LTS

Using a z/OS attributes file

Use a .zosattributes file to control how files are converted and tagged when you upload a local directory to a USS

directory on the mainframe.

What is a .zosattributes file

A .zosattributes file saved in your source directory provides uploading and downloading instructions to the

mainframe. A line in the file can specify a code comment or instructions.

An example .zosattributes file:

#

Denotes a comment when used at the start of a line. In the preceding example, comments are highlighted.

Each line can specify up to three positional attributes, or instructions:

A pattern to match a set of files.

Pattern-matching syntax follows the same rules as those that apply in .gitignore files. Negated patterns

that begin with ! are not supported.

For syntax, see Pattern Format.

A local-encoding to identify a file’s encoding on the local workstation.

When - is specified for local-encoding, files that match the pattern are not transferred.

A remote-encoding to specify the file’s desired character set on USS.

This attribute must either match the local encoding or be set to EBCDIC . If set to EBCDIC , files are

transferred in text mode and converted, otherwise they are transferred in binary mode.

Remote files are tagged either with the remote encoding or as binary.

Using a .zosattributes file with Zowe CLI

Use a .zosattributes file with Zowe CLI to issue commands to control how the mainframe uploads your local files.

.zosattributes file location

A .zosattributes file can be saved in the top-level directory you want to upload.

Or specify its location by using the --attributes option with the zowe zos-files upload dir-to-uss command:

.zosattributes files that are placed in nested directories are ignored.

Using a .zosattributes file with Zowe Explorer for VS Code

In Zowe Explorer for Visual Studio Code, first upload a .zosattributes file to a USS directory on the mainframe and

then upload files to that directory.

https://git-scm.com/docs/gitignore#_pattern_format

Creating a .zosattributes file

Use a text editor to create a .zosattributes file to instruct Zowe what local files to upload and how to convert and tag

them.

For pattern-matching syntax, follow the Pattern Format. For how to write the local encoding and remote encoding

instructions, see What is a .zosattributes file.

https://git-scm.com/docs/gitignore#_pattern_format

Version: v3.3.x LTS

Zowe CLI plug-ins

You can install plug-ins to extend the capabilities of Zowe™ CLI. CLI Plug-ins for third-party applications are also

available.

Plug-ins add functionality to the product in the form of new command groups, actions, objects, and options.

IMPORTANT

Plug-ins can gain control of Zowe CLI legitimately during the execution of every command. Install third-party plug-

ins at your own risk.

You can install the following Zowe plug-ins:

IBM® CICS® Plug-in for Zowe CLI

IBM® Db2® Plug-in for Zowe CLI

IBM z/OS FTP Plug-in for Zowe CLI

IBM MQ Plug-in for Zowe CLI

Third-party Zowe Conformant Plug-ins

Use either of the following methods to install plug-ins:

Install from an online NPM registry. Use this method when your computer can access the Internet.

For more information, see Installing plug-ins from an online registry.

Install from a local package. With this method, you download and install the plug-ins from a bundled set of .tgz

files. Use this method when your computer cannot access the Internet.

For more information, see Installing plug-ins from a local package.

https://openmainframeproject.org/our-projects/zowe-conformance-program/
https://docs.zowe.org/stable/user-guide/cli-installplugins#installing-plug-ins-from-an-online-registry
https://docs.zowe.org/stable/user-guide/cli-installplugins#installing-plug-ins-from-a-local-package

Version: v3.3.x LTS

Installing Zowe CLI plug-ins

Use commands in the plugins command group to install and manage Zowe™ CLI plug-ins.

IMPORTANT

Plug-ins can gain control of Zowe CLI legitimately during the execution of every command. Install third-party plug-

ins at your own risk.

Installing plug-ins from an online registry

The following procedure assumes that you previously installed Zowe CLI core.

To install Zowe CLI plug-ins on Windows, Mac, and Linux:

1. Meet the software requirements for each plug-in to be installed.

2. Install a plug-in from public npm:

<my-plugin>

Specifies the command syntax for the plug-in to be installed. Use the following table to determine the syntax for

your plug-in.

Plug-in Syntax

IBM CICS Plug-in for Zowe CLI @zowe/cics-for-zowe-cli@zowe-v3-lts

IBM Db2 Plug-in for Zowe CLI @zowe/db2-for-zowe-cli@zowe-v3-lts

IBM z/OS FTP Plug-in for Zowe CLI @zowe/zos-ftp-for-zowe-cli@zowe-v3-lts

IBM MQ Plug-in for Zowe CLI @zowe/mq-for-zowe-cli@zowe-v3-lts

3. (Optional) Issue the following command to install two or more plug-ins using one command. Separate the <my-

plugin> names with a single space.

NOTE

The IBM Db2 Plug-in for Zowe CLI requires additional licensing and ODBC driver configurations. If you installed

the DB2 plug-in, see IBM Db2 Plug-in for Zowe CLI.

You have successfully installed the specified Zowe CLI plug-in(s).

Installing plug-ins from a local package

https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://docs.zowe.org/stable/user-guide/cli-db2plugin

The following procedure assumes that you previously installed Zowe CLI core.

To install plug-ins from a local package on any computer that has limited or no access to the Internet:

1. Meet the software requirements for each plug-in that you want to install.

2. Obtain the installation files.

From the Zowe Download website, click Download Zowe CLI to download the Zowe CLI installation package named

zowe-cli-package-<X.Y.Z>.zip to your computer.

v

Specifies the version number

r

Specifies the release number

m

Specifies the modification number.

3. Open a command-line window, such as Windows Command Prompt. Browse to the directory where you downloaded

the Zowe CLI installation package (.zip file). Issue the following command, or use your preferred method to unzip the

files:

Example:

By default, the unzip command extracts the contents of the zip file to the directory where you downloaded the .zip

file. You can extract the contents of the zip file to your preferred location.

4. Issue the following command against the extracted directory to install each available plug-in:

Replace <my-plugin> with the .tgz file name listed in the following table:

Plug-in .tgz File Name

IBM CICS Plug-in for Zowe CLI cics-for-zowe-cli.tgz

IBM Db2 Plug-in for Zowe CLI db2-for-zowe-cli.tgz

IBM z/OS FTP Plug-in for Zowe CLI zos-ftp-for-zowe-cli.tgz

IBM MQ Plug-in for Zowe CLI mq-for-zowe-cli.tgz

You have successfully installed the Zowe CLI plug-ins.

Validating plug-ins

https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://zowe.org/download/

Issue the plug-in validation command to run tests against all plug-ins (or against a plug-in that you specify) to verify that

the plug-ins integrate properly with Zowe CLI. The tests confirm that the plug-in does not conflict with existing command

groups in the base application. The command response provides you with details or error messages about how the plug-

ins integrate with Zowe CLI.

The validate command has the following syntax:

[plugin]

Specifies the name of the plug-in that you want to validate. If you do not specify a plug-in name, the command

validates all installed plug-ins. The name of the plug-in is not always the same as the name of the NPM package.

Plug-in Syntax

IBM CICS Plug-in for Zowe CLI @zowe/cics-for-zowe-cli

IBM Db2 Plug-in for Zowe CLI @zowe/db2-for-zowe-cli

IBM z/OS FTP Plug-in for Zowe CLI @zowe/zos-ftp-for-zowe-cli

IBM MQ Plug-in for Zowe CLI @zowe/mq-for-zowe-cli

Examples: Validate plug-ins

The following example illustrates the syntax to use to validate the IBM CICS Plug-in for Zowe CLI:

The following example illustrates the syntax to use to validate all installed plug-ins:

Updating plug-ins

You can update Zowe CLI plug-ins from an online registry or from a local package.

Update plug-ins from an online registry

Issue the update command to install the latest stable version or a specific version of a plug-in that you installed

previously. The update command has the following syntax:

[plugin...]

Specifies the name of an installed plug-in that you want to update. The name of the plug-in is not always the same

as the name of the NPM package. You can use npm semantic versioning to specify a plug-in version to which to

update. For more information, see npm semver.

[--registry \<registry>\]

(Optional) Specifies a registry URL that is different from the registry URL of the original installation.

Examples: Update plug-ins

The following example illustrates the syntax to use to update an installed plug-in to the latest version:

The following example illustrates the syntax to use to update a plug-in to a specific version:

Update plug-ins from a local package

You can update plug-ins from a local package. You acquire the media from the Zowe Download website and update the

plug-ins using the zowe plugins install command.

To update plug-ins from a local package, follow the steps described in Installing plug-ins from a local package.

Uninstall Plug-ins

Issue the uninstall command to uninstall plug-ins from Zowe CLI. After the uninstall process completes successfully,

the product no longer contains the plug-in configuration.

The uninstall command contains the following syntax:

[plugin]

Specifies the name of the plug-in that you want to uninstall.

The following table describes the uninstallation command syntax for each plug-in:

Plug-in Syntax

IBM CICS Plug-in for Zowe CLI @zowe/cics-for-zowe-cli

IBM Db2 Plug-in for Zowe CLI @zowe/db2-for-zowe-cli

IBM z/OS FTP Plug-in for Zowe CLI @zowe/zos-ftp-for-zowe-cli

IBM MQ Plug-in for Zowe CLI @zowe/mq-for-zowe-cli

Example:

The following example illustrates the command to uninstall the CICS plug-in:

https://zowe.org/download/

Version: v3.3.x LTS

IBM® CICS® Plug-in for Zowe CLI

The IBM® CICS® Plug-in for Zowe™ CLI lets you extend Zowe CLI to interact with CICS programs and transactions. The

plug-in uses the IBM CICS® Management Client Interface (CMCI) API to achieve the interaction with CICS. For more

information, see CICS management client interface on the IBM Knowledge Center.

Use cases

As an application developer, you can use the plug-in to perform the following tasks:

Deploy code changes to CICS applications that were developed with COBOL.

Deploy changes to CICS regions for testing or delivery. See the define command for an example of how you can

define programs to CICS to assist with testing and delivery.

Automate CICS interaction steps in your CI/CD pipeline with Jenkins Automation Server or TravisCI.

Deploy build artifacts to CICS regions.

Alter, copy, define, delete, discard, and install CICS resources and resource definitions.

Commands

For detailed documentation on commands, actions, and options available in this plug-in, see our web help.

There are several methods to view Zowe CLI web help:

Use a web browser

Extract from a ZIP file

Download a PDF file

Software requirements

Before you install the plug-in, meet the software requirements in Software requirements for Zowe CLI plug-ins.

Installing

Use one of the following methods to install or update the plug-in:

Installing plug-ins from an online registry

Installing plug-ins from a local package

Creating a user profile

After you install the plug-in, create a CICS profile to avoid entering your connection details each time that you issue a

command. You can create multiple profiles and switch between them as needed.

https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.3.0/com.ibm.cics.ts.clientapi.doc/topics/clientapi_overview.html
https://docs.zowe.org/stable/web_help/index.html
https://docs.zowe.org/stable/zowe_web_help.zip
https://docs.zowe.org/stable/CLIReference_Zowe.pdf
https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://docs.zowe.org/stable/user-guide/cli-installplugins#installing-plug-ins-from-an-online-registry
https://docs.zowe.org/stable/user-guide/cli-installplugins#installing-plug-ins-from-a-local-package

Specify your plug-in profile and connection details in the zowe.config.json configuration file.

Creating plug-in profiles using a configuration file

If you have the CICS plug-in installed and issue the zowe config init , zowe config auto-init , or zowe config

convert-profiles command, the command creates an entry for a CICS profile in your zowe.config.json file .

Alternatively, you can create a CICS profile manually by adding a section that contains the configuration details to your

zowe.config.json configuration file.

Creating a CICS profile with a command

1. Install the CICS Plug-in for Zowe CLI.

2. Create a CICS profile:

3. Set the port number to the port configured for a CICS connection on your mainframe.

<port number>

Specifies the port number for the instance.

You can now use your profile when you issue commands in the cics command group.

Creating a CICS profile manually

1. Install the CICS Plug-in for Zowe CLI.

2. Browse to the directory C:\Users\<username>\.zowe .

3. Open the zowe.config.json configuration file using a text editor or IDE, such as Visual Studio Code or IntelliJ IDEA.

NOTE

If the file does not exist, issue the following command to create the configuration file:

4. Add code to the "profiles" section as shown in the following example:

5. Save the file.

You can now use your profile when you issue commands in the zftp command group.

Version: v3.3.x LTS

IBM® Db2® Database Plug-in for Zowe CLI

The IBM® Db2® Database Plug-in for Zowe™ CLI lets you interact with Db2 for z/OS to perform tasks through Zowe CLI

and integrate with modern development tools. The plug-in also lets you interact with Db2 to advance continuous

integration and to validate product quality and stability.

Zowe CLI Plug-in for IBM Db2 Database lets you execute SQL statements against a Db2 region, export a Db2 table, and

call a stored procedure. The plug-in also exposes its API so that the plug-in can be used directly in other products.

Use cases

As an application developer, you can use Zowe CLI Plug-in for IBM Db2 Database to perform the following tasks:

Execute SQL and interact with databases.

Execute a file with SQL statements.

Export tables to a local file on your computer in SQL format.

Call a stored procedure and pass parameters.

Using commands

For detailed documentation on commands, actions, and options available in this plug-in, see our web help.

There are several methods to view Zowe CLI web help:

Use a web browser

Extract from a ZIP file

Download a PDF file

Software requirements

Before you install the plug-in, meet the software requirements in Software requirements for Zowe CLI plug-ins.

Installing

Use one of the following methods to install the the Zowe CLI Plug-in for IBM Db2 Database:

Install from an online registry

Install from a local package

Installing from an online registry

If you installed Zowe CLI from online registry:

1. Open a command line window and issue the following command:

https://docs.zowe.org/stable/web_help/index.html
https://docs.zowe.org/stable/zowe_web_help.zip
https://docs.zowe.org/stable/CLIReference_Zowe.pdf
https://docs.zowe.org/stable/user-guide/cli-swreqplugins

2. Address the license requirements to begin using the plug-in.

Installing from a local package

Follow these procedures if you downloaded the Zowe installation package:

Downloading the ODBC driver

Download the ODBC driver before you install the Db2 plug-in:

1. Download the ODBC CLI Driver. Use the table within the download URL to select the correct CLI Driver for your

platform and architecture.

2. Create a new directory named odbc_cli on your computer. Remember the path to the new directory. You need to

provide the full path to this directory immediately before you install the Db2 plug-in.

3. Place the ODBC driver in the odbc_cli folder. Do not extract the ODBC driver.

You downloaded and prepared to use the ODBC driver successfully. Proceed to install the plug-in to Zowe CLI.

Installing Xcode on MacOS

To install the Db2 CLI plug-in on MacOS, you need the command line tools, which can be obtained by installing Xcode

from the App Store.

NOTE

On some versions of MacOS, you may receive the error xcrun: error: invalid active developer path as shown

below:

If this occurs, a manual refresh of the command line tools is required by running the following commands:

Installing the plug-in

With the Db2 ODBC CLI driver downloaded, set the IBM_DB_INSTALLER_URL environment variable and install the Db2

plug-in to Zowe CLI:

1. Open a command line window and change the directory to the location where you extracted the zowe-cli-plugins-

<X.Y.Z>.zip file. If you do not have the zowe-cli-bundle.zip file, see Installing Zowe CLI and Zowe CLI plug-ins

from a local package for information about how to obtain and extract it.

2. From a command line window, set the IBM_DB_INSTALLER_URL environment variable:

Windows operating systems:

Linux and Mac operating systems:

For example, if you downloaded the Windows x64 driver (ntx64_odbc_cli.zip) to C:\odbc_cli :

3. To install the IBM Db2 Database Plug-in:

4. See Addressing the license requirement to begin using the plug-in.

https://github.com/ibmdb/node-ibm_db#-download-clidriver-based-on-your-platform--architecture-from-the-below-ibm-hosted-url
https://apps.apple.com/us/app/xcode/id497799835?mt=12
https://docs.zowe.org/stable/user-guide/cli-installcli#installing-zowe-cli-and-zowe-cli-plug-ins-from-a-local-package
https://docs.zowe.org/stable/user-guide/cli-installcli#installing-zowe-cli-and-zowe-cli-plug-ins-from-a-local-package

You have installed the IBM Db2 Database Plug-in successfully.

Addressing the license requirement

To successfully connect the Db2 CLI plug-in to a database on z/OS, a license needs to be present either on the client

where the Zowe CLI is executed from, or on z/OS. If you do not have a license configured when you execute Db2 CLI

commands, you receive the following error SQL1598N :

Server-side license

You can execute the utility db2connectactivate on z/OS to enable a Db2 database to accept client requests. For more

information, see db2connectactivate - Server license activation utility. This avoids having to apply the Db2 Connect

license on each database client that connects directly to the server. It is also the preferred approach to enabling users of

the Zowe Db2 CLI because it avoids individual client license distribution and configuration.

Client-side license

If the utility db2connectactivate has not been executed against the Db2 database that your profile is connecting to,

then it is possible to obtain the license file db2consv_zs.lic from a copy of Db2 Connect and use this for client

configuration. This will need to be done separately for each client PC.

1. Locate your client copy of the Db2 license file db2consv_zs.lic .

NOTE

The license must be of version 11.5 if the Db2 server is not db2connectactivated . You can buy a db2connect

license from IBM. The connectivity can be enabled either on server using db2connectactivate utility or on client

using client side license file. For more information about Db2 license and purchasing cost, please contact IBM

Customer Support.

2. Copy your Db2 license file db2consv_za.lic and place it in the following directory.

TIP

By default, <zowe_home> is set to ~/.zowe on \UNIX and Mac systems, and C:\Users\<Your_User>\.zowe on

Windows systems.

After the license is copied, you can use the Db2 plug-in functionality.

Creating a user profile

After you install the plug-in, create a Db2 profile to avoid entering your connection details each time that you issue a

command. You can create multiple profiles and switch between them as needed.

Add your plug-in profile and connection details to the zowe.config.json configuration file. In the profile, enter the IP

address and port number of the Db2 database, as well as the eight-character database schema name.

TIP

https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.licensing.doc/doc/r0057377.html

You can get your connection information by either:

Issuing the -DISPLAY DDF command

Searching for the message ID DSNL004I in the JES spool for the Db2 MSTR address space

Example of how to read the DSNL004I message with example values:

DOMAIN

Specifies the value for the CLI host.

TCPPORT

Specifies the port number.

SECPORT

If a TLS certificate is being used, specifies the secure port.

LOCATION

Specifies the property to use in the database value.

Creating plug-in profiles using a configuration file

You can issue commands to create a Db2 profile, or you can manually edit your configuration file to add a profile.

Creating a Db2 profile with a command

When you issue various zowe config commands, such as init , auto-init , and convert-profiles , they create a

zowe.config.json configuration file. When you install the Db2 plug-in and then issue a command, the command creates

an entry for a db2 profile in your zowe.config.json file.

To create a Db2 profile with a command:

1. Install the IBM Db2 Database Plug-in for Zowe CLI.

2. Create a Db2 profile:

3. Set the port number to the port configured for a Db2 connection on your mainframe.

<port number>

Specifies the port number for the instance.

4. If an SSL file is available, set the sslFile value to SSL file path:

You can now use your profile when you issue commands in the Db2 command group.

Creating a Db2 profile manually

To create a Db2 profile manually by adding a section that contains the configuration details in your zowe.config.json

configuration file:

1. Install the Db2 Plug-in for Zowe CLI.

2. Browse to the directory C:\Users\<username>\.zowe .

3. Open the zowe.config.json configuration file using a text editor or IDE, such as Visual Studio Code or IntelliJ IDEA.

NOTE

If the file does not exist, issue the following command to create the configuration file:

4. Add code to the "profiles" section as shown in the following example:

5. Save the file.

You can now use your profile when you issue commands in the Db2 command group.

Version: v3.3.x LTS

IBM® z/OS FTP Plug-in for Zowe CLI

The IBM® z/OS FTP Plug-in for Zowe™ CLI lets you extend Zowe CLI to access z/OS data sets, USS files, and submit JCL.

The plug-in uses the z/OS FTP service to achieve the interaction with z/OS.

Use cases

As a z/OS user, you can use the plug-in to perform the following tasks:

List, view, rename, and download z/OS data sets or USS files.

Upload local files or stdin to z/OS data sets or USS files.

List, view, and download job status or job spool files.

Delete a z/OS data set, USS file, or job.

Using commands

IMPORTANT

When transferring files, data sets, or data set members, use only ASCII characters. If a file contains non-ASCII

characters (such as glyphs or mathematical symbols), a translation error can happen when the file is downloaded

from, or uploaded to, the mainframe. This error can result in data loss.

For detailed documentation on commands, actions, and options available in this plug-in, see our web help.

There are several methods to view Zowe CLI web help:

Use a web browser

Extract from a ZIP file

Download a PDF file

Software requirements

Before you install the plug-in, meet the Software requirements for Zowe CLI plug-ins.

Installing

Use one of the following methods to install or update the plug-in:

Installing plug-ins from an online registry

Installing plug-ins from a local package

Creating a user profile

https://docs.zowe.org/stable/web_help/index.html
https://docs.zowe.org/stable/zowe_web_help.zip
https://docs.zowe.org/stable/CLIReference_Zowe.pdf
https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://docs.zowe.org/stable/user-guide/cli-installplugins#installing-plug-ins-from-an-online-registry
https://docs.zowe.org/stable/user-guide/cli-installplugins#installing-plug-ins-from-a-local-package

After you install the plug-in, create an FTP profile. An FTP profile is recommended to issue commands via FTP. FTP profiles

contain your host, port, user name, and password to connect to z/OS using FTP. You can create multiple profiles and

switch between them as needed.

Creating plug-in profiles using a configuration file

If you have the IBM® z/OS FTP plug-in installed and issue the zowe config init , zowe config auto-init , or zowe

config convert-profiles command, the command creates an entry for a FTP profile in your zowe.config.json file .

Alternatively, you can create an FTP profile manually by adding a section that contains the configuration details to your

zowe.config.json configuration file.

Creating an FTP profile with a command

1. Install the z/OS FTP Plug-in for Zowe CLI.

2. Create an FTP profile:

3. If using a non-standard port, set the port number to your FTP connection:

<port number>

Specifies the port number for the instance.

4. If using an insecure connection, set the secureFtp value to false :

You can now use your profile when you issue commands in the zftp command group.

Creating an FTP profile manually

1. Install the z/OS FTP Plug-in for Zowe CLI.

2. Browse to the directory C:\Users\<username>\.zowe .

3. Open the zowe.config.json configuration file using a text editor or IDE, such as Visual Studio Code or IntelliJ IDEA.

NOTE

If the file does not exist, issue the following command to create the configuration file:

4. Add code to the "profiles" section as shown in the following example:

5. Save the file.

You can now use your profile when you issue commands in the zftp command group.

Issuing test commands

After installing the plug-in successfully, you can issue commands to test basic Zowe CLI functionality.

For example, you can use one of the following methods to download a data set:

Download a data set using a default profile:

Download a data set without using a default profile:

<hostname>

Specifies the host name for the instance.

<User_ID>

Specifies your user name to log in to the instance.

<password>

Specifies your password to log in to the instance.

Version: v3.3.x LTS

IBM® MQ Plug-in for Zowe CLI

The IBM MQ Plug-in for Zowe CLI lets you issue MQSC commands to a queue manager. MQSC commands let you perform

administration tasks. For example, you can define, alter, or delete a local queue object.

NOTE

For more information about MQSC commands and the corresponding syntax, see MQSC commands on the IBM

Knowledge Center.

Use cases

You can use the plug-in to execute MQSC Commands. With MQSC commands you can manage queue manager objects

(including the queue manager itself), queues, process definitions, channels, client connection channels, listeners,

services, namelists, clusters, and authentication information objects.

Using IBM MQ plug-in commands

For detailed documentation on commands, actions, and options available in this plug-in, see our web help.

There are several methods to view Zowe CLI web help:

Use a web browser

Extract from a ZIP file

Download a PDF file

Software requirements

Before you install the plug-in, meet the software requirements in Software requirements for Zowe CLI plug-ins.

Installing

Use one of the following methods to install or update the plug-in:

Installing plug-ins from an online registry

Installing plug-ins from a local package

Creating a user profile

After you install the plug-in, create an MQ profile. An MQ profile is recommended to issue commands to the MQ resource.

MQ profiles contain your host, port, user name, and password for the IBM MQ REST API server of your choice. You can

create multiple profiles and switch between them as needed.

Specify your plug-in profile and connection details in the zowe.config.json configuration file.

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.ref.adm.doc/q085130_.htm
https://docs.zowe.org/stable/web_help/index.html
https://docs.zowe.org/stable/zowe_web_help.zip
https://docs.zowe.org/stable/CLIReference_Zowe.pdf
https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://docs.zowe.org/stable/user-guide/cli-installplugins#installing-plug-ins-from-an-online-registry
https://docs.zowe.org/stable/user-guide/cli-installplugins#installing-plug-ins-from-a-local-package

Creating plug-in profiles using a configuration file

If you have the MQ plug-in installed and issue the zowe config init , zowe config auto-init , or zowe config

convert-profiles command, the command creates an entry for a MQ profile in your zowe.config.json file .

Alternatively, you can create an MQ profile manually by adding a section that contains the configuration details to your

zowe.config.json configuration file.

Creating an MQ profile with a command

1. Install the IBM MQ Database Plug-in for Zowe CLI.

2. Create an MQ profile:

3. Set the port number to the port configured for an MQ connection on your mainframe.

<port number>

Specifies the port number for the instance.

You can now use your profile when you issue commands in the MQ command group.

Creating an MQ profile manually

1. Install the IBM MQ Database Plug-in for Zowe CLI.

2. Browse to the directory C:\Users\<username>\.zowe .

3. Open the zowe.config.json configuration file using a text editor or IDE, such as Visual Studio Code or IntelliJ IDEA.

NOTE

If the file does not exist, issue the following command to create the configuration file:

4. Add code to the "profiles" section as shown in the following example:

5. Save the file.

You can now use your profile when you issue commands in the MQ command group.

Version: v3.3.x LTS

IDF Plug-in for Zowe CLI

The IDF Plug-in for Zowe CLI lets you extend Zowe CLI to make it easier to map mainframe users with an identity

provided by an external identity provider.

The plug-in is designed to work with the ESMs: IBM RACF, ACF/2, and Top Secret.

Use case

For a system administrator for the Zowe API Mediation Layer, the IDF Plug-in for Zowe CLI can help facilitate the

mapping of an external identity from a distributed identity provider to mainframe users administered by the system

ESM.

Commands

The plug-in provides the map command. For details about the map command, see Using.

NOTE

The plug-in help command includes specific parameters of Zowe-profiles which are not used.

Software requirements

Before you install the plug-in, ensure that you meet the software requirements in Software requirements for Zowe CLI

plug-ins.

Installing

Use one of the following methods to install or update the plug-in:

Installing plug-ins from an online registry

Installing plug-ins from a local package

Use the following Plug-in ID with either of these installation methods:

Plug-in Syntax

IDF Plugin for Zowe CLI @zowe/id-federation-for-zowe-cli

Using

Currently, the plug-in does not interface with the mainframe system, so no Zowe CLI profile configuration is required.

https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://docs.zowe.org/stable/user-guide/cli-installplugins#installing-plug-ins-from-an-online-registry
https://docs.zowe.org/stable/user-guide/cli-installplugins#installing-plug-ins-from-a-local-package

For the most up-to-date details of required parameters, use the help command:

zowe idf map --help .

Use the following command to enable Zowe to generate a JCL. A security administrator can then submit this JCL to

create a mapping.

zowe idf map <csv-file> --esm <esm> --registry <registry> --system <system>

csv-file

The path to the input CSV-formatted file, see below for the details of the format.

esm

The identifier of the target external security manager, one of ACF2, RACF, or TSS.

registry

The registry to identify the distributed identity provider, for example LDAP ldap://12.34.56.78:389

system

This is an optional parameter, system identifier for JCL purposes. Ensure that this value matches the system name

defined in JES.

CSV Format

For proper functionality of the plug-in, ensure that the CSV input file has the following format without a header:

name

The descriptive name of the user.

dist_id

The distributed identity of the user.

mf_id

The mainframe id of the user.

Output

The map command generates an output file with a valid JCL. The output file name has the following pattern:

idf_ESMSYSTEM.jcl

$SYSTEM

This parameter is omitted if it is not provided.

Version: v3.3.x LTS

Using Zowe Explorer

Familiarize yourself with Zowe Explorer and make the best use of its available options and features.

Using Zowe Explorer in remote environments

As of Zowe Version 2.11, Zowe Explorer and the Zowe Explorer API no longer use node-keytar , which was used to

manage mainframe credentials. This change might cause issues for some users when trying to interact with remote

environments.

See Usage in Remote Environments to learn more about how to resolve credential errors.

Credentials in Zowe Explorer

When working in remote or virtualized environments — such as Eclipse Che, GitHub Codespaces, CodeReady

Workspaces — administrators may find the configuration process for storing credentials securely too cumbersome.

Instead, they might prefer to rely on the security tools integrated with these environments, such as file access

permissions. To do so, administrators need to disable Zowe Explorer's credential management functionality.

NOTE

Consider other options. Use the Kubernetes Secrets plug-in for Zowe CLI and Zowe Explorer as an option for storing

credentials in a Kubernetes containerized environment, or create your own Custom Credential Managers in Zowe

Explorer and Zowe CLI.

Preventing Zowe Explorer from storing credentials

1. Open the zowe.config.json file in Visual Studio Code.

2. Find the autoStore property.

3. Set the autoStore property to false .

Credentials are stored on a per profile/per panel basis until one of the following takes place:

Data Sets/USS/Jobs tree refresh caused by an update to the zowe.config.json file

Zowe Explorer refresh in the Command Palette

Reload of the Visual Studio Code window

Closing and reopening the VS Code window

Disabling Secure Credential Storage of credentials

Zowe Explorer V2 and V3

1. Navigate to Settings in VS Code.

2. In Zowe Explorer Settings, uncheck the Zowe Security: Secure Credentials Enabled checkbox.

https://github.com/zowe/zowe-explorer-vscode/wiki/Usage-in-Remote-Environments
https://github.com/zowe/zowe-cli-secrets-for-kubernetes/blob/main/README.md
https://medium.com/zowe/custom-credential-managers-in-zowe-explorer-b37faeee4c29
https://medium.com/zowe/custom-credential-managers-in-zowe-explorer-b37faeee4c29

When disabled and autoStore is set to True in zowe.config.json , z/OS credentials are stored as plain text in the

configuration file.

Version: v3.3.x LTS

Managing and using profiles

Use profiles and configuration files to apply specific settings when you work with the mainframe.

Profiles

Managing a profile

Manage existing profiles listed in the Side Bar. Right-click the profile and select Manage Profile in the context menu to

see a list of options in the Quick Pick. Choose the option desired for managing the profile.

Deleting a profile

Delete a profile displayed in the Side Bar. Right-click the profile and select Manage Profile in the context menu to see

a list of options in the Quick Pick. Select Edit Profile to open the associated configuration file and manually delete the

profile.

Hiding a profile

Hide a profile from the Side Bar. Right-click the profile, select the Manage Profile option in the context menu, and

then click Hide Profile in the Quick Pick. If necessary, add the profile back by clicking the + icon on the DATA SETS,

UNIX SYSTEM SERVICES (USS), or JOBS bar.

Configuration files

Using configurations across VS Code multi-root workspaces

You can take advantage of Visual Studio Code multi-root workspaces to work on multiple projects. Multi-root workspaces

are convenient when projects do not share the same parent folder, or when you want to work on different use cases for

the same project.

In scenarios like these, you can apply a project configuration to a VS Code multi-root workspace.

Using a single project configuration

To apply a specific project configuration across a multi-root workspace:

1. In VS Code, open a directory with a project configuration file to create a single-folder workspace.

2. Select the option Add Folder to Workspace... in the File menu and select a different directory.

The selected folder displays as a root in the File Explorer and a new multi-root workspace is created.

3. Modify a data set or USS file and save the changes to the mainframe.

Zowe Explorer uses the profile information stored in the configuration file from Step 1 to communicate with the

mainframe.

https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles#types-of-configuration-files

Using multiple project configurations

To use a project configuration other than the one associated with the first workspace folder, you can either open multiple

instances of VS Code, or create a new multi-root workspace.

Opening another instance of VS Code

1. In VS Code, create or open a multi-root workspace.

The configuration file from the first folder applies across the workspace.

2. To use the configuration from a different folder, open a separate VS Code window to open the folder.

The new instance of VS Code uses the configuration from that directory.

Creating a new multi-root workspace

1. In VS Code, create or open a multi-root workspace that lists the folder associated with the desired project

configuration as the first root.

The configuration file from the first folder applies across the workspace.

2. Create or open as many multi-root workspaces as necessary to apply different project configurations.

Version: v3.3.x LTS

Zowe Explorer authentication methods

Zowe Explorer supports multiple methods of authenticating to your z/OS REST services, including basic authentication,

tokens for single sign-on, client certificates, and multi-factor authentication.

If you configure multiple authentication methods for a specific service, set the order of precedence with the profile

property authOrder . To specify an order of precedence in your client configuration, refer to the Zowe CLI documenation.

Using basic authentication

To use basic authentication with Zowe Explorer, see Using basic authentication in the Zowe CLI documentation.

Using tokens

Tokens provide more security because they have limited lifespans and can be immediately revoked when needed.

Using a token to log in with Single Sign-On (SSO)

SSO lets you use a single token to access all your mainframe services through API Mediation Layer. SSO is configured

with Zowe API ML, which generates an authentication token to access the mainframe.

To log into the API ML authentication service with an existing base profile:

1. Right-click on the profile you want to connect to using SSO.

2. Select the Manage Profile option from the context menu.

3. In the Quick Pick, select Log in to Authentication Service.

4. In the following Quick Pick menu, select the appropriate option for authenticating to the API ML.

5. Answer the proceeding prompts for information.

If the request is successful, the token is used for authentication until the logout action is taken or the token expires.

For more information, see Integrating API ML with Zowe CLI.

NOTE

For services not registered to your API ML instance, please consult the product or extender documentation for SSO

support.

Using a token to log in to a specific service

To use a mainframe service that supports to direct connections with tokens:

1. Right-click on the profile you want to connect to.

https://docs.zowe.org/stable/user-guide/cli-authentication-methods#order-of-precedence
https://docs.zowe.org/stable/user-guide/cli-authentication-methods#using-basic-authentication
https://docs.zowe.org/stable/user-guide/cli-using-integrating-apiml

2. Select the Manage Profile option from the context menu.

3. In the Quick Pick, select Log in to Authentication Service.

4. Answer the proceeding prompts for information.

If the request is successful, the token is used for authentication until the logout action is taken or the token expires.

Logging out to invalidate your token

If you are done working with Zowe Explorer and want to prevent further use of a token, you can request the server to

invalidate your session token.

Use the Log out from Authentication Service feature to invalidate a token:

1. Open Zowe Explorer.

2. Right-click the profile you want to disconnect.

3. Select the Manage Profile option.

4. In the Quick Pick, select the Log out from Authentication Service option.

The token has been successfully invalidated.

Using client certificates

Zowe Explorer supports client certificates used with Zowe API ML as well as directly for connection types that offer these

capabilities. z/OSMF connection types are supported by default with Zowe Explorer's dependency on the Zowe SDKs.

To learn how to use Zowe CLI to set up your client certificates in Zowe Explorer, see Using client certificates in the Zowe

CLI documentation.

Multi-factor authentication (MFA) support

Zowe Explorer supports multi-factor authentication used with basic authentication (using a username and password) and

single-sign on when logging in with a username and password.

To learn how use MFA with Zowe Explorer, see Using multi-factor authentication in the Zowe CLI documentation.

https://docs.zowe.org/stable/user-guide/cli-authentication-methods#using-client-certificates
https://docs.zowe.org/stable/user-guide/cli-authentication-methods#using-multi-factor-authentication-mfa

Version: v3.3.x LTS

Usage tips

Make the best use of Zowe Explorer with the following tips.

Data sets, USS, and jobs persistence settings

You can store any data sets, USS files, or jobs permanently in the Favorites tab. Right-click on a data set, USS file, or job

and click Add Favorite.

Identify syntax errors with a syntax highlighter

Zowe Explorer supports a syntax highlighter for data sets. To enhance the experience of using the extension, you can

download an extension that highlights syntax.

Configure the detected language of a file or data set

Configure the file.associations setting in Visual Studio Code to use a specific language for a particular file extension

type. This prevents the language for a file or data set opened in Zowe Explorer from being detected incorrectly.

To set file associations that work for sequential data sets as well as partitioned data set members, use wildcards with the

language identifier in the format **/*LANGUAGE*{,/*} :

In the example above, Zowe Explorer uses wild cards to find matches of the configured language (COBOL) in the file

paths of sequential data sets (for example, /lpar.zosmf/TEST.COBOL.PS) and PDS members (for example,

/lpar.zosmf/TEST.COBOL.PDS/MEMBER).

Multi-select functionality

Zowe Explorer lets you open a list of members you have previously worked on. You can access the list by pressing

Ctrl+ Alt+ R or Command+ Option+ R .

Access resources with virtual workspaces

Use your virtual workspaces to access multiple resources from the Explorer view, such as local files or resources from

other file systems.

In the Data Sets or Unix System Services (USS) tree, click on a profile Search icon. In the Search prompt, enter a

data set search pattern or a USS file path. Right click on a resource to select the Add to Workspace context menu

option. The status bar message displays and the selected folder is listed in the Explorer view with any other

files/resources.

Version: v3.3.x LTS

Working with data sets

Viewing and accessing multiple profiles simultaneously

1. Expand the DATA SETS tree in the Side Bar, and click the + icon.

2. Select the profiles from the Quick Pick menu to add them to the Side Bar.

3. Click the Search icon for each profile to search and select associated data sets.

Viewing data sets and using multiple filters

1. Expand the DATA SETS tree in the Side Bar.

2. Click on the Search icon next to a profile to search for a pattern that matches the data set that you want to view.

Search results display under the profile in the Side Bar.

TIP

To use multiple filters, separate individual entries with a comma. You can append or postpend any filter with an

* to indicate a wildcard search. You cannot enter an * as the entire pattern.

Viewing data sets with member filters

1. Expand the DATA SETS tree in the Side Bar.

2. Click on the Search icon next to a profile.

3. In the Quick Pick, enter or select a search pattern in the HLQ.ZZZ.SSS(MEMBERNAME) format to filter search results.

The specified member displays under the profile in the Side Bar.

Refreshing the list of data sets

1. Hover over DATA SETS in the Side Bar.

2. Click the Refresh All icon.

The list of data sets is updated to reflect the latest changes.

Renaming data sets

1. Expand the DATA SETS tree in the Side Bar.

2. Click on the Search icon next to a profile to search for a pattern that matches the data set that you want to view.

Search results display under the profile in the Side Bar.

3. Right-click the desired data set and select the Rename Data Set option.

4. Enter the new name of the data set in the input box.

The data set is renamed and displays the new name in the Side Bar.

Copying data set members

1. Expand the DATA SETS tree in the Side Bar.

2. Click on the Search icon next to a profile to search for a pattern that matches the data set that you want to view.

Search results display under the profile in the Side Bar.

3. Right-click the desired member and select the Copy option.

4. Right-click the data set where the member is to be contained and select the Paste option.

5. In the Quick Pick, enter the name of the copied member.

Editing and uploading a data set member

1. Expand the DATA SETS tree in the Side Bar.

2. Click on the Search icon next to a profile to search for a pattern that matches the data set that you want to view.

Search results display under the profile in the Side Bar.

3. Open the data set with the member you want to edit.

4. Click on the member name to display it in an Editor.

5. Edit the document in the Editor.

6. Press the Ctrl+ S or Command+ S keys to save the changes.

The changes are saved and the edited data set is uploaded to the mainframe.

NOTE

If someone else has made changes to the data set member while you were editing, you can merge your

changes before uploading to the mainframe. See Preventing merge conflicts for more information.

Uploading a local file to a data set

1. Expand the DATA SETS tree in the Side Bar.

2. Click on the Search icon next to a profile to search for a pattern that matches the desired data set.

Search results display under the profile in the Side Bar.

3. Right-click on the desired PDS and select the Upload Member... option to upload a local file as a member of that

data set.

A file explorer window opens.

4. In the file explorer, select the desired file and click Upload File.

The selected file is uploaded as a member of the data set and appears as a new member in the DATA SETS tree

after the upload is complete.

Comparing data set members

1. Expand the DATA SETS tree in the Side Bar.

2. Click on the Search icon next to a profile to search for a pattern that matches the desired data set.

Search results display under the profile in the Side Bar.

3. Right-click on the desired member and select the Select for Compare option.

4. Right-click a second member and select the Compare with Selected option.

The first selected member displays in an Editor on the left; the second member displays on the right.

Preventing merge conflicts

1. Expand the DATA SETS tree in the Side Bar.

2. Click on the Search icon next to a profile to search for a pattern that matches the desired data set.

Search results display under the profile in the Side Bar.

3. Select the member to open the file in an Editor.

4. Edit the document in the Editor.

5. Press the Ctrl+ S or Command+ S keys to save the changes.

If the original content in your local version no longer matches the same file in the mainframe, a warning message

displays advising the user to compare both versions.

6. If necessary, use the editor tool bar to resolve merge conflicts.

Creating data sets and specifying parameters

1. Expand the DATA SETS tree in the Side Bar.

2. Right-click on the profile you want to create a data set with and select Create New Data Set.

3. Enter a name for your data set in the input box and press the Enter key.

4. From the Quick Pick menu, select the data set type that you want to create and press the Enter key.

5. Select Edit Attributes in the Quick Pick menu and press the Enter key.

The attributes list for the data set displays. You can edit the following attributes:

Allocation Unit

Average Block Length

Block Size

Data Class

Device Type

Directory Block

Data Set Type

Management Class

Data Set Name

Data Set Organization

Primary Space

Record Format

Record Length

Secondary Space

Size

Storage Class

Volume Serial

6. Select the attribute you want to edit, provide the value in the input box, and press the Enter key.

7. (Optional) Edit the parameters of your data set.

8. Select the + Allocate Data Set option.

The data set is created and listed under the profile in the Side Bar.

Creating data sets and data set members

1. Expand the DATA SETS tree in the Side Bar.

2. In the Side Bar, right-click on a partitioned data set and select Create New Member.

3. Enter a name for your new data set member in the input box and press the Enter key.

The member is created and opened in an Editor.

Deleting a data set member and a data set

1. Expand the DATA SETS tree in the Side Bar.

2. Open the profile and data set containing the member you want to delete.

3. Right-click the member and select Delete Member.

4. Confirm the deletion by selecting Delete on the Quick Pick menu.

5. To delete a data set, right-click the data set and select Delete Data Set, then confirm the deletion.

Viewing data set, member attributes

1. Expand the DATA SETS tree in the Side Bar.

2. Click on the Search icon next to a profile to search for a pattern that matches the data set that you want to upload

to.

Search results display under the profile in the Side Bar.

3. Right-click a data set or member and select the Show Attributes option.

The attributes display in an Editor.

Filtering partitioned data set members

Filter partitioned data set members in the DATA SETS tree view by Date Modified or User ID.

Filtering all partitioned data set members under a specific profile

1. Expand the DATA SETS tree in the Side Bar.

2. Navigate to a profile and click on the Filter icon to the right of the profile.

The filter selection menu appears in the Quick Pick.

3. Select a filter type from the list of available options:

Date Modified

User ID

4. In the Quick Pick, enter a valid value for the selected filter.

5. Press the Enter key to confirm the filter.

Expanded data sets display a filtered list of members under the selected profile in the DATA SETS tree.

Filtering members for a single partitioned data set

1. Expand the DATA SETS tree in the Side Bar.

2. Click on the Search icon next to a profile to search for a pattern that matches the data set that you want to filter.

Search results display under the profile in the Side Bar.

3. In the DATA SETS tree, right-click on a data set and select the Filter PDS members… option.

The filter selection menu appears in the Quick Pick.

4. Select a filter type from the list of available options:

Date Modified

User ID

5. In the Quick Pick, enter a valid value for the selected filter.

6. Press the Enter key to confirm the filter. This overrides any profile filter preferences that might be in effect for the

single data set.

The selected data set displays a filtered list of members in the DATA SETS tree.

Sorting partitioned data set members

Sort partitioned data set members in the DATA SETS tree view by member Name, Date Modified, or User ID.

NOTE

To change the default sort order for data sets, see Modifying the default sort order for data sets and jobs.

Sorting all partitioned data set members under a specific profile

1. Expand the DATA SETS tree in the Side Bar.

2. Click on the Sort icon to the right of a profile.

The sorting selection menu appears in the Quick Pick.

3. To change the sorting direction, select the Sort Direction option and select a direction type from the Quick Pick

menu.

4. Select a sort type from the list of available options:

Name

Date Created

Date Modified

User ID

Expanded data sets display a sorted list of members under the selected profile in the DATA SETS tree.

https://docs.zowe.org/stable/user-guide/ze-install-configuring-ze#modifying-the-default-sort-order-for-data-sets-and-jobs

Sorting members for a single partitioned data set

1. Expand the DATA SETS tree in the Side Bar.

2. Click on the Search icon next to a profile to search for a pattern that matches the data set that you want to sort.

Search results display under the profile in the Side Bar.

3. Right-click on a data set and select the Sort PDS members… option.

The sort selection menu appears in the Quick Pick.

4. To change the sorting direction, select the Sort Direction option and select a direction type from the Quick Pick

menu.

5. Select a sort type from the list of available options:

Name

Date Created

Date Modified

User ID

This overrides any profile sort preferences that might be in effect for the single PDS. The selected data set displays a

sorted list of members in the DATA SETS tree.

Submitting a JCL

1. Expand the DATA SETS tree in the Side Bar.

2. Click on the Search icon next to a profile to search for a pattern that matches the desired data set.

Search results display under the profile in the Side Bar.

3. Right-click the desired data set or data set member and select the Submit Job option.

The job is submitted and runs on the mainframe.

NOTE

To view the status of the job, click on the hyperlink on the notification pop-up message.

Submitting a local file as JCL

1. Go to the File menu and select the Open File... option.

2. Select the desired file on your personal computer.

The file opens as an Editor in VS Code.

3. Right-click on the file's Editor and select the option Submit as JCL.

A dialog window opens to ask confirmation, then the Quick Pick displays a list of profiles to use for the submit

action. Respond to the prompt(s) as necessary.

The job is submitted and runs on the mainframe.

NOTE

To view the status of the job, click on the hyperlink on the notification pop-up message.

Allocate like

1. Expand the DATA SETS tree in the Side Bar.

2. Click on the Search icon next to a profile to search for a pattern that matches the desired data set.

Search results display under the profile in the Side Bar.

3. Right-click a data set and select the Allocate Like (New File with Same Attributes) option.

4. Enter the new data set name in the input box and press the Enter key.

The new data set displays under the selected profile.

Open selected text as data set

1. In the active Editor in VS Code, highlight the name of a data set you would like to open.

2. Right-click and select the option Open Selected Data Set.

3. If you have multiple profiles, a Quick Pick opens. Select the profile you would like to open the data set from.

If the selection is a valid data set, it opens as your active editor.

If the selection is a valid partitioned data set, it displays in the DATA SETS tree under your profile or favorites.

This option is similar in functionality to ZOOM on ISPF.

Version: v3.3.x LTS

Data sets table view

The Data sets table view in Zowe Explorer provides a powerful, spreadsheet-like interface for viewing and managing

mainframe data sets and their members.

This feature is accessible through the Panel's Zowe Resources view and offers enhanced data visualization, filtering,

and management capabilities beyond the traditional tree view.

Using the data sets table view

Open the table view from the Data Sets tree or from the Command Palette.

Opening from the Data Sets tree

Open the table view from a session or a partitioned data set (PDS):

1. In the Data Sets tree, right-click a session node or a PDS node.

2. Select View as Table from the context menu.

If you selected a session node that does not have a search filter applied, you are prompted to enter a data set

search pattern.

If you selected a PDS node, the table displays all members of that PDS.

Opening from the Command Palette

Open the table view from the Command Palette:

1. Open the Command Palette (Ctrl+ Shift+ P / Cmd+ Shift+ P).

2. Enter and select Zowe Explorer: List Data Sets .

3. Select a profile from the dropdown list.

4. Enter a data set pattern (for example, USER.* or PUBLIC.DATA.*).

The table view opens with the data sets that match your search pattern.

Table view layouts

The data sets table view has two layouts: one for displaying data sets and another for displaying PDS members.

Data sets layout

This layout displays data sets that match your search criteria. It includes the following columns:

Data Set Name: The name of the data set.

Data Set Organization: The type of data set (for example, PS for physical sequential, PO for partitioned

organization).

Creation Date: The date when the data set was created.

Modified Date: The timestamp of the last modification.

Record Length: The LRECL value.

Migrated: Indicates whether the data set is migrated.

Record Format: The RECFM value.

Volumes: The storage volumes where the data set resides.

Last Modified By: The user ID of the person who last modified the data set.

Members layout

This layout displays the members of a PDS. It includes member-specific columns in addition to some of the standard data

set columns:

Member Name: The name of the PDS member.

Version: The member version number.

Modification Level: The current modification level.

Current Records: The number of current records in the member.

Initial Records: The number of initial records in the member.

Modified Records: The number of modified records in the member.

SCLM: SCLM information, if applicable.

Managing data sets and members

The table view provides actions for managing your data sets and PDS members directly from the table.

Using the context menu

Right-click a row to open the context menu. It contains the following options:

Display in Tree: Locates and highlights the selected item in the Data Sets tree view.

Pin/Unpin: Pins or unpins the selected row. When pinned, the row remains visible at the top of the table view while

scrolling to other rows.

Copy cell & Copy row: Generic options for copying selected cell or row data.

Additional actions provided by installed Zowe Explorer extensions.

Opening data sets and members

Open sequential data sets and PDS members in the editor:

1. Select one or more rows corresponding to sequential data sets or PDS members.

2. Click the Open button in the action bar at the top of the table.

NOTE

This action is only available for sequential (PS) data sets and PDS members.

Pinning and unpinning rows

Pin important data sets or members to keep them visible at the top of the table regardless of sorting or filtering.

Pinning a row

1. Select one or more unpinned rows.

2. Click the Pin button in the action bar.

The pinned rows are added to the top of the table.

Unpinning a row

1. Select one or more pinned rows.

2. Click the Unpin button.

The rows return to their normal position in the table.

Navigating PDS members

You can "focus" on a PDS to view its members, and then navigate back to the list of data sets.

Focusing on a PDS

1. In the data sets layout, locate and select a PDS row (its Data Set Organization is PO).

2. Click the Focus button in the action bar.

The table switches to the members layout and displays all members of the selected PDS.

Returning to the parent view

1. Navigate to the members layout.

2. Click the Back button in the action bar.

The table returns to the previous data sets view and preserving its state (filters, sorting, and pinned rows).

Using tree mode (hierarchical view)

When viewing data sets, the table can display a hierarchy.

To see PDS members without leaving the data sets view:

1. Click the Expand/Collapse icon on a PDS entry to show or hide its members.

Members are loaded on demand when you expand a PDS for the first time.

2. Navigate the PDS member hierarchy directly within the table.

Advanced features

The table view includes advanced features for searching, sorting, and performing bulk operations.

Sorting options

The table view respects the sorting preferences set in the tree view for PDS members. The available sorting options

include:

Name: Sorts alphabetically by member name.

Date Created: Sorts chronologically by creation date.

Last Modified: Sorts by the modification timestamp.

User ID: Sorts by the user who last modified the item.

Bulk operations

Perform actions on multiple items at once:

1. Select multiple rows using the checkboxes.

2. Choose an action from the action bar (for example, Open or Pin) to apply the operation to all selected items.

Keyboard shortcuts

Ctrl/Cmd + Click: Multi-select rows.

Shift + Click: Select a range of rows.

Version: v3.3.x LTS

Working with USS files

Viewing and accessing multiple USS profiles simultaneously

1. Expand the UNIX SYSTEM SERVICES (USS) tree in the Side Bar, and click the + icon.

2. Select or enter a profile in the Quick Pick menu to add it to the Side Bar.

The profile displays in the Side Bar.

Viewing Unix System Services (USS) files

1. Expand the UNIX SYSTEM SERVICES (USS) tree in the Side Bar.

2. Click on the Search icon next to a profile and enter the path of the desired directory.

All child files and directories of that path display under the profile in the Side Bar.

NOTE

You cannot expand directories or files to which you are not authorized.

Dragging and dropping USS files

To select one or more files or folders in the tree and drag them to a folder or session to relocate them:

1. Expand the UNIX SYSTEM SERVICES (USS) tree in the Side Bar.

2. Click on the Search icon next to a profile and enter the path of the desired directory.

All child files and directories of that path display under the profile in the Side Bar.

3. Select the files or folders you want to move.

Select multiple items by pressing the Ctrl key as you select each item.

Select a continuous range of items by selecting the first item in the range. Then hold down the Shift key until

selecting the last item in the range.

4. Click and hold the region containing the selected items to start the drag process.

5. As the items are selected, move your cursor to the desired folder or session. Release the mouse button to start the

move operation.

If the move operation might overwrite one or more files, an “overwrite confirmation" message displays. Select

Confirm to relocate these items. Select Cancel to stop the move operation.

Items can be moved across different profiles or LPARs, which may cause a brief delay due to the transfer

process.

6. When items are moved, the tree view refreshes and the moved items appear in the destination folder.

Refreshing the list of files

1. Hover over UNIX SYSTEM SERVICES (USS) in the Side Bar.

2. Click the Refresh All button.

The list of directories and child files is updated to reflect the latest changes.

Renaming USS files

1. Expand the UNIX SYSTEM SERVICES (USS) tree in the Side Bar.

2. Click on the Search icon next to a profile and enter the path of the desired directory.

All child files and directories of that path display under the profile in the Side Bar.

3. Select a USS file you want to rename.

4. Right-click the USS file and select the Rename USS file option.

5. In the input box, enter the new name of the USS file and press the Enter key.

The file is renamed and the new name displays in the Side Bar.

Copying and pasting USS folders and files

1. Expand the UNIX SYSTEM SERVICES (USS) tree in the Side Bar.

2. Click on the Search icon next to a profile and enter the path of the desired directory.

All child files and directories of that path display under the profile in the Side Bar.

3. Select the files or folders you want to move.

Select multiple items by pressing the Ctrl key as you select each item.

Select a continuous range of items by selecting the first item in the range, then hold down the Shift key until

selecting the last item in the range.

4. Right-click the selected items and select the Copy option from the menu

5. Navigate in the USS tree to the folder where you want to paste the files.

Files can be moved across different profiles or LPARs, which may cause a brief delay due to the transfer process.

6. Right-click on the folder and select the Paste option from the menu.

The copied items display in the new location.

Downloading, editing, and uploading existing USS files

1. Expand the UNIX SYSTEM SERVICES (USS) tree in the Side Bar.

2. Click on the Search icon next to a profile and enter the path of the desired directory.

All child files and directories of that path display under the profile in the Side Bar.

3. Click on the file name of the file you want to download.

The file contents display in an Editor.

NOTE

If you define file associations with syntax coloring, the suffix of your file is marked up.

4. Edit the document in the Editor.

5. Press the Ctrl+ S or Command+ S keys to save the changes.

The changes are saved and the USS file is uploaded to the mainframe.

Uploading a local file to a USS directory

1. Expand the UNIX SYSTEM SERVICES (USS) tree in the Side Bar.

2. Click on the Search icon next to a profile and enter the path of the desired directory.

All child files and directories of that path display under the profile in the Side Bar.

3. Right-click on the desired directory and select the Upload Files... option to upload one or more local files to the

directory.

A file explorer window opens.

4. In the file explorer, select the desired file(s) and click Upload Files.

The selected file(s) is uploaded to the USS directory and appears as new file name in the UNIX SYSTEM SERVICES

(USS) tree.

Comparing USS files

1. Expand the UNIX SYSTEM SERVICES (USS) tree in the Side Bar.

2. Click on the Search icon next to a profile and enter the path of the desired directory.

All child files and directories of that path display under the profile in the Side Bar.

3. Right-click on the desired file and select the Select for Compare option.

4. Right-click a second file and select the Compare with Selected option.

The first selected file displays in an Editor on the left; the second file displays on the right.

Creating and deleting USS files and directories

Creating a directory

1. Expand the UNIX SYSTEM SERVICES (USS) tree in the Side Bar.

2. Click on the Search icon next to a profile and enter the path of the desired directory.

All child files and directories of that path display under the profile in the Side Bar.

3. Right-click the desired directory and select the Create Directory option.

4. Enter the directory name in the input box.

5. Press the Enter key to create the directory.

A new directory is created and displays in the selected directory.

Creating a file

1. Expand the UNIX SYSTEM SERVICES (USS) tree in the Side Bar.

2. Click on the Search icon next to a profile and enter the path of the desired directory.

All child files and directories of that path display under the profile in the Side Bar.

3. Right-click the desired directory and select the Create File option.

4. Enter the file name in the input box.

5. Press the Enter key to create the directory.

A new file is created and displays in the selected directory.

Deleting a file

1. Expand the UNIX SYSTEM SERVICES (USS) tree in the Side Bar.

2. Click on the Search icon next to a profile and enter the path of the desired directory.

All child files and directories of that path display under the profile in the Side Bar.

3. Right-click on the file you want to remove.

4. Select the Delete option and click Delete again to confirm and delete the file.

The file is deleted and no longer displays in the selected directory.

Deleting a directory

1. Expand the UNIX SYSTEM SERVICES (USS) tree in the Side Bar.

2. Click on the Search icon next to a profile and enter the path of the desired directory.

3. Right-click the directory you want to remove.

4. Select the Delete button and click Delete again to confirm and delete the directory and all its child files and

directories.

The directory is deleted and no longer displays in the Side Bar.

Version: v3.3.x LTS

Working with jobs

Viewing job spool output

1. Expand the JOBS tree in the Side Bar.

2. Click on the Search icon next to a profile and enter search criteria.

Search results display under the profile in the Side Bar.

3. Expand a job to view its spool files.

Viewing job contents

1. Expand the JOBS tree in the Side Bar.

2. Click on the Search icon next to a profile and enter search criteria.

Search results display under the profile in the Side Bar.

3. Right-click on the job you want to view, and select the Get JCL option.

Job contents display in an Editor.

NOTE

To edit the job and run it again, make the changes in the Editor, right click the Editor, and select the Submit

as JCL option. For instructions, see Step 3 in Submitting a local file as JCL.

https://docs.zowe.org/stable/user-guide/ze-working-with-data-sets#submitting-a-local-file-as-jcl

Creating a job search filter

1. Expand the JOBS tree in the Side Bar.

2. Click on the Search icon next to a profile and enter search criteria.

3. In the Quick Pick, select the Create job search filter option.

4. Select a Quick Pick option to submit its respective value.

The entered value displays next to the Quick Pick option.

5. Select the Submit this query option in the Quick Pick to create the filter.

The filter is saved as a Quick Pick option that displays when the Search icon is clicked. Remove the filter with Zowe

Explorer's Edit History feature.

Downloading spool content

Downloading spool files from a job

1. Expand the JOBS tree in the Side Bar.

2. Click on the Search icon next to a profile and enter search criteria.

Search results display under the profile in the Side Bar.

3. Right-click on the desired job and select either:

Download All to download all the spool files to a folder on your local disk.

Download All (Binary) to download all the spool files in binary format on your local disk.

The selected files are saved in a folder that is the job name in the specified location.

Downloading a single spool file

1. Expand the JOBS tree in the Side Bar.

2. Click on the Search icon next to a profile and enter search criteria.

Search results display under the profile in the Side Bar.

3. Expand the job containing the desired spool file.

4. Right-click on the spool file and select either:

Download All to download all the spool file contents to a folder on your local disk.

Download All (Binary) to download all the spool file contents in binary format on your local disk.

The selected file is saved in the specified location.

Sorting jobs

1. Expand JOBS in the Side Bar.

2. Click on the Sort icon to the right of a profile.

3. In the Quick Pick, select the Sort Direction option and select either Ascending or Descending.

4. Select a sort type from the list of available options:

Job ID (default)

Date Submitted

Date Completed

Job Name

Return Code

NOTE

To change the default sort order for jobs, see Modifying the default sort order for data sets and jobs.

Polling a spool file

Users can periodically refresh a spool file during long-running jobs to get the latest job outputs. This avoids having to

close and reopen a spool file to get the latest job outputs.

There are two ways to poll a spool file: automatically at set intervals or manually on demand.

Defining a default interval for polling spool files

1. Click on the Manage icon on the Activity Bar and select Settings.

2. In either the User or Workspace tab, click on the Extensions option to open the menu.

3. Select Zowe Explorer.

https://docs.zowe.org/stable/user-guide/ze-install-configuring-ze#modifying-the-default-sort-order-for-data-sets-and-jobs

4. In the Jobs: Poll Interval field, enter a valid time interval, in milliseconds.

Value must be greater than or equal to 1000 ms (or 1 second).

5. Press the Enter key to start the polling action.

Polling a spool file at set intervals

1. Expand the JOBS tree in the Side Bar.

2. Click on the Search icon next to a profile and enter search criteria.

Search results display under the profile in the Side Bar.

3. Right click on the desired spool file and select the Start Polling option.

Repeat this step with additional spool files to poll multiple files simultaneously.

4. The Poll interval (in ms) for: <spoolfilename> field displays the current interval value.

The default value is set to 5000 ms.

Change the value by entering a different number (must be greater than or equal to 1000 ms).

5. Press the Enter key to confirm the interval time and start the polling action.

The poll request is added to the poller, and the selected spool file is marked with a "P" in the Side Bar and any

corresponding Editor tabs.

Stopping spool file polling

1. In the Side Bar, select a spool file that is being polled.

Spool files being polled are marked with a "P" in the Side Bar.

2. Right click the spool file and select the Stop Polling option.

The poll request is removed from the poller, and the selected spool file is no longer marked with a "P" in the Side

Bar and any corresponding Editor tabs.

Polling a spool file manually

A spool file can be polled on demand by using a designated keyboard shortcut.

To manually poll a spool file:

1. In the Side Bar, double click a spool file to open it in an Editor.

2. With the spool file in an active tab, press the keyboard shortcut.

See Configuring the keyboard shortcut for manual polling to set the keyboard shortcut.

The spool file is updated and "Polling..." displays in the bottom status bar.

Configuring the keyboard shortcut for manual polling

1. Click on the Settings icon on the Activity Bar and select Keyboard Shortcuts.

2. Navigate to Zowe Explorer: Poll Content in Active Editor.

3. Select the Edit icon to designate a different keyboard shortcut.

The default shortcut is the F5 key.

The entered key(s) can be used to activate polling.

Version: v3.3.x LTS

Jobs table view

The Jobs table view in Zowe Explorer provides a powerful, spreadsheet-like interface for viewing and managing z/OS jobs

and their details.

This feature is accessible through the Panel's Zowe Resources view and offers enhanced data visualization, filtering,

and management capabilities beyond the traditional tree view.

Using the jobs table view

Open the table view from the Jobs tree.

Opening from the Jobs tree

Open the table view from a session node:

1. In the Jobs tree, right-click a session node.

2. Select View as Table from the context menu.

The table view opens with the jobs associated with the selected session.

Table view layout

The jobs table view displays jobs with comprehensive job metadata. It includes the following columns:

Name: The job name.

Class: The job class.

Owner: The user ID of the job owner.

ID: The unique job identifier (jobid).

Return Code: The job's return code indicating completion status.

Status: The current job status (ACTIVE, OUTPUT, etc.).

Subsystem: The subsystem where the job is running.

Type: The job type.

Job Correlator: The job correlator value.

Phase: The current job phase.

Phase Name: The descriptive name of the current phase.

Time Started: The timestamp when job execution started.

Time Submitted: The timestamp when the job was submitted.

Time Ended: The timestamp when job execution ended.

Error Details: Details about why the job is not running, if applicable.

Managing jobs

The table view provides actions for managing your jobs directly from the table.

Using the context menu

Right-click a row to open the context menu. It contains the following options:

Get JCL: Downloads and displays the Job Control Language (JCL) for the selected job.

Display in Tree: Locates and highlights the selected job in the Jobs tree view.

Additional actions provided by installed Zowe Explorer extensions.

Bulk job operations

The table view supports bulk operations on multiple selected jobs through action buttons:

Downloading jobs

Download spool files for one or more jobs:

1. Select one or more job rows using the checkboxes.

2. Click the Download button in the action bar at the top of the table.

The spool files for all selected jobs will be downloaded to your local system.

Canceling jobs

Cancel one or more active jobs:

1. Select one or more job rows with ACTIVE status.

2. Click the Cancel button in the action bar.

The selected active jobs will be canceled.

NOTE

The Cancel action is only available for jobs with ACTIVE status.

Deleting jobs

Delete one or more jobs from the system:

1. Select one or more job rows.

2. Click the Delete button in the action bar.

3. Confirm the deletion when prompted.

The selected jobs will be permanently removed from the system.

WARNING

Job deletion is irreversible. Ensure you have downloaded any necessary spool files before deleting jobs.

Advanced features

The table view includes advanced features for searching, sorting, and filtering job data.

Sorting and filtering

Column Sorting: Click on any column header to sort the table by that column. The Name column is sorted in

ascending order by default.

Column Filtering: Use the filter controls available on each column to narrow the displayed jobs.

Date Columns: Sort time columns (Time Started, Time Submitted, Time Ended) chronologically.

Table navigation

Pagination: Large job lists are automatically paginated for better performance.

Row Selection: Select checkboxes for multiple rows, or use Select-all.

Dynamic title updates

The table title updates dynamically based on the job node context:

Job ID Search: "Jobs with ID: [jobid]" when the session node has a specific job ID search.

Filtered Search: "Jobs: [owner] | [prefix] | [status]" when the session node has owner, prefix, and status filters

applied.

General View: "Jobs" for general job listings.

Integration with Jobs tree view

The jobs table view maintains seamless integration with the traditional tree view in the Side Bar:

Display in Tree: Right-click any job row and select Display in Tree to locate the job in the tree view with automatic

expansion.

Profile Context: The table view respects the profile context from which it was opened.

Keyboard shortcuts

Standard table navigation and selection keyboard shortcuts are supported.

Use the table's built-in keyboard navigation to move between rows and columns.

Version: v3.3.x LTS

Working with commands

You can issue the same commands used in ISPF with Zowe Explorer.

MVS commands can be used to obtain information from the zOS console, while SSH commands can be used to issue

shell commands to Unix System Services (USS). TSO commands can be used to invoke mainframe scripts in a zOS

terminal session.

Issuing MVS commands

1. Expand DATA SETS, UNIX SYSTEM SERVICES (USS), or JOBS in the Side Bar.

2. Right-click on your profile and select the Issue MVS Command option.

Alternatively, press the F1 key to open the Command Palette, and then select the Zowe Expolorer: Issue MVS

Command option.

3. In the Quick Pick, enter a new command or select a saved command.

4. Press the Enter key to execute the command.

The output displays in the Output panel.

Example command: Issue D T to get the system time.

Issuing SSH commands

1. Expand DATA SETS, UNIX SYSTEM SERVICES (USS), or JOBS in the Side Bar.

2. Right-click on your profile and select the Issue Unix Command option.

Alternatively, press the F1 key to open the Command Palette, then select the Zowe Explorer: Issue Unix

Command option.

3. In the Quick Pick, enter a new command or select a saved command.

4. Press the Enter key to execute the command.

The output displays in the Output panel.

Example command: Issue ls to list the contents of the current directory.

Issuing TSO commands

1. Expand DATA SETS, UNIX SYSTEM SERVICES (USS), or JOBS in the Side Bar.

2. Right-click on your profile and select the Issue TSO Command option.

Alternatively, press the F1 key to open the Command Palette, then select the Zowe Explorer: Issue TSO

Command option.

3. In the Quick Pick, enter a new command or select a saved command.

4. Press the Enter key to execute the command.

The output displays in the Output panel.

Example command: Issue profile to get information on your zOS system user profile.

Version: v3.3.x LTS

Using Zowe Explorer CICS Extension

The CICS Extension for Zowe Explorer adds additional functionality to the popular Visual Studio Code extension Zowe

Explorer. This extension allows you to interact with CICS regions and programs, and run commands against them.

Features

Create new Zowe CICS profiles and connect to them.

Work with multiple regions that contain programs, local transactions, and local files within a plex in a

comprehensible tree-like format.

Perform actions such as Enable, Disable, New Copy, and Phase In directly from the UI.

Perform additional actions on local files including Open and Close directly from the UI.

View and search attributes of resources and regions by right-clicking and using the dynamic filtering feature.

Apply multiple filters to regions, programs, local transactions, and local files.

View and interact with various resources (regions, transactions, programs, libraries, local files, and more) under a

plex.

https://github.com/zowe/zowe-explorer-vscode
https://github.com/zowe/zowe-explorer-vscode

Version: v3.3.x LTS

Usage tips

Make the best use of the Zowe Explorer CICS Extension with the following tips.

Multi-select functionality

Apply an action to multiple objects at the same time for increased efficiency. All menu action commands available when

right-clicking a profile or resource (excluding Show Attributes) can be applied to multiple items. To do this, select the

multiple nodes of the same type before right-clicking and selecting the command.

To select multiple nodes, hold the Ctrl or Cmd key while selecting the resources. You can also select multiple

consecutive nodes by selecting the first item in a list of nodes and then holding the Shift key while selecting the last

item in the list.

Refreshing the resources view

Click the Refresh icon at the top of the CICS tree view to reload the resources in every region.

Version: v3.3.x LTS

Managing Zowe Explorer CICS Extension profiles

To use all functions of the Zowe Explorer CICS extension, you need to have a Zowe Explorer profile.

If you already have a Zowe CICS CLI profile, the CICS tree in the VS Code Side Bar loads the default profile on startup.

If you do not have an existing Zowe CICS CLI profile, refer to the following instructions.

Using Zowe team configuration

1. Expand the CICS tree in the Side Bar, and click the + icon.

2. In the Quick Pick menu, select the Create New CICS profile option to open the configuration file. If no

configuration file is available, select the Create a new Team Configuration File option from the Quick Pick

menu.

The active configuration file opens in an Editor. If none exists, a new configuration file opens in an Editor.

3. Edit the configuration file to add a CICS profile.

4. Save the configuration file.

5. Refresh the Zowe Explorer for IBM CICS extension. Either click the Refresh icon at the top of the CICS tree in the

Side Bar, or select the Zowe Explorer for IBM CICS: Refresh option in the Command Palette.

6. In the CICS tree, select the + icon and select the newly created profile from the Quick Pick menu to display it in the

CICS tree.

NOTE

The CICS profile must specify a CICS region's CICS Management Client Interface (CMCI) TCP/IP host name and port

number. The region can be a WUI server in a CICSPlex or a stand-alone CICS System Management Single Server

(SMSS) region.

Configuring a CICS region to have a connection is a system programmer task and more details can be found in

Setting up CMCI with CICSPlex SM or Setting up CMCI in a stand-alone CICS region. If your CMCI connection is

configured to use a self-signed certificate that your PC's trust store does not recognize, see Overriding untrusted

TLS certificates.

To show more than one CICS profiles in the tree, select the + button and choose from the list of profiles. Only profiles

that are not already included in the CICS tree are shown.

Updating profiles

1. Expand the CICS tree in the Side Bar, and right-click a profile to open up the profile menu actions.

2. Select the Update Profile option.

The associated configuration file opens in an Editor.

3. Edit the configuration file to update the profile(s).

4. Save the configuration file.

https://www.ibm.com/docs/en/cics-ts/5.3?topic=explorer-setting-up-cmci-cicsplex-sm
https://www.ibm.com/docs/en/cics-ts/5.3?topic=suace-setting-up-cmci-in-stand-alone-cics-region
https://docs.zowe.org/stable/user-guide/ze-override-tls-certs
https://docs.zowe.org/stable/user-guide/ze-override-tls-certs

5. Refresh the Zowe Explorer for IBM CICS extension. Either click the Refresh icon at the top of the CICS tree in the

Side Bar, or select the Zowe Explorer for IBM CICS: Refresh option in the Command Palette.

Hiding and unhiding profiles

1. Expand the CICS tree in the Side Bar, and right-click the desired profile.

2. Select the Hide Profile option to hide it from the CICS tree view.

3. To unhide the profile, click the + icon at the top of the CICS tree and select the profile from the Quick Pick menu.

Deleting profiles

1. Expand the CICS tree in the Side Bar, and right-click the desired profile.

2. Select the Delete Profile option.

The associated configuration file opens in an Editor.

3. Edit the configuration file to remove the profile.

4. Save the configuration file.

5. Refresh the Zowe Explorer for IBM CICS extension. Either click the Refresh icon at the top of the CICS tree in the

Side Bar, or select the Zowe Explorer for IBM CICS: Refresh option in the Command Palette.

Version: v3.3.x LTS

Using CICS resources

Expand a CICS profile to see the region name, and expand the region to view its resources.

If the CICS profile is connected to a CMAS region that is part of a CICSPlex, the tree shows all of the regions managed

by the CICSPlex.

If the CICS profile is for an SMSS region, then only one region displays. Inactive regions in a plex display with an

empty icon.

Showing and filtering resources in a region

1. Expand the CICS tree in the Side Bar and navigate to a CICS region.

2. Expand the CICS region to show folders for the Programs, Transactions, and Local Files resource types.

3. Expand each resource type to view their resources. (The number of resources in a resource tree displays in square

brackets next to the tree name.)

The list of resources is pre-filtered to exclude many of the IBM-supplied resources. This narrows the contents to

include only user programs.

4. Use the Search icon in a resource type to apply a filter.

Enter an exact resource name or use wildcards. The search history is saved so you can recall previous searches.

To reset the filter to its initial criteria, use the Clear filter icon in the resource type. To see all resources in a region

(including those supplied by IBM), use an * as a filter.

TIP

To apply multiple filters, separate entries with a comma. Append a filter with an * to indicate wildcard

searching.

Showing and filtering resources in a plex

Apply a filter on all region resources in a plex.

1. Expand the CICS tree in the Side Bar and navigate to the Regions tree.

2. In the Quick Pick, select Regions, Programs, Local Transactions, or Local Files.

This specifies the resource type to apply as the filter for all regions in the plex.

3. To reset the filter to its initial criteria, select the Clear filter icon on the Regions tree.

This displays a Quick Pick menu that gives the option to clear the filter for all the Regions, Programs, Local

Transactions or Local Files in the plex, and the option All to clear all filters in the plex.

::: Tip

To apply multiple filters, separate entries with a comma. Append a filter with an * to indicate wildcard searching.

:::

Showing and filtering resources in an 'All' resource tree

Plexes includes All Programs, All Local Transactions and All Local Files trees that contain all the corresponding

resources from all regions in the plex.

To view resources under these trees:

1. Expand the CICS tree in the Side Bar and navigate to the desired tree.

2. Select the Search icon in the desired tree and apply a filter from the Quick Pick.

If the applied filter results in more than 500 records, change the filter to narrow the search, or click the view X

more ... option to retrieve the specified quantity of resources.

Showing attributes

1. Expand the CICS tree in the Side Bar and navigate to a program.

2. Right-click the program.

A context menu lists the available actions that can be performed.

3. Select the Show Attributes option.

All attributes and their values open in an Editor. Use the filter box at the top of the Editor to search for attributes

matching the search criteria.

Enabling and disabling

1. Expand the CICS tree in the Side Bar and navigate to a program, local transaction, or local file.

2. Right-click a program, local transaction, or local file.

A context menu lists the available actions that can be performed.

3. Select the Disable [CICS resource] option.

The resource is disabled. A disabled resource is identified by a (Disabled) indicator next to its name.

4. To enable resource, right-click a disabled program, local transaction, or local file and select the Enable [CICS

resource] option from the context menu to re-enable it.

New copy and phase in

Use the New Copy and the Phase In actions against a CICS program to get the CICS region to load a fresh copy of the

selected program into memory. This could be useful after you edited a COBOL program source and successfully compiled

it into a load library and now want to test your change.

1. Expand the CICS tree in the Side Bar and navigate to a program.

2. Select the program and click on the New Copy icon next to it, or right-click a program and select the New Copy

option from the context menu.

The program is applied to the CICS region to use it on the associated transaction, and a pop-up message displays

the status of the operation.

The New copy count for a program is shown next to the program in the CICS tree.

3. Select the program and click on the Phase In icon next to it, or right-click a program and select the Phase In option

from the context menu.

The program is applied to the CICS region whether or not the program is actively running, and a pop-up message

displays the status of the operation.

Opening and closing local files

To open a local file:

1. Right-click a closed local file.

2. Select the Open Local File option from the context menu.

The openstatus attribute for the file is set to OPEN .

To close a local file:

1. Right-click an open local file.

2. Select the Close Local File option from the context menu.

3. When prompted, choose one of the following options from the pop-up window:

Wait for the file/resource to not be in use.

No Wait to close the file/resource without waiting.

Force to abort any process that was using the file/resource.

After an option is selected, the local file name is appended with a (Closed) label.

Version: v3.3.x LTS

Overriding untrusted TLS certificates

There are times when a user might want to override a rejected TLS certificate.

By default, if the CICS Management Client Interface (CMCI) connection uses a TLS certificate that does not exist in your

PC's trust store, Zowe Explorer rejects the connection because the certificate could originate from an unsafe site.

You might want to override this behavior if you are using certificates not signed by a recognized certificate-issuing

authority. For instance, z/OSMF might only have certificates created on the mainframe, resulting in self-signed

certificates. Zowe Explorer rejects these types of certificates by default as a security measure.

There are two ways to override a rejected TLS certificate.

Updating the CICS profile with Zowe Explorer

1. Attempt the CMCI connection.

Zowe Explorer rejects the TLS certificate and displays a pop-up message warning about the certificate.

2. Select the Yes option on the warning.

Zowe Explorer updates the rejectUnauthorized property in the respective CICS profile to false and updates the

CICS tree with the modified profile.

Updating the CICS profile manually

1. Expand the CICS tree in the Visual Studio Code Side Bar, and right-click a profile to open up the profile menu

actions.

2. Select the Update Profile option.

The associated configuration file opens in an Editor.

3. Edit the configuration file to set the rejectUnauthorized property in the respective CICS profile to false .

4. Save the configuration file.

5. Refresh the Zowe Explorer for IBM CICS extension. Either click the Refresh icon at the top of the CICS tree in the

Side Bar, or select the Zowe Explorer for IBM CICS: Refresh option in the Command Palette.

Version: v3.3.x LTS

Using Zowe Explorer FTP Extension

Using

CAUTION

When transferring files, data sets, or data set members, use only ASCII characters. If a file contains non-ASCII

characters (such as glyphs or mathematical symbols), a translation error can happen when the file is downloaded

from, or uploaded to, the mainframe. This error can result in data loss.

To use the FTP Extension with Zowe Explorer:

1. Select the Zowe Explorer icon on the Activity Bar in Visual Studio Code.

2. Hover over the DATA SETS, UNIX SYSTEM SERVICES (USS), or JOBS bar and select the corresponding + icon to

view the Zowe CLI FTP profiles in the Quick Pick menu.

If you do not have an existing FTP profile, see Creating an FTP profile with Zowe Explorer.

3. Select a profile to display it in the Side Bar.

4. Hover over the profile and click the Search icon.

5. Enter the applicable values in the Quick Pick:

For data sets, select or enter the data set name.

For USS, select or enter the path.

For jobs, select or enter the job owner and job prefix.

Creating an FTP profile with Zowe Explorer

If you do not have an existing Zowe FTP profile, you can create one graphically with Zowe Explorer:

1. Select the Zowe Explorer icon on the Activity Bar in VS Code.

2. Expand the UNIX SYSTEM SERVICES (USS) tree and click the + icon.

3. In the Quick Pick menu, select the Create a New Connection to z/OS option.

4. Enter a profile name and press the Enter key.

5. Select the zftp connection type from the dropdown list of available connection options.

6. Continue providing values for the remaining prompts, which are specific for FTP-type connections.

Version: v3.3.x LTS

Supported functionality

Review the following list for the functionality available in Zowe Explorer FTP Extension.

Supported data set functionalities

Migrated data set:

Show Data Set Attribute

Add to Favorites

Sequential data set:

Show Data Set Attribute

Pull from Mainframe

Edit Data Set

Rename Data Set

Delete Data Set

Partitioned data set:

Show Data Set Attribute

Create New Member

Edit Member

Upload Member

Rename Data Set

Delete Data Set

Partitioned data set member:

Pull from Mainframe

Edit Member

Rename Member

Delete Member

Supported USS functionalities

List USS files and directories

View file in text/binary mode

Edit file

Save file

Copy/paste folders and files

Create a new directory/new file

Upload file

Rename file/directory

Delete file/directory

Pull from mainframe

Add to Favorites

Supported jobs functionalities

List Jobs with prefix and owner

List job by jobid

List spool files

View spool files content

Download spool files

Submit job from dataset/member

Delete job

Add to favorites

Version: v3.3.x LTS

Using Zowe Explorer plug-in for IntelliJ IDEA

What can I do using the plug-in for IntelliJ IDEA?

The plug-in provides the ability to work with a mainframe through z/OSMF REST API. It has such functionalities as:

Working with z/OS data sets and USS Files: you can create new entities, copy and move them, delete, edit right in

the IDE, check and change properties

Working with JES jobs: you can submit a job, see an output of any job, edit and run JCL right through the JES Explorer,

see and change the status of a job

Working with TSO: you can submit any TSO command through the plug-in's TSO Command Line Interface in a

console way, see the output of TSO commands

Who is the plug-in for IntelliJ IDEA intended for?

The plug-in is suitable for your needs if you meet one or more of the criteria:

You are a System Programmer and use COBOL / JCL / PLI/I: with the plug-in, you can easily change the source

code, situated on a mainframe, right in the IDE's editor, without the risk of exposing your data anywhere, as all the

content is stored under and displayed from the secure IntelliJ's storage. With a bunch of available plug-ins, it will

provide the most of opportunities to work with your programs, written on mainframe-specific languages

You are a System Administrator / System Operator: the plug-in's TSO CLI provides the way of interacting with a

mainframe the same as the other tools do, extending the User Experience to the highest possible peak

You are a QA / Test Automation person: it gives as much possibilities to check the actual content of a mainframe

as the most modern technologies do, reducing latencies in any interaction with the components of the system

You are a Java / Kotlin / Scala developer: IntelliJ IDEA provides native support for JVM languages, so it is more

suitable for these technologies to develop for a mainframe

https://docs.zowe.org/stable/user-guide/intellij-zos-files
https://docs.zowe.org/stable/user-guide/intellij-uss-files
https://docs.zowe.org/stable/user-guide/intellij-copy-cut
https://docs.zowe.org/stable/user-guide/intellij-jes-explorer
https://docs.zowe.org/stable/user-guide/intellij-tso-cli

Version: v3.3.x LTS

Working with plug-in's settings

Before you start to use the plug-in, there are some settings that will help you to customize the way you are working with

it. To open the plug-in's settings:

1. Open the Zowe Explorer tab (1), click the Settings button (2). The action will open all the configurations of the

plug-in

2. After the window of the configuration appears, there are some tabs:

Connections (1) - to manage the connections to z/OS you have. From there, you can add a new connection and

delete or edit the old one

JES Working Sets (2) - to manage the JES Working Sets

Working Sets (3) - to manage the Files Working Sets

TSO Sessions (4) - to manage TSO Sessions

Settings (5) - the actual customization options of the plug-in

Click the Settings tab to proceed to the customization options

3. At the Settings tab, there are two available customization options:

Batch amount to show per fetch (1) - the amount of data sets to show under a mask. The option is editable and

accepts integer numbers

Enable auto-sync with mainframe (2) - the option to save content of the edited data sets and USS files

automatically if selected

Batch amount to show per fetch

There could be a huge amount of data sets / files under a specified mask. Sometimes the loading of their list could take

a lot of time. To eliminate this problem, the plug-in provides the ability to control the amount of items loading at one

time. The option is called Batch amount to show per fetch. By default, it is set to 100 entries. It means that when the

request to display entities under a mask contains more than the specified number, it will show the first "x" entities with

the button to load more of them. You can load the next amount by double-clicking on the load more at the bottom of

the list.

Enable auto-sync with mainframe

It is possible to synchronize the file or data set you are editing either manually or automatically. The method of

synchronizing is controlled by the Enable auto-sync with mainframe option. When it is marked, you don't need to

manually synchronize the file / data set whilst editing it, the plug-in decides by itself, when to synchronize it. In case you

want to be sure that you control the process of synchronizing the content with a mainframe, or in case you have some

limitations for calls to z/OSMF REST API, or for some other reason, you can disable this option and continue with manual

synchronization. The synchronization process starts either by the button in the editor (), appearing if there are any

changes in the file, or by pressing simultaneously Ctrl + Shift + S (Cmd + Shift + S for MacOS).

If the manual synchronization is turned on, and you try to close the file in the editor, the plug-in will ask what to do with

the content. Clicking Yes will synchronize the content, No will delete the local changes:

Here's how auto-synchronization works:

Version: v3.3.x LTS

Working with plug-in's Working Sets

The concept

We use term "Working Sets" to describe the place to store sets of masks and filters. These items are stored separately

for each working set. The working set is more like a "profile" (don't confuse with the "Zowe Profile") and is used to

logically aggregate sets for different separate needs (both for users' convenience and to separate the different items to

categories, in case it is needed).

There are two types of working sets:

Files Working Sets - are to store z/OS and USS masks

JES Working Sets - are to store JES Job filters

You can create working sets either through Settings or by clicking + button and selecting Working Set / JES Working

Set from a dropdown in the plug-in's tab.

NOTE

You can create a working set only when a connection is set up.

Files Working Set

This type of working sets is used to store z/OS and USS masks. Masks are similar to filters, they are used to show z/OS

data sets and USS files under a specified path.

To create Files working set:

1. Press + button

2. Select Working Set

3. Type the Working Set's name in the Working Set Name field (it should be unique) and select the connection under

which to create the Working Set

4. Add some masks to the newly created Working Set. It can be both z/OS data set masks or USS Files masks

5. Click OK

JES Working Set

This type of Working Sets is used to operate with your JES Jobs, see their logs, view and edit JCL and later run it. It holds

all the filters for the JES Explorer.

To create JES Working Set:

1. Select the JES Explorer tab

2. Press + button

3. Select JES Working Set

4. Type the Working Set's name in the Working Set Name field (it should be unique) and select the connection under

which to create the Working Set

5. Add some JCL filters

6. Click OK

Version: v3.3.x LTS

Working with z/OS data sets

Using the plug-in, it is possible to:

create, rename, view, edit, delete PS, PDS, PDS/e data sets, as well as PDS and PDS/e members

use the feature Allocate Like to create a data set with parameters of the other data set

use the feature Migrate and Recall for archived data sets

submit JCL jobs with Submit Job option

copy, move z/OS data sets, both inside the filesystem, and between them, as well as between systems with different

IP address

sort data sets

After you set up a Files Working Set and create a mask to display data sets on the z/OS part, it is possible to manipulate

PS, PDS and PDS/E data sets

Allocating a data set

To allocate a data set:

1. Right-click on any entity, related to z/OS data sets (it could be Files Working Set, z/OS data sets mask, any

other data set or member)

2. Select New -> Dataset

3. Specify the necessary fields. There are some custom options to help with specifying the data set parameters:

Choose preset (1) - the option provides the most commonly used data set presets both for PS and PDS options.

Selecting on of the presets will automatically setup all the necessary fields to create the selected type of a data

set (the presets are described more later)

Dataset name (2) - the name of the data set to be created. It automatically provides the template of the data

set name with the user's HLQ as the starting string and .<CHANGEME> string that is intended to be changed

https://docs.zowe.org/stable/user-guide/intellij-working-sets#files-working-set

by the user

Dataset organization (3) - the data set organization to be used. The options are: PS (Physical Sequential),

PO (Partitioned Organization) and PO-E (Partitioned Organization - Extended)

Allocation unit hint (4) - a small UI improvement hint for better understanding the allocation units and their

relative values to each other

All the other parameters are the same as the z/OS provides to allocate a new data set. In the Advanced Parameters

section, there are some additional fields to setup if your prefer to set yourself such things as Volume, Device Type,

Storage class, etc.

If you want to choose a preset, there are 5 options available for now:

Custom Dataset (1) - all the fields are set by the user

Sequential Dataset (2) - the fields are set to allocate a template PS data set

PDS Dataset (3) - the fields are set to allocate a template PDS data set

PDS with empty member Dataset (4) - the fields are set to allocate a template PDS data set with an empty

member inside

PDS with sample JCL member Dataset (5) - the fields are set to allocate a template PDS data set with a member

with a template JCL job inside

4. After specifying all the necessary fields, click OK

5. When the data set is allocated, the plug-in will suggest creating a mask to display the data set created under. Click

Add mask (1) to add the mask and Skip (2) to skip the mask creation

Working with z/OS PS data sets

Here you can see a possible scenario of working with PS data sets

Working with z/OS PDS / PDS/E data sets

Here you can see a possible scenario of working with PDS / PDS/E data sets

"Allocate Like" feature

To issue the Allocate Like, right-click on any of data sets and select Allocate Like.

"Submit Job" feature

To issue the Submit Job, right-click on any of PS data sets or PDS / PDS/E members and select Submit Job.

Sort a data sets mask

To sort z/OS data sets list:

1. Right click on a data sets mask, select Sort. The list of sorting options will appear:

Dataset Name (1) - to sort by data set names

Dataset Type (2) - to sort by data set types (PS / PO / PO-E)

Dataset Modification Date (3) - to sort by data set modification date and time. Data sets list is sorted by this

option by default

Also, there is a possibility to change the order for the items to be displayed: Ascending (4) (by default) or Descending

(5). For the example purposes, select Dataset Name

2. The list will be refreshed with the new sort order

Version: v3.3.x LTS

Working with USS Files

Using the plug-in, you will be able to:

create, rename, view, edit, delete USS files and folders

submit JCL jobs with Submit Job option

change the encoding a USS file content is displayed or saved in

manipulate USS files and folders rights

copy, move USS files and folders, both inside the filesystem, and between them, as well as between systems with

different IP address

sort USS paths

After you set up a Files Working Set and create a mask to display USS paths, it is possible to manipulate USS files and

folders.

Basic operations

The plug-in allows users to work with USS part of a mainframe. As the basic operations, you can create files with a

specific set of permits, edit files, rename and delete them. Also, you can submit a job from a USS file if it is a JCL.

Working with permissions

The plug-in allows users to edit permissions of the USS files and folders:

https://docs.zowe.org/stable/user-guide/intellij-working-sets#files-working-set

1. Right-click on the file in USS explorer, click Properties

2. In the File Properties dialog window, select the Permissions tab

3. In there, you will have three options to change when needed: Owner permissions (1), Group permissions (2)

and Permissions for all users (3). To change any of the options, click one of them

4. From the drop-down list, select a new value

5. Click the OK button for the changes to be applied

Working with files encoding

Sometimes it is necessary to display file content in a specific encoding or save it in some different encoding. To do so:

1. Double-click the USS file to open it in the editor

2. In the File Properties dialog window, you should be at the General tab. Click the File encoding button for the

drop-down list to appear

3. Select the encoding you want the file content to be in

4. After the actions, the encoding change dialog will appear. It will ask you to choose between the 2 options:

Reload (1) - changes the file tag, specifying the encoding to show the file in. This action does not actually

rewrite the contents of the file and just changes the way it is displayed in the editor

Convert (2) - tries to convert the file to the specified encoding, actually changing the content of the file. This

option will also change the file tag, and after that it will try to modify the content, changing the file bytes to the

respective ones to try to display the same content with the actually different bytes

5. Click the option you want to perform on the file. Sometimes it is not possible to correctly reload or convert the file

content to the encoding you select. In this case, the Warning icon will appear in the button of an action that is not

possible to perform correctly. You will be still able to perform the operation, but the additional warning dialog will

appear, describing the issue

MAKE SURE YOU KNOW WHAT YOU ARE DOING

The contents after clicking Reload anyway or Convert anyway could be unpredictable. Do it only in the cases

where you are sure nothing will go wrong.

After the operation is finished, the content of the file will be reloaded. If you had some characters that were not visible in

the default encoding, and you selected the correct encoding, the content will be displayed regarding the option you've

selected.

Sort a USS path

There is a functionality of the plug-in to sort USS files and folders. The plug-in allows to sort not only the root path, but

any USS path you have in your working tree.

To sort USS files and folders list:

1. Right click on a USS path, select Sort. The list of sorting options will appear:

File Name (1) - to sort USS entities by name

File Type (2) - to sort USS entities by type

File Modification Date (3) - to sort USS entities by modification date. USS path is sorted by this option by

default

Also, there is a possibility to change the order for the items to be displayed: Ascending (4) (by default) or Descending

(5). For the example purposes, select File Name

2. The list will be refreshed with the new sort order

Version: v3.3.x LTS

Copying and moving data using the plug-in

The essential feature of the plug-in is to provide the ability to copy and move content between different entities and

systems. The plug-in provides functionalities to copy and move any kind of information possible (also in terms of

security).

Copy and move: the same system

There are different options to copy and move z/OS data sets and members between each other, as well as USS files. It is

possible to move and copy files and data sets either through keyboard shortcut buttons and context menu, or using

Drag & Drop.

Copy and move: a data set member copy and move examples

NOTE

Make sure the parameters of the target data set allow you to paste a new member. Sometimes there is an error

occures during paste operation to the data set due to the directory blocks value being not enough to fit the

member.

To copy member from one data set to another:

1. Right click on the member to be copied, select Copy

2. Right click on the target PDS / PDS/E data set, select Paste

3. A dialog about the copy operation appears. It is also possible to cancel the operation until it is finished

4. After the operation is completed, the data set will be automatically refreshed and the member will appear in the list

of the data set members

To move a member from one data set to another:

1. Right click on the member to be moved, select Cut

2. Right click on the target PDS / PDS/E data set, select Paste

NOTE

You can use a Drag & Drop feature to accomplish the same action

3. A confirmation dialog for the member to be moved will appear, select Yes

4. A dialog about the move operation appears. It is also possible to cancel the operation until it is finished

5. After the operation is completed, the data set will be automatically refreshed and the member will appear in the list

of the data set members

The member will disappear from the source data set.

Copy and move: a PS data set to a PDS member copy example

The plug-in allows to copy and move PS data sets to PDS / PDSE data sets. The data set will become a member of the

target data set. The name of the member will be trimmed to the last element of the source HLQ. If there are already a

member with the same name as the newly pasted one has, the name will be changed to the same data set member's

name with the last character(s) replaced with the next available number to form a non-conflicting name of the member.

NOTE

Make sure the parameters of the target data set allow you to paste a new member. Sometimes there is an error

occures during paste operation to the data set due to the directory blocks value being not enough to fit the

member.

To copy a sequential data set to a partitioned data set:

1. Right click on the PS to be copied, select Copy

2. Right click on the target PDS / PDS/E data set, select Paste

3. If there is a conflicting name member in the data set exists, the plug-in will suggest a new name to apply to the

member to appear in the data set members list. Click Ok to agree to use the new name

4. A dialog about the copy operation appears. It is also possible to cancel the operation until it is finished

5. After the operation is completed, the data set will be automatically refreshed and the member will appear in the list

of the data set members

Copy and move: a USS file to a USS folder move example

To move USS file or folder to another USS folder:

1. Right click on the folder or the file to be moved, select Cut

2. Right click on the target USS folder, select Paste

NOTE

You can use a Drag & Drop feature to accomplish the same action

3. A confirmation dialog for the file to be moved will appear, select Yes

4. A dialog about the move operation appears. It is also possible to cancel the operation until it is finished

5. After the operation is completed, the path will be automatically refreshed and the file will appear in the refreshed

list. Also the file will disappear from the source path

Copy and move: a PDS / PDS/E member to a USS folder copy example

There is also a functionality provided by the plug-in to copy and move PS, PDS / PDS/E data sets and members to a USS

path.

To copy a PDS / PDS/E member to a USS folder:

1. Right click on the member to be copied, select Copy

2. Right click on the target USS folder, select Paste

3. A dialog about the copy operation appears. It is also possible to cancel the operation until it is finished

4. After the operation is completed, the USS path will be automatically refreshed and the newly pasted USS file will

appear

Copy and move: a PDS / PDS/E data set to a USS folder move example

While moving or copying a partitioned data set to the USS path, it will be converted to a USS folder with USS files.

To move a PDS / PDS/E data set to a USS path:

1. Right click on the PDS to be copied, select Cut

2. Right click on the target USS folder, select Paste

NOTE

You can use a Drag & Drop feature to accomplish the same action

3. A confirmation dialog for the file to be moved will appear, select Yes

4. A dialog about the move operation appears. It is also possible to cancel the operation until it is finished

5. After the operation is completed, the path will be automatically refreshed and the folder will appear in the refreshed

list. Also the data set will disappear from the z/OS part

Copy and move: a USS file to a PDS / PDS/E data set move example

Also, it is possible to copy and move a USS file to a PDS / PDS/E data set. The file will become a PDS member.

NOTE

The contents of the source files and data sets will stay the same, until you try to copy/move a file from USS to a

z/OS partitioned data set. If the file lines are longer than the specified for the PDS / PDS/E logical record length, the

plug-in will cut the rest of the line, exceeding the LRECL, for each of the exceeding lines.

To move a USS file to a PDS / PDS/E data set:

1. Right click on the file to be copied, select Cut

2. Right click on the target PDS / PDS/E data set, select Paste

NOTE

You can use a Drag & Drop feature to accomplish the same action

3. A confirmation dialog for the file to be moved will appear, select Yes

4. Also, the warning dialog about placing a USS file under a PDS / PDS/E data set will appear. It will describe the actual

result of this operation. Click Ok

5. A dialog about the move operation appears. It is also possible to cancel the operation until it is finished

6. After the operation is completed, the data set will be automatically refreshed and the list of the members will be

refreshed with the new member in the list present. Also the file will disappear from the USS path

NOTE

You could notice the new member name. It is formed from the first 8 alphanumeric characters of the source file.

Also, when there are member name conflicts, there is a resolution mechanism implemented in the plug-in. The new

name will be formed as the change of the conflicting name, adding the next available number to the new name of

the new member.

Cross-system copy and move

The plug-in provides a functionality to move and copy z/OS data sets and USS files between different systems. E.g.: a

user has two systems with different IPs. So, it is possible to copy or move files and data sets either from the first IP to the

second, or vice versa. The rules of copying and moving that are described previously, are the same for this action.

Copy and move: a PDS / PDS/E data set to a USS path cross-system copy example

To copy a PDS / PDS/E data set to a USS path in a different system:

1. Right click on the data set to be copied, select Copy

2. Right click on the target system's USS path, select Paste

3. A dialog about the copy operation appears. It is also possible to cancel the operation until it is finished

4. After the operation is completed, the USS path will be automatically refreshed and the path will be refreshed with the

new USS folder in the list present

Downloading USS files and folders and z/OS data sets and

members

There is a feature to download USS files and folders, as well as z/OS data sets and members. Both Copy and Cut

functionalities are available for the downloading feature.

Download feature: a USS file download as a copy operation

To copy a USS file to a local machine:

1. Right click on the z/OS system's USS file, select Copy

2. Right click in the local project's explorer view, select Paste

3. If there are conflicts in the names of the entities being copied, the plug-in will ask for the option to select:

Skip the conflicting file(s) (1) - will skip the entities copying

Replace the file(s) in the destination (2) - will replace the entities in the destination with the being copied

ones

Decide for each file (3) - will ask separately for each entity being copied

For the example purposes, select Decide for each file (3)

4. The next dialog window will appear, asking what to do with the conflicting file:

Skip (1) - will skip the entity copying

Overwrite (2) - will overwrite the entity with the same name in the destination

Use new name (3) - will create a new entity as a copy of the entity being copied with a new name, provided by

the plug-in

For the example purposes, select Use new name(3)

5. The final warning dialog will appear, notifying that the operation may be against the security rules in your company.

Select Yes

DO IT ON YOUR OWN RISK!

Do not proceed with the operation if your organization does not allow you to distribute information from your

mainframe. It may contain sensitive data that is not meant to be distributed outside a mainframe.

6. A dialog about the copy operation appears. It is also possible to cancel the operation until it is finished

7. After the operation is completed, the file will appear in your local project's tree

Uploading files to a USS subsystem and z/OS data sets

It is also possible with the plug-in to upload files to a USS path and z/OS data set as a member

Upload feature: a file to a PDS / PDS/E member upload as a copy operation

NOTE

Make sure the parameters of the target data set allow you to paste a new member. Sometimes there is an error

occures during paste operation to the data set due to the directory blocks value being not enough to fit the

member.

NOTE

The contents of the source files and data sets will stay the same, until you try to copy/move a file from USS to a

z/OS partitioned data set. If the file lines are longer than the specified for the PDS / PDS/E logical record length, the

plug-in will cut the rest of the line, exceeding the LRECL, for each of the exceeding lines.

To upload a file as a copy operation from a local machine to a PDS / PDS/E data sets as a member:

1. Right click on a file on the local project's tree, select Copy

2. Right click on the destination PDS / PDS/E, select Paste

3. The truncation warning will appear, click Ok

4. A dialog about the copy operation appears. It is also possible to cancel the operation until it is finished

5. After the operation is completed, a new member will appear in the destination PDS / PDS/E

NOTE

Check the content of the member after the operation. It could be truncated due to LRECL of the data set.

Current limitations

There are still some features in development and are not possible to accomplish with the plug-in:

1. Folder uploading to a USS path

2. File uploading to a z/OS mask as a PS data set

3. USS folder copy to a z/OS mask as a PDS / PDS/E data set

4. Folder uploading to a z/OS mask as a PDS / PDS/E data set

If you have some ideas regarding these operations or want to make a change in the existing one, please, reach out to us.

https://openmainframeproject.slack.com/archives/C020BGPSU0M

Version: v3.3.x LTS

Working with JES Explorer

Using the plug-in, you will be able to:

view a status of a job, view full log of a job run

view and edit job's JCL, submit a JCL right after they are edited

purge a job

sort jobs

After you set up a JES Working Set and create a job filter to display jobs, you are all set up to work with JES Explorer.

Creating a jobs filter

To see and manipulate JES jobs, you need to specify a jobs filter to search for jobs.

To create a jobs filter:

1. Proceed to the JES Explorer, right click on a JES Working Set, select New > Jobs Filter

2. Specify the parameters in the Create Jobs Filter dialog:

Prefix (1) - the prefix for a jobs search. Can be specified as a wildcard

Owner (2) - the owner for a jobs search. Can be specified as a wildcard

Job ID (3) - the exact job ID for a job search

NOTE

You can specify either prefix + owner or a job ID only. A mix of the parameters is not allowed.

After the parameters are specified, click OK

https://docs.zowe.org/stable/user-guide/intellij-working-sets#jes-working-set

Now, you are ready to proceed to work with JES jobs.

Viewing a job status

The job status is displayed depending on the actual status of the job with the respective colouring.

To view a job status:

1. Proceed to the JES Explorer, reveal a JES Working Set and a Jobs Filter. There are different statuses depending

on the state of a job:

ENDED AT: <date and time>. RC = CC 0000 - the job is ended successfully, displaying the actual date and

time of the job finish

ENDED AT: <date and time>. RC = <any other> - the job is ended with an error or a warning, displaying the

actual date and time of the job finish

STARTED AT: <date and time> - the job is started but is in progress and not yet completed, displaying the

actual date and time of the job start

PENDING INPUT / QUEUED - the job is not started yet as it is waiting in the queue until the same job already

started is finished

Viewing job spool files and job's run logs

All the spool files available for the jobs could be viewed in the plug-in.

To view the job spool files:

1. At the JES Explorer tab, reveal a JES Working Set and a jobs filter

2. Double click on the job or click > on the left of it. You will see all the spool files, available for the job

NOTE

If the job is still in progress, it is possible that not all the spool files are available yet. Just wait until the job is

finished and refresh the view by right clicking and selecting Refresh.

3. Double click on any of the spool files to see the content of it. The lines will be displayed in the editor in a reader

mode

To view all the spool files merged in one log:

1. Right click on the job in JES Explorer, select View Job

2. The merged spool files log will be displayed in the Zowe Jobs console view. There are two buttons to manipulate the

job in there:

Go To Job (1) - reveals the job in JES Explorer. If the job is not yet visible in the JES Explorer, the plug-in

provides a dialog to create a filter for the exact job to present

Purge Job (2) - removes the job from JES

NOTE

If the job is completed successfully, the plug-in can hide the successful steps. To show them, right click on the job in

the console view and select Show Successful Steps and it will show all the spool files of the job as steps.

View and edit job's JCL code

The plug-in provides the possibility to view and edit a JCL code of the job in the JES Explorer. The JCL will appear in the

IDE's editor. You could change the JCL and submit the job with a new code.

To view and edit the JCL code of a JES job:

1. Right click on the job in JES Explorer, select Edit JCL

2. After the JCL content is fetched, it will be displayed in the IDE's editor. You can change the JCL as much as you want.

Also, the editor allows to submit the JCL again. Click the Submit Job button

3. When the job is submitted, the console of the job's execution will appear, providing the actual information about the

job run

4. Also, it is possible to see the status of the job being run. On the appropriate Job Filter in the JES Explorer, right

click and select Refresh

5. After refresh is completed, a new list with jobs will be displayed with the submitted job and its respective status

Purge a job

To purge a job from a JES:

1. Specify a Jobs Filter. After the jobs are fetched, right click on a job to purge, select Purge (or press Delete button

when the job is selected)

2. When the job is being purged, a "purge" dialog will appear until the job is purged

3. After the job is purged, a notification about the job is purged will appear and the Jobs Filter will be refreshed

Sort jobs

For the improved user experience, there is a feature of the plug-in to sort jobs for a specified jobs filter.

To sort jobs:

1. Proceed to the JES Explorer, reveal a Jobs Filter, right click on it, select Sort. There are will be options:

Job Name (1) - to sort jobs by their names

Job Creation Date (2) - to sort jobs by their creation date and time. Jobs are sorted by this option by default

Job Completion Date (3) - to sort jobs by their completion date and time

Job Status (4) - to sort jobs by their status. It means that the return code will be analyzed by the status,

displayed in the JES Explorer

Job Owner (5) - to sort jobs by their owners

Job ID (6) - to sort jobs by their IDs

Also, there is a possibility to change the order for the items to be displayed: Ascending (7) (by default) or Descending

(8). For the example purposes, select Job Name

2. The list will be refreshed with the new sort order

Version: v3.3.x LTS

Working with TSO console

The plug-in provides a functionality to work with TSO in a console way directly from the IntelliJ IDEA. With this feature it

is possible to enter commands and see their results, open multiple sessions to different z/OS instances, as well as the

same z/OS instance, issue a PA1 command to the console in case the attention functionality is needed to be triggered.

To start working with TSO console, you need to set up a Connection. After that, the TSO Sessions functionality will be

allowed to work with.

Creating a TSO Session

To create a TSO Session:

1. Open settings with the wrench button

2. Go to TSO Sessions tab

3. At the TSO Sessions tab, click on the + button

https://docs.zowe.org/stable/user-guide/intellij-configure#creating-zosmf-connection

4. The Add TSO Session dialog will appear. You need to specify a name of the TSO Session in order to be able to

create it. Also, you can select a connection to be used together with the session parameters. To setup such things as

reconnection timeout and reconnection attempts count, use the Advanced Parameters section. Also, you can reset

the defaults of the parameters by clicking Reset Default Values button. After all the parameters are set up, click

OK button

5. After the actions are done, a new TSO Session will be added to the list. Click Apply and then OK buttons to save

the new session

Creating a TSO Console

After a TSO Session is created, it is possible to create a TSO Console.

To create a TSO Console:

1. Click + button, select Zowe TSO Console

https://docs.zowe.org/stable/user-guide/intellij-tso-cli#creating-a-tso-session

2. The Select TSO Session dialog will appear. Select the appropriate TSO Session to use during a TSO console run,

click OK button

3. When the TSO Session is selected, the TSO Console will appear. In there you could see the actual information

about the session being used, the welcoming message and the prompt, where it is possible to enter TSO commands.

Also there are 2 buttons to manipulate the behavior of the console:

Reopen Session (1) - will reopen the current TSO Console session with the same parameters

Cancel Command (PA1) (2) - will send the PA1 command to the TSO console in order to issue a cancellation of

the previous command (it is blocked when there is nothing to cancel)

From this point, you are ready to use the TSO Console

Version: v3.3.x LTS

Using Zowe SDKs

Leverage the Zowe Client Software Development Kits (SDKs) to build client applications and scripts that interface with

the mainframe.

The SDKs include programmatic APIs, each of which performs a particular mainframe task. For example, one API package

provides the ability to upload and download z/OS data sets. You can leverage that package to rapidly build a client

application that interacts with data sets.

The following SDKs are available.

Zowe Client Java SDK

Zowe Client Kotlin SDK

Zowe Client Node.js SDK

Zowe Client Python SDK technical preview

SDK documentation

For detailed SDK documentation, see the following:

Zowe Node.js SDK

Zowe Client Python SDK

Software requirements

Java SDK

Requires Java runtime version 11 and later versions.

Node.js SDK

If you install Node SDK packages from the online registry, the required dependencies are installed automatically.

If you download Node SDK packages from Zowe.org, the folder contains dependencies that you must install manually.

Extract the TGZ files from the folder, copy the files to your project, and issue the following commands to install the

dependencies:

Python SDK

If you install Python SDK packages from the online registry, the required dependencies are installed automatically.

If you download the Python SDK packages from Zowe.org, the downloaded folder contains dependencies that you must

install manually. Extract the WHL files from the folder, copy the files to your project, and issue the following command

for each dependency:

Getting started

https://docs.zowe.org/stable/typedoc/index.html
https://zowe-client-python-sdk.readthedocs.io/en/latest/

To get started, import the SDK packages to your project. You can pull the packages from an online registry, or download

the packages from Zowe.org to install locally.

Install Java SDK from an online registry

To install this library in your project, use a build tool such as Maven, Gradle or Ant. Use the following link to get the

necessary artifact:

https://mvnrepository.com/artifact/org.zowe.client.java.sdk/zowe-client-java-sdk

For a Maven project, add the SDK as a dependency by updating your pom.xml :

For a Gradle project, add the SDK as a dependency by updating your build.gradle :

The version 2.2.0 can change. Look at the artifact link to select the latest version.

Install Node.js SDK from an online registry

Pull the packages from an online registry such as npm.

1. In the command-line window, navigate to your project directory. Issue the following command to install a package

from the registry:

To import a Node.js package: npm install <PackageName>

<packageName> The name of the SDK package that you want to install, such as zos-files-for-zowe-sdk .

The packages are installed. Node packages are defined in package.json in your project.

2. (Optional) You might want to automatically update the SDK version when updates become available, or you might

want to prevent automatic updates.

To define the versioning scheme for Node packages, use semantic versioning.

Install Python SDK from an online registry

Pull the packages from an online registry such as PyPi.

1. In the command-line window, navigate to your project directory. Issue the following command to install a package

from the registry:

To import a Python package, use the following syntax: pip install <PackageName>

<packageName> The name of the SDK package that you want to install, such as zos-files-for-zowe-sdk .

Python packages are installed by default to $PYTHONPATH/Lib/site-packages (Linux) or to the Python folder in

your local /AppData folder (Windows).

2. (Optional) You might want to automatically update the SDK version when updates become available, or you might

want to prevent automatic updates.

To define versioning for Python packages, specify versions or version ranges in a requirements.txt file checked-

in to your project. For more information, see pip install in the pip documentation.

https://mvnrepository.com/artifact/org.zowe.client.java.sdk/zowe-client-java-sdk
https://docs.npmjs.com/about-semantic-versioning
https://pip.pypa.io/en/stable/cli/pip_install/

Install Node.js and Python SDKs from a local package

Download and install the packages.

1. Navigate to Zowe.org Downloads. Select your desired programming language in the Zowe Client SDKs section.

The SDK is downloaded to your computer.

2. Unzip the SDK folder, which contains the packages for each set of functionality (such as z/OS Jobs). Copy each file

that you want to install and paste them into your project directory.

3. Install required dependencies, which are included in the bundle. See Software requirements above for more

information.

4. In a command-line window, navigate to your project directory. Issue one of the following commands:

To install a Node.js package, use the following syntax: npm install <packageName>.tgz

To install a Python package, use the following syntax: pip install <packageName>.whl

<packageName> The name of the package that you want to install, such as zos-files-for-zowe-sdk .

Repeat the command for each package that you need. Packages are now installed.

Using

After you install the SDK, you can make API calls to the mainframe from within your project.

Using - Java

For Java SDK usage and syntax examples, refer to the following package READMEs:

Team Config - Read only team configuration operations.

z/OS Console - Perform z/OS console operations.

z/OS Files-dsn - Work with data sets on z/OS.

z/OS Files-uss - Work with UNIX system services (USS) files on z/OS.

z/OS Jobs - Work with batch jobs on z/OS.

z/OS Log - Work with logs on z/OS.

z/OS Management Facility - Return data about z/OSMF, such as connection status or a list of available systems.

z/OS TSO - Interact with TSO/E address spaces on z/OS.

z/OS USS - ssh unix command request operation.

SDK Javadoc:

https://javadoc.io/doc/org.zowe.client.java.sdk/zowe-client-java-sdk/latest/index.html

See the following GitHub organization location Zowe-Java-SDK for demo apps and code examples for most API calls:

https://github.com/Zowe-Java-SDK

https://www.zowe.org/download.html
https://github.com/zowe/zowe-client-java-sdk/blob/main/src/main/java/zowe/client/sdk/teamconfig/README.md
https://github.com/zowe/zowe-client-java-sdk/blob/main/src/main/java/zowe/client/sdk/zosconsole/README.md
https://github.com/zowe/zowe-client-java-sdk/blob/main/src/main/java/zowe/client/sdk/zosfiles/dsn/README.md
https://github.com/zowe/zowe-client-java-sdk/blob/main/src/main/java/zowe/client/sdk/zosfiles/uss/README.md
https://github.com/zowe/zowe-client-java-sdk/blob/main/src/main/java/zowe/client/sdk/zosjobs/README.md
https://github.com/zowe/zowe-client-java-sdk/blob/main/src/main/java/zowe/client/sdk/zoslogs/README.md
https://github.com/zowe/zowe-client-java-sdk/blob/main/src/main/java/zowe/client/sdk/zosmfinfo/README.md
https://github.com/zowe/zowe-client-java-sdk/blob/main/src/main/java/zowe/client/sdk/zostso/README.md
https://github.com/zowe/zowe-client-java-sdk/blob/main/src/main/java/zowe/client/sdk/zosuss/README.md
https://javadoc.io/doc/org.zowe.client.java.sdk/zowe-client-java-sdk/latest/index.html
https://github.com/Zowe-Java-SDK

Using - Node.js

For Node SDK usage and syntax examples, refer to the following package READMEs:

Core libraries - Use shared libraries, such as rest to access z/OSMF REST APIs, auth for connecting to token-based

authentication services, and more.

z/OS Console - Perform z/OS console operations.

z/OS Files - Work with data sets on z/OS.

z/OS Jobs - Work with batch jobs on z/OS.

z/OS Management Facility - Return data about z/OSMF, such as connection status or a list of available systems.

z/OS Provisioning - Provision middleware and resources such as IBM CICS, IBM Db2, IBM MQ, and more.

z/OS TSO - Interact with TSO/E address spaces on z/OS.

z/OS USS - Work with UNIX system services (USS) files on z/OS.

z/OS Workflows - Create and manage z/OSMF workflows on z/OS.

Using Python

For information about the Python SDK, including usage and syntax examples, see the Python SDK ReadTheDocs.

Using Kotlin

For information about Zowe Client Kotlin SDK, including a setup guide and source code documentation, see the Zowe

Client Kotlin SDK docs.

Using Java

For information about how to use Zowe Client Java SDK, see this README.md section.

https://www.npmjs.com/package/@zowe/core-for-zowe-sdk
https://www.npmjs.com/package/@zowe/zos-console-for-zowe-sdk
https://www.npmjs.com/package/@zowe/zos-files-for-zowe-sdk
https://www.npmjs.com/package/@zowe/zos-jobs-for-zowe-sdk
https://www.npmjs.com/package/@zowe/zosmf-for-zowe-sdk
https://www.npmjs.com/package/@zowe/provisioning-for-zowe-sdk
https://www.npmjs.com/package/@zowe/zos-tso-for-zowe-sdk
https://www.npmjs.com/package/@zowe/zos-uss-for-zowe-sdk
https://www.npmjs.com/package/@zowe/zos-workflows-for-zowe-sdk
https://zowe-client-python-sdk.readthedocs.io/en/latest/
https://zowe.github.io/zowe-client-kotlin-sdk/
https://zowe.github.io/zowe-client-kotlin-sdk/
https://github.com/zowe/zowe-client-java-sdk/?tab=readme-ov-file#examples

Version: v3.3.x LTS

Using Zowe Chat

You can interact with Zowe Chat by mouse navigation or issuing commands.

Mouse navigation

Zowe Chat supports users to click buttons, dropdown menu, and other clickable components in chat to query

information, drill down content, etc.

Interacting through commands

You can also mention "@" the bot user and issue commands to interact with Zowe Chat. Zowe Chat supports Zowe Chat

commands and Zowe CLI commands.

Zowe Chat commands

You can issue Zowe Chat commands in the following format:

For example,

For detailed Zowe Chat commands, see Zowe Chat command reference.

Zowe CLI commands

You can also issue Zowe CLI commands to perform operations, such as help and z/OS resource management including

z/OS job, data set, USS file, error code, and console command. Theorytically, most of Zowe CLI commands are supported

as long as it is excutable with single-submit.

WARNING

Zowe CLI must be installed on your Zowe Chat server first before you can issue Zowe CLI commands.

Zowe Chat currently does not support the Zowe CLI command-line interactive or "prompt" feature that asks you

to provide required option values.

For detailed CLI commands, see Zowe CLI command reference.

https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/zowe-chat-command-reference
https://docs.zowe.org/stable/user-guide/cli-using-using-prompt-feature
https://docs.zowe.org/stable/web_help/index.html

Version: v3.3.x LTS

Providing feedback and contributing

To help make Zowe client-side components better, you are welcome to contribute in different ways.

Zowe CLI

Chatting with the Zowe CLI community

Chat with the community on Slack.

Filing an issue for Zowe CLI

Go to the Zowe CLI issue list to file an issue. Include all relevant information.

Zowe Explorer

Chatting with the Zowe Explorer community

Chat with the community on Slack by indicating whether the message about Zowe Explorer, Zowe Explorer for IBM CICS

extension, or the Zowe Explorer FTP Extension.

Filing an issue for Zowe Explorer and Zowe Explorer extensions

Before filing an issue, check if the error stems from either Zowe Explorer, the Zowe Explorer for IBM CICS extension or

the Zowe Explorer FTP Extension.

To file an issue:

1. To check the error source, expand the error message that displays in VS Code and review the Source description:

Errors arising from Zowe Explorer identify the Source as Zowe Explorer (Extension).

Errors arising from the Zowe Explorer CICS extension identify the Source as Zowe Explorer for IBM CICS

(Extension).

Errors arising from the Zowe Explorer FTP extension identify the Source as Zowe Explorer Extension for FTP

(Extension).

https://openmainframeproject.slack.com/archives/CC8AALGN6
https://github.com/zowe/zowe-cli/issues
https://openmainframeproject.slack.com/archives/CUVE37Z5F

2. Go to the extension repository to file an issue. Include all relevant information.

Zowe Explorer issue list

Zowe Explorer for IBM CICS issue list

Zowe Explorer FTP Extension issue list

Add the label zFTP to indicate the extension.

Zowe Explorer plug-in for IntelliJ IDEA

Chatting with the Zowe Explorer plug-in for IntelliJ IDEA community

Chat with the community in Slack.

Filing an issue for Zowe Explorer plug-in for IntelliJ IDEA

Go to the Zowe Explorer plug-in for IntelliJ IDEA issue list to file an issue. Include all relevant information.

Zowe Client SDKs

Chatting with the Zowe Client SDKs community

Chat with the community on Slack by indicating whether the message is about Zowe Client Node.js SDK, Zowe Client

Python SDK, Zowe Client Kotlin SDK, or Zowe Client Java SDK.

Filing an issue for Zowe Client Java SDK

Go to the Zowe Client Java SDK issue list to file an issue. Include all relevant information.

Filing an issue for Zowe Client Kotlin SDK

Go to the Zowe Client Kotlin SDK issue list to file an issue. Include all relevant information.

Filing an issue for Zowe Client Node.js SDK

Go to the Zowe Client Node.js SDK issue list to file an issue. Include all relevant information.

Filing an issue for Zowe Client Python SDK technical preview

Go to the Zowe Client Python SDK issue list to file an issue. Include all relevant information.

Zowe Chat technical preview

Chatting with the Zowe Chat community

Chat with the community on Slack.

Filing an issue for Zowe Chat

https://github.com/zowe/zowe-explorer-vscode/issues
https://github.com/zowe/cics-for-zowe-client/issues
https://github.com/zowe/zowe-explorer-vscode/issues
https://openmainframeproject.slack.com/archives/C020BGPSU0M
https://github.com/zowe/zowe-explorer-intellij/issues
https://openmainframeproject.slack.com/archives/C010AUS5MK5
https://github.com/zowe/zowe-client-java-sdk/issues
https://github.com/zowe/zowe-client-kotlin-sdk/issues
https://github.com/zowe/zowe-cli/issues
https://github.com/zowe/zowe-client-python-sdk/issues
https://openmainframeproject.slack.com/archives/C03NNABMN0J

Go to the Zowe Chat issue list to file an issue. Include all relevant information.

https://github.com/zowe/zowe-chat/issues

Version: v3.3.x LTS

Extending Zowe

Zowe is designed as an extensible tools platform. One of the Zowe architecture goals is to provide consistent

interoperability between all Zowe components including extensions. The Zowe Conformance Program defines the criteria

to help accomplish the aforementioned goal. By satisfying the Zowe Conformance Program criteria, extension providers

are assured that their software remains functional throughout the Zowe release cycle. For more information, see the

Zowe Conformance Program.

Zowe can be extended in the following ways:

Extending the server side

Extending Zowe API Mediation Layer

Developing for Zowe Application Framework

Extending the client side

Extend Zowe CLI

Extend Zowe Explorer

Add a plug-in to the Zowe Desktop

To assist with extension development, see the following Sample extensions:

Sample Zowe API and API Catalog onboarded service

Sample Zowe Desktop extension

Extending the server side

Extending Zowe API Mediation Layer

The API Mediation Layer extension primarily focuses on extending via onboarding services running as standalone

services. These services are subsequently available in the API Catalog and can be accessed through the API Gateway. For

more information about onboarding a service to the API Mediation Layer, see the Onboarding Overview. The API

Mediation Layer squad also provides libraries to simplify the integration for multiple programming languages and

different frameworks.

Developing for Zowe Application Framework

You can create application plug-ins to extend the capabilities of the Zowe™ Application Framework. An application plug-

in is an installable set of files that present resources in a web-based user interface, as a set of RESTful services, or in a

web-based user interface and as a set of RESTful services.

For more information about developing for Zowe Application Framework, see Zowe Application Framework overview.

Extending the client side

https://docs.zowe.org/stable/extend/zowe-conformance-program
https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://docs.zowe.org/stable/extend/extend-desktop/mvd-extendingzlux

Extend Zowe CLI

Zowe CLI extenders can build plug-ins that provide new commands. Zowe CLI is built using Node.js and is typically run

on a machine other than a mainframe, such as a PC, where the CLI can be driven through a terminal or command

prompt, or on an automation machine such as a DevOps pipeline orchestrator.

For more information about extending the Zowe CLI, see Developing a new plug-in. This article includes a sample plug-in

that is provided with the tutorial; see Installing the sample plug-in.

Extend Zowe Explorer

Zowe Explorer provides extension APIs that assist third party extenders to create extensions that access Zowe Explorer

resource entities to enrich the user experience. There are many ways Zowe Explorer can be extended to support many

different use cases.

For the kinds of extensions that are supported and how to get started with extending Zowe Explorer, see Extensions for

Zowe Explorer.

Add a plug-in to the Zowe Desktop

The Zowe Desktop allows a user to interact with z/OS applications through a web browser. The Desktop is served by the

Zowe Application Framework Server on z/OS, also known as Z Lightweight User Experience (ZLUX). The Zowe desktop

comes with a set of default applications. You can extend it to add new applications. For more information, see

Developing for Zowe Application Framework.

The Zowe Desktop is an angular application that allows native plug-ins to be built that provide for a high level of

interoperability with other desktop components. The React JavaScript toolkit is also supported. Additionally, you can

include an existing web application in the Zowe Desktop using an iframe.

Notes: For more information, see the following samples:

Sample iframe App.

Sample Angular App.

Sample React App.

Sample extensions

To help Zowe extenders better understand how extensions are developed and deployed, we provide a set of sample.

These sample extensions contain the necessary boilerplate project setup, application code, and installation scripts to

jumpstart the extension development and deployment to Zowe.

Note: For more information on the architecture of Zowe, see Zowe Architecture.

Sample Zowe API and API Catalog onboarded service

The service Discoverable Client within API Mediation Layer repository contains a sample Zowe onboarded service with a

Spring Boot server providing sample Helo world APIs. For more information, see discoverable-client.

Sample Zowe Desktop extension

https://docs.zowe.org/stable/extend/extend-cli/cli-developing-a-plugin
https://docs.zowe.org/stable/extend/extend-cli/cli-installing-sample-plugin
https://github.com/zowe/zowe-explorer-vscode/wiki/Extending-Zowe-Explorer
https://github.com/zowe/zowe-explorer-vscode/wiki/Extending-Zowe-Explorer
https://docs.zowe.org/stable/extend/extend-desktop/mvd-extendingzlux
https://docs.zowe.org/stable/extend/extend-desktop/mvd-extendingzlux#sample-iframe-app
https://docs.zowe.org/stable/extend/extend-desktop/mvd-extendingzlux#sample-angular-app
https://docs.zowe.org/stable/extend/extend-desktop/mvd-extendingzlux#sample-react-app
https://docs.zowe.org/stable/getting-started/zowe-architecture
https://github.com/zowe/api-layer/tree/v3.x.x/discoverable-client
https://github.com/zowe/api-layer/blob/v3.x.x/discoverable-client/README.md

The repository https://github.com/zowe/sample-trial-app contains a sample Zowe extension with a node server providing

a web page that gives a user interface to the APIs included with the API sample above.

https://github.com/zowe/sample-trial-app

Version: v3.3.x LTS

Zowe Conformance Program

Introduction

Administered by the Open Mainframe Project, the Zowe™ Conformance Program aims to give users the confidence that

when they use a product, app, or distribution that leverages Zowe, they can expect a high level of common functionality,

interoperability, and user experience.

Conformance provides Independent Software Vendors (ISVs), System Integrators (SIs), and end users greater confidence

that their software will behave as expected. Just like Zowe, the Zowe Conformance Program will continue to evolve and

is being developed by committers and contributors in the Zowe community.

As vendors, you are invited to submit conformance testing results for review and approval by the Open Mainframe

Project. If your company provides software based on Zowe, you are encouraged to get certified today.

FIND OUT MORE

The Zowe Conformance Program Explained blog on Medium.com describes the conformance program in more

detail.

How to participate

To participate in the Zowe Conformance Program, follow the process on the Zowe Conformance Program website. You

can also find a list of products that have earned Zowe Conformant status.

To learn the criteria of achieving Zowe conformance for an offering, see Zowe Conformance Criteria.

How to suggest updates to the Zowe conformance program

The Zowe conformance criteria is available as a table in a Markdown file in the Open Mainframe Project's GitHub repo. If

you find a mistake with the Zowe conformance documents, or you are a Zowe squad lead and want to make an

amendment to the criteria, you can update that Markdown file. The same information is also held in another document

Zowe Conformance Test Evaluation Guide that has history going back to Zowe 2019 conformance and allows easy

change history comparison.

To submit a proposal to update the conformance criteria, fork the OMP's foundation repository at

https://github.com/openmainframeproject/foundation and make a pull request. Flag the Pull Request to the attention of

GitHub user ID @mertic , and also reach out to the Zowe onboarding squad in the #zowe-onboarding Slack channel. If

you are not already signed up to Zowe Slack community, you can sign up at https://slack.openmainframeproject.org first.

https://medium.com/zowe/zowe-conformance-program-7f1574ade8ea
https://openmainframeproject.org/our-projects/zowe-conformance-program/
https://github.com/openmainframeproject/foundation/blob/main/zowe_conformance/test_evaluation_guide_table.md
https://github.com/openmainframeproject/foundation/blob/master/zowe_conformance/test_evaluation_guide_table.md
https://github.com/openmainframeproject/foundation/blob/main/zowe_conformance/test_evaluation_guide_table.md
https://github.com/openmainframeproject/foundation
https://openmainframeproject.slack.com/archives/CC60ALD61
https://slack.openmainframeproject.org/

Version: v3.3.x LTS

Packaging z/OS extensions

You can extend Zowe in multiple ways. You may extend Zowe with microservices, which may start a new service within

Zowe. You can also create Zowe App Framework plug-ins to provide users with a UI.

Before you start, review the following terms:

component

Component refers to the most generic way to describe a program which can work within Zowe. It can be a

microservice, a Zowe App Framework plug-in, or even just a shared program to be used by other Zowe components.

This is also the generic word when referring to both Zowe core components and extensions. In most of the cases

described in this topic, this terminology does not include programs running on the client side, like Zowe CLI plug-in

or Zowe Explorer (VSCode extension).

extension

Extension is similar to component but excludes Zowe core components. It is recommended that you install all Zowe

extensions into a shared extension directory.

Zowe server component package format

You can package Zowe components (extensions) into various formats. You can package them as a stand-alone PAX, ZIP,

or TAR file. You can also bundle and ship your Zowe extension(s) within another product.

A typical component package consists of the following files and directories:

manifest.yaml

Refers to the Zowe component manifest file. You can find detailed definition of manifest in Server Component

Manifest File Reference.

For examples of manifests thoughout Zowe GitHub repositories, see the following links:

API Catalog manifest.yaml

Sample Node API and API Catalog extension manifest.yaml

Sample Zowe App Framework extension manifest.yaml

schema.json

An example filename of the json schema file specified by the manifest property schemas.configs as detailed in

Server Component Manifest File Reference. The file details the parameters that are valid for the component's

configuration within Zowe server configuration files. See documentation on server component schema files for more

information.

apiml-static-registration.yaml.template

Refers to a supporting file that instructs the Zowe launch script how to register this extension service to the API

Mediation Layer Discovery service. In this case, this file is referred in the manifest.yaml

https://docs.zowe.org/stable/appendix/server-component-manifest
https://docs.zowe.org/stable/appendix/server-component-manifest
https://github.com/zowe/api-layer/blob/v3.x.x/api-catalog-package/src/main/resources/manifest.yaml
https://github.com/zowe/sample-node-api/blob/master/manifest.yaml
https://github.com/zowe/sample-trial-app/blob/master/manifest.yaml
https://json-schema.org/
https://docs.zowe.org/stable/appendix/server-component-manifest
https://docs.zowe.org/stable/extend/server-schemas

apimlServices.static[0].file field. This file is optional depending on the function of the component. You can

change and customize the file name in the manifest file.

bin/(configure|start|validate).sh

This file contains the Zowe component lifecycle scripts. You may not need these files depending on the function of

the component. You can find detailed definition of lifecycle scripts in Zowe component runtime lifecycle.

It is also suggested that you put the following files into the package:

README.md

This file is a brief introduction to your extension in Markdown format, including how it should be installed, configured,

verified, and so on.

LICENSE

This is the full license text file.

If you decide to bundle and ship Zowe extensions within another product, you can put the whole directory structure

presented previously into your product package as subdirectories. Take the following structure as an example.

Packaging default YAML properties

If you package a YAML file that follows the Zowe YAML file schema, you can have users include them in their

configuration list to reduce setup actions. The Zowe STC job "ZWESLSTC" contains instructions on how to add such files

to the user's overall configuration list.

https://docs.zowe.org/stable/extend/lifecycling-with-zwesvstc#zowe-component-runtime-lifecycle
https://github.com/zowe/launcher/blob/v3.x/master/samplib/ZWESLSTC

Version: v3.3.x LTS

Server component schemas

Each Component in Zowe must contain a json schema describing the configuration parameters that are valid for its

component section in Zowe's server configuration. If a component does not have anything that can be configured, this

file can just be boilerplate specifying that it fully inherits generic Component parameters and nothing more.

The server infrastructure will utilize each components' schema files to validate a Zowe instance configuration every

startup, so this requirement is enforced by code.

Requirements

Server component json schema files must follow the json schema spec 2019-09.

Each component must state where its base schema file is located by the manifest parameter "schemas.configs"

The schema file must use and/or extend the Zowe Component base schema by use of the "allOf" attribute.

The schema must have an $id property which is a URI that has a domain related to the entity that developed the

Component.

The file should be tagged on z/OS but elsewhere must at least be encoded as ASCII-subset of UTF-8

Additional information

The schema file can reference other schema files within the component if compartmentalization of definitions are

desired

Example

Below is an example manifest and schema for a Component named "component1". The manifest file specifies the

location of the schema file, and the schema file specifies the configuration parameters that are valid for this Component.

Example manifest

Example schema

Below is an example of the "schema.json" file referenced above. In it, we have 1 special property, "my-custom-prop",

which is just a boolean that can be true or false.

Validation

Zowe server infrastructure will validate that a user's server configuration is correct by checking every schema file found

in every component. If invalid, the servers will not start until the configuration is corrected. Developers may wish to

confirm their schema and there are several tools available such as Microsoft Visual Studio Code for validating schema

syntax is correct and jsonschemavalidator.net for testing a configuration against a schema.

https://json-schema.org/
https://json-schema.org/draft/2019-09/schema

Version: v3.3.x LTS

Component package registries

Component package registries are on-premisis or remote storage which contains Zowe components (usually, extensions)

and allows Zowe administrators to download an extension and its dependent extensions from that storage. A component

package registry makes Zowe component and extension management easier by reducing the need for manually

uploading and installing an extension and its dependencies into Zowe.

Zowe server content can manage components and extensions via the zwe components commands. These commands

have optional parameters for performing operations using a registry instead of only using content local to the Zowe host.

Note: Using zwe with component package registries requires that zowe.useConfigmgr=true is set in your Zowe server

configuration. See using the configuration manager for more info

Registries can be any technology that can be used to satisfy the Zowe component registry handler API. For example,

npm, conda, artifactory, rpm and more could potentially be used as registries. Currently Zowe server installs ship with a

registry "Handler" for using an NPM server as a Zowe component package registry. Support for alternatives can be

added, please refer to the making your own handler section.

Registry examples

Consider the following examples where use of a registry is compared to managing extensions without a registry.

Installing an extension

A Zowe server extension can be installed with a local archive such as in zwe components install -o my-zowe-

extension-1.0.0.pax --config zowe.yaml

This has two shortcomings:

In order to run that command, the extension must first have been uploaded to the Zowe host.

Does that extension work after installation, or does it have a dependency that must also be installed? It's not known

without reading documentation.

Both issues can be resolved by using a registry, such as in zwe components install -o my-zowe-extension --config

zowe.yaml

In this example, because zwe was not given the name of a file, it takes the parameter "my-zowe-extension" and

searches for an extension package with that exact name within the component package registry configured for Zowe. If

the package is found in the registry, that extension and all of its dependencies will be downloaded and then installed.

Note: This means you must trust the registry that you use. On-premisis registries are a great way to curate

a list of trusted extensions and make it easy to install them. On the other hand, it would not be

recommended to use a registry found on a public network, because you do not want to install extensions

that you have not vetted.

The above example omits the registry configuration information, so the values default to what is containted within the

zowe.yaml If they were explicitly provided instead, the command may look like zwe components install -o my-zowe-

extension --config zowe.yaml --handler npm --registry https://my-on-prem-registry.company.com/npm

https://docs.zowe.org/stable/user-guide/install-configure-zos-extensions
https://docs.zowe.org/stable/user-guide/configmgr-using

Upgrading an extension

If a new version of an extension comes out, you can upgrade your extension from a local archive with zwe components

install -o my-zowe-extension-2.0.0.pax --config zowe.yaml

This will replace the old extension with the new one. This has three shortcomings:

You must somehow be alerted that there is a new version available.

In order to run that command, the extension must first have been uploaded to the Zowe host.

Does that extension work after installation, or does it have a dependency that must also be installed? It's not known

without reading documentation.

If you use a registry, you can be alerted that a new version is available by running the command zwe components

upgrade -o all --config zowe.yaml --dry-run

This command reports on all of the components that have upgrades available. The --dry-run parameter skips doing

the actual upgrade, so you could upgrade every available extension at once by running this without --dry-run too.

Once learning that an upgrade is available, you can perform it with zwe components upgrade -o my-zowe-extension --

config zowe.yaml

This command is similar to install , it will upgrade your extension and also any dependencies.

Uninstalling extensions

When running zwe components uninstall -o my-zowe-extension , the extension will be removed regardless of if you

are using a registry or not. But if you are using a registry, the registry handler will also ensure any information it kept

about the extension is cleaned up at that time.

Searching for extensions

zwe components search requires a registry to function, because it searches that registry to try to find an extension that

includes whatever you searched for. You can search for any pattern, which may include fuzzy matches such as

zwe components search -o database* --config zowe.yaml This would return a list of extensions that can be installed

that start with the word "database". Note that each registry and handler can have different search capabilities. Not all

will support partial matches.

Configuring zwe to use a registry

Each zwe components command can take the parameter --registry to specify the location (such as HTTPS URL) of a

registry, and the parameter --handler to specify which handler to use with that registry. --handler determines which

registry type you are using, such as npm.

When these parameters are not specified, then the default values are found within the zowe YAML configuration. Within

a zowe YAML configuration, the section zowe.extensionRegistry controls how zwe uses a registry. The schema for this

section can be found in the zowe YAML schema

An example of configuring zwe for use with Zowe's own npm registry and npm handler would look like:

https://github.com/zowe/zowe-install-packaging/blob/v2.x/master/schemas/zowe-yaml-schema.json
https://github.com/zowe/zowe-install-packaging/blob/v2.x/master/schemas/zowe-yaml-schema.json

The above example states that the default registry type will be "npm", and that the npm type is handled by the handler

located at the path ${{ zowe.runtimeDirectory }}/bin/commands/components/npm.js . This handler will by default use

the registry located at https://zowe.jfrog.io/zowe/api/npm/npm-local-release/ .

Using multiple registries

It is anticipated that extensions from different companies will be located on different registries, so it is possible to use

multiple registries with Zowe. Please note that registry types or handlers may not be able to resolve dependencies

across different registries, so in this case extensions should only declare a dependency on other extensions that can be

found within the same registry. To switch between registries for accessing extensions in different registries, you can just

use the --registry option on a zwe components command. For example, instead of searching for "database" extensions

within the default registry as in

zwe components search -o database* --config zowe.yaml

You may instead specify a registry,

zwe components search -o database* --config zowe.yaml --registry first-registry.foo

And if the extension you want isn't found there, you can try another registry,

zwe components search -o database* --config zowe.yaml --registry second-registry.foo

Then you'd be able to install the extension from that specific registry such as,

zwe components install -o database-product --config zowe.yaml --registry second-registry.foo

Note that Zowe does not currently track which registry an extension originated from, so when performing zwe component

upgrade , you will need to specify the registry if the extension did not come from the default registry.

Setting up a registry

Although you can use a registry set up by an organization you trust, you can also set up your own registry. This can be

very useful for curating a list of Zowe extensions that are approved for use in your organization. Many package

managers, whether language-specific, z/OS native or otherwise, could be used to manage Zowe extension packages via

whichever registry or repository technology they use. Therefore Zowe cannot give guidance on every possible registry,

but below are some suggestions that may be useful to you.

npm

npm is the nodejs package manager. Typically npm registries store javascript code intended for use in a web browser or

nodejs, but it's also possible to just store Zowe extensions instead. npm registries are webservers that have an API which

associates uploaded packages to users which own them, and such user accounts may also determine what you are

permitted to download. What webserver you use, and how user credentials are managed isn't standardized by npm, any

webserver could be an npm server as long as it fulfills the npm API.

As an example, https://verdaccio.org/ is such a webserver that you can set up to create your own on-premisis npm

package registry. You can find out more about verdaccio and how to set up a verdaccio-based npm registry on their

website

https://verdaccio.org/
https://verdaccio.org/docs/what-is-verdaccio/
https://verdaccio.org/docs/what-is-verdaccio/

Another example is jfrog artifactory. Artifactory can store packages to serve through an npm registry, a docker registry,

and much more. You can find out more about artifactory and how to set up an artifactory-based npm registry on their

website

Making your own handler

Handlers connect zwe with a component package registry. For each zwe components command, zwe will call one

hanndler with a set of parameters and expect certain output from the handler in return before completing the zwe

command processing.

Handlers are at minimum an EECMAScript2020-compatible JavaScript module file that implements the Handler API. This

file is not nodejs, but rather is run within a quickjs environment. This file can in turn call other commands, but must

return output for zwe to continue with.

This handler JavaScript file can be located at any unix path on the host where Zowe is, and the location is specified

within the zowe YAML

When a zwe components command needs to use a handler, the handler is given input in the form of environment

variables. If output is expected, the handler API requires each output attribute to be a key=value pair on a new line.

The following table details the input and output expected for each handler action.

Attribute Type

Input

or

Output

Actions Description

ZWE_CLI_REGISTRY_COMMAND string Input All

Values of 'install', 'upgrade', 'uninstall',

'search' inform handler which action to

take and what additional input & output

to expect

ZWE_CLI_PARAMETER_REGISTRY string Input

Install,

Upgrade,

Uninstall,

Search

Used to inform handler which registry to

use. Can be any format the handler

understands.

ZWE_CLI_REGISTRY_DRY_RUN boolean Input

Install,

Upgrade,

Uninstall

If true, handler should show as much as

possible about what would happen

during this command, without

committing changes that would alter

which components are installed.

ZWE_CLI_PARAMETER_COMPONENT_NAME string Input Install,

Upgrade,

Uninstall,

Search

Value varies by command. For 'install'

and 'uninstall', this value is the exact

name of a component. For upgrade, it

may also be 'all' to perform an upgrade

for all components possible. For 'search',

it may be any string to perform

https://www.jfrog.com/confluence/display/JFROG/npm+Registry
https://www.jfrog.com/confluence/display/JFROG/npm+Registry
https://bellard.org/quickjs/quickjs.html

Attribute Type

Input

or

Output

Actions Description

searching for exact or partial matching

component names.

ZWE_CLI_PARAMETER_COMPONENT_FILE string Output

Install,

Upgrade,

Uninstall

A comma-separated list of components

that have been added or removed.

During 'install' or 'upgrade', the list must

be full unix paths to component folders

or archives that were added. For

'uninstall', the list must instead be just

the names of the components that were

removed. If the handler failed during its

operation or there were no changes, the

output should instead just be the string

'null'.

An example of running zwe components install -o exact-component-name --handler npm --registry

"https://zowe.jfrog.io/zowe/api/npm/npm-local-release/" would have the handler being given the following

environment variables:

And after the command completes, the handler can print anything in STDOUT and STDERR as long as STDOUT includes a

line specifying the location of the components installed, via ZWE_CLI_PARAMETER_COMPONENT_FILE . The output could look

like:

Where archive.pax is an archive of exact-component-name , while 'dependency1' is a folder containing the un-archived

contents of dependency1 .

Handler code

The Handler API interface is located within Zowe's code here

And Zowe delivers a handler written for use with npm, located here

Component Packaging Requirements

Zowe extensions can be written in a variety of languages and may have network-level dependencies. These attributes of

extensions may seem like an odd fit for some existing package managers such as those that are language specific.

However, all Zowe requires out of a package manager is that the manager can deliver an archive of a extension or folder

containing an extension. The Zowe community has found that delivering a Zowe extension as an archive can avoid the

complexities of some package managers and make it simple to deliver an extension via one or more package manager

with minimal work. Below are some patterns that can work for certain package managers.

npm

The npm handler that is delivered by Zowe expects that each npm package either contains an archive of a Zowe

extension or that the entire package folder is itself the Zowe extension. You should become familiar with the attributes of

https://github.com/zowe/zowe-install-packaging/blob/2751a194048f0050fc7ebcaeaac8c96a36106991/bin/commands/components/handlerutils.ts
https://github.com/zowe/zowe-install-packaging/blob/2751a194048f0050fc7ebcaeaac8c96a36106991/bin/commands/components/npm.ts
https://docs.npmjs.com/files/package.json/

a package.json file as some are referenced below.

The Zowe component registry handler determines which is true by reading the package.json of the npm package and

looking for the main attribute. If main exists, its value must be a path to the archive of the extension, relative to the

package root folder. For example, the angular-sample extension npm package has this folder structure:

The handler determines that angular-sample.pax is the archive of the extension when it sees the main property within

the package.json below:

If main were not defined, then Zowe would instead expect that this folder was an extension, which for example would

have a manifest.yaml at the root of the folder.

npm requires that each package contain a package.json file, and there are certain fields that are required within it.

Several fields have overlap in meaning with Zowe's extension manifest files, so Zowe delivers a utility to help you

automate the creation of a package.json file using a manifest.yaml file as input. This Zowe npm module will copy the

properties from one file to the other for you

The simplest and most robust way to deliver a Zowe extension via npm is to build your extension, then archive the entire

folder of the extension as a .pax file, and put that into a folder with a single package.json file for npm which has the

main attribute set to the name of your pax archive, and use the dependencies section of the package.json to list if your

extension depends on any other Zowe extensions. Once you have your npm package, you can upload it to the registry of

your choice using standard npm commands, such as:

Additional resources

While this document is the authoritative source on Zowe's component package regpistry technology, older additional

information may be found in the presentation and the recording used during the initial technology prototype.

https://docs.npmjs.com/files/package.json/
https://github.com/zowe/zowe-install-packaging/tree/v2.x/master/bin/utils/manifest-to-npmpackage
https://github.com/zowe/zowe-install-packaging/tree/v2.x/master/bin/utils/manifest-to-npmpackage
https://github.com/zowe/zowe-install-packaging/files/9292283/appstore2.pdf
https://zoom.us/rec/share/y6zsW5U9QWE1s1r4M3nFnSO9Kkv3yeT5boyZFqWH1BxW3Tju_jcAGP7jO1DsLuZq.rhlqHx6DgPxmXBhW?startTime=1660053548000

Version: v3.3.x LTS

Zowe server component runtime lifecycle

Zowe runtime lifecycle

This topic describes the runtime lifecycle of Zowe core components and how an offering that provides a Zowe extension

can set up runtime lifecycle for their component.

The Zowe UNIX System Services (USS) components are run as part of the started task ZWESLSTC . There are two key USS

directories that play different roles when launching Zowe.

The Zowe runtime directory <RUNTIME_DIR> that contains the executable files is an immutable set of directories and

files that are replaced each time a new release is applied. The initial release or an upgrade is installed either with

UNIX shell scripts (see Installing Zowe runtime from a convenience build), or SMP/E where the runtime directory is

laid down initially as FMID AZWE002 and then upgraded through rollup PTF builds (see Installing Zowe SMP/E). The

Zowe runtime directory is not altered during operation of Zowe, so no data is written to it and no customization is

performed on its contents. Important, any customizations to the original Zowe runtime directory are not

recommended. This may include installing extensions to this directory, putting your zowe.yaml or Zowe workspace

into this directory, or changing any of the files in it, etc.

The Zowe workspace directory <WORKSPACE_DIR> contains information that is specific to a launch of Zowe. It contains

temporary configuration settings that helps an instance of the Zowe server to be started, such as ports that are used

or paths to dependent Java and Node.js runtimes. Zowe runtime user should have write permission to this directory.

More than one Zowe workspace directories can be created to allow multiple launches of a Zowe runtime, each one

isolated from each other and starting Zowe depending on how Zowe YAML configuration is configured.

The Zowe logs directory <LOGS_DIR> contains USS file logs when running Zowe. Some components like app-server

and zss will always write USS log files. Some components like APIML Gateway will write log files to this directory if

you enabled debug mode. Zowe runtime user should have write permission to this directory.

To start Zowe, the command zwe start is run from a USS shell. This uses a program ZWELNCH to launch the started task

ZWESLSTC , passing an optional HAINST parameter to define which Zowe HA instance will be started. It is the equivalent

of using the TSO command /S ZWESLSTC,HAINST='<HA_INSTANCE>',JOBNAME='<JOBNAME>' . The ZWELNCH program

understands your Zowe YAML configuration and will start components enabled in the <HA_INSTANCE> by executing zwe

internal start component command. If you execute zwe internal start directly, the USS processes will not run as a

started task and will run under the user ID of whoever ran the zwe internal start command rather than the Zowe user

ID of ZWESVUSR , likely leading to permission errors accessing the contents of the <RUNTIME_DIR> as well as the Zowe

certificate. For these reasons, the zwe start script launches Zowe's USS process beneath the started task ZWESLSTC .

Zowe relies on zowe.yaml configuration file to know your customization for the instance. For more information, see Zowe

YAML Configuration File Reference.

Note:

The scripts of core Zowe components and some extensions use the helper library <RUNTIME_DIR>/bin/libs . You can also

use those functions but please keep away from functions marked as internal or experimental .

https://docs.zowe.org/stable/user-guide/install-zowe-zos-convenience-build
https://docs.zowe.org/stable/user-guide/install-zowe-smpe
https://docs.zowe.org/stable/appendix/zowe-yaml-configuration
https://docs.zowe.org/stable/appendix/zowe-yaml-configuration

Zowe component runtime lifecycle

Each Zowe component will be installed with its own USS directory, which contains its executable files. Within each

component's USS directory, a manifest file is required to describe itself and a bin directory is recommended to contain

scripts that are used for the lifecycle of the component. When Zowe is started, by reading components manifest

commands definition, it identifies the components that are configured to launch and then execute the scripts of those

components in the cycle of validate, configure, and start. All components are validated, then all are configured, and

finally all are started. This technique is used as follows:

Used for the base Zowe components that are included with the core Zowe runtime.

Applies to extensions to allow vendor offerings to be able to have the lifecycle of their 'microservices' within the

Zowe USS shell and be included as address spaces under the ZWESLSTC started task.

Note:

All lifecycle scripts are executed from the root directory of the component. This directory is usually where the component

manifest is located.

Check Server Component Manifest File Reference to learn how to define lifecycle commands in component manifest file.

Validate

Each component can optionally instruct Zowe runtime to validate itself with a USS command defined in manifest

commands.validate .

If present, the validate script performs tasks such as:

Check that the shell has the correct prerequisites.

Validate that ports are available.

Perform other steps to ensure that the component is able to be launched successfully.

During execution of the validate script, if an error is detected, then a component should echo a message that contains

information to assist a user diagnosing the problem.

Configure

Each component can optionally instruct Zowe runtime to configure itself with a USS command defined in manifest

commands.configure .

If the component has manifest defined, some configure actions will be performed automatically based on manifest

definition:

apimlServices.static : Zowe runtime will automatically parse and add your static definition to API Mediation Layer.

appfwPlugins.[].path : Zowe runtime will automatically parse and install/configure the component to Zowe App

Framework.

It's possible to export configuration variables from the configure step to the start step. Each component runs in

separated shell space, which means that the variable of one component does not affect the same variable of another

component. For example, when you run export MY_VAR=val in /bin/configure.sh , then the variable ${MY_VAR} will be

available in your /bin/start.sh script. However, ${MY_VAR} will not be available in other components.

https://docs.zowe.org/stable/appendix/server-component-manifest

Start

Each component can optionally instruct Zowe runtime to start itself with a USS command defined in manifest

commands.start . If this is not defined, for backward compatible purpose, a call to its /bin/start.sh script will be

executed if it exists. If your component is not supposed to be started by itself, for example, the component is a shared

library, you can skip this instruction.

It is up to each component to start itself based on how it has been written. We recommend that any variables that

someone who configure Zowe may need to vary, such as timeout values, port numbers, or similar, are specified as

variables in the instance.env file and then referenced as shell variables in the start.sh script to be passed into the

component runtime.

Version: v3.3.x LTS

Creating and adding Zowe extension containers

Zowe extensions can be used within a Zowe container environment. To do this, you must deliver the extension as a

container image that is compatible with Zowe containers. Zowe server extensions such as services or app framework

plugins must be packaged as components to work in the container environment. You can follow Zowe's container

conformance criteria to understand and achieve compatibility.

Note: Container code may depend on z/OS code, and it is recommended that components state these dependencies in

their manifest. Users should verify these dependencies to ensure a correctly configured Zowe container environment.

You can add extension containers to a Zowe container environment the same way as Zowe's core components by

completing the following steps.

1. Build and publish an extension image to a registry. For details, see Build and publish an extension image to a

registry.

2. Define a deployment or job object. For details, see Define Deployment or Job object.

3. Start the extension from the deployment or job definition. For details, see Start your component.

1. Build and publish an extension image to a registry

An extension must have a container image to run in a Zowe container environment. To create such images, you can use

a Dockerfile and refer to the following examples of building images for Zowe core components.

Examples:

The core components define component Dockerfiles and use GitHub Actions to build images. For example,

explorer-jes is a Zowe App Server Framework plug-in but does not have a built-in web service. It follows Zowe's

container conformance criteria. It defines a Dockerfile at https://github.com/zowe/explorer-

jes/blob/v2.x/master/container/Dockerfile. It also defines a GitHub Actions workflow at

https://github.com/zowe/explorer-jes/blob/v2.x/master/.github/workflows/build_test.yml to build the images.

The following GitHub Actions are used by the core components to build conformant images. They might not be

completely reusable for you, but are provided as an example.

zowe-actions/shared-actions/docker-prepare will prepare required environment variables used by following steps.

zowe-actions/shared-actions/docker-build-local can build the Docker image directory on the GitHub Actions virtual

machine. By default, the Docker image directory is ubuntu-latest . You can use this action to build images for amd64

CPU architecture.

zowe-actions/shared-actions/docker-build-zlinux can build Docker image on a Linux on Z virtual machine. This is

useful if you want to build images for s390x CPU architecture.

zowe-actions/shared-actions/docker-manifest can collect all related images and define them as Docker manifests.

This is useful for users to automatically pull the correct image based on cluster node CPU architecture, and also pull

images based on popular tags such as latest and latest-ubuntu .

After a component image is built, it is recommended that you publish it to a container registry before adding it to the

Zowe container environment. Alternatively, you can use docker save and docker load commands to copy the offline

https://docs.zowe.org/stable/appendix/server-component-manifest
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://github.com/zowe/zowe-install-packaging/blob/v2.x/staging/containers/conformance.md
https://github.com/zowe/explorer-jes/blob/v2.x/master/container/Dockerfile
https://github.com/zowe/explorer-jes/blob/v2.x/master/container/Dockerfile
https://github.com/zowe/explorer-jes/blob/v2.x/master/.github/workflows/build_test.yml
https://github.com/zowe-actions/shared-actions/blob/main/docker-prepare/action.yml
https://github.com/zowe-actions/shared-actions/blob/main/docker-build-local/action.yml
https://github.com/zowe-actions/shared-actions/blob/main/docker-build-zlinux/action.yml
https://github.com/zowe-actions/shared-actions/blob/main/docker-manifest/action.yml

images to your Kubernetes nodes.

2. Define Deployment or Job object

To start your component in Kubernetes, you must define a Deployment if your extension has built-in web services, or a

Job object if your extension is a Zowe Application Framework plug-in without built-in web services.

To define Deployment for your component, you can copy from samples/sample-deployment.yaml and modify all

occurrences of the following variables:

<my-component-name> : this is your component name. For example, sample-node-api .

<my-component-image> : this is your component image described in Build and publish an extension image to a

registry. For example, zowe-docker-release.jfrog.io/ompzowe/sample-node-api:latest-ubuntu .

<my-component-port> : this is the port of your service. For example, 8080 .

Continue to customize the specification to fit in your component requirements:

spec.template.spec.containers[0].resources : defines the memory and CPU resource required to start the

container.

metadata.annotations , spec.template.spec.volumes and spec.template.spec.securityContext and so on.

To define Job for your component, you can also copy from samples/sample-deployment.yaml . Then, modify all entries

mentioned above and make the following changes:

Change kind: Deployment to kind: Job ,

Add restartPolicy: OnFailure under spec.template.spec like this:

3. Start your component

After you define your component Deployment or Job object, you can run kubectl apply -f

/path/to/your/component.yaml to apply it to the Kubernetes cluster that runs Zowe.

If it's a Deployment , you should be able to see that the component pod is started and eventually reached the

Running status.

If it's a Job , you should be able to see that the plug-in pod is started and eventually reached the Completed status.

Now you can follow common Kubernetes practice to manage your component workload.

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/job/

Version: v3.3.x LTS

Zowe Containerization Conformance Criteria

These conformance criteria are applicable for all Zowe components intending to run in a containerized environment. The

containerized environment could be Kubernetes or OpenShift running on Linux or Linux on Z.

Image

In general, the image should follow Best practices for writing Dockerfiles. The below requirements are in addition to the

list.

Base Image

You are free to choose a base image based on your requirements.

Here are our recommendations of base images:

Zowe base images:

ompzowe/base : zowe-docker-release.jfrog.io/ompzowe/base:latest-ubuntu and zowe-docker-

release.jfrog.io/ompzowe/base:latest-ubi .

ompzowe/base-node : zowe-docker-release.jfrog.io/ompzowe/base-node:latest-ubuntu and zowe-docker-

release.jfrog.io/ompzowe/base-node:latest-ubi has node.js LTS (v14) version pre-installed.

ompzowe/base-jdk : zowe-docker-release.jfrog.io/ompzowe/base-jdk:latest-ubuntu and zowe-docker-

release.jfrog.io/ompzowe/base-jdk:latest-ubi has JRE v8 pre-installed.

Red Hat Universal Base Image 8 Minimal

Ubuntu

The image should contain as few software packages as possible for security and should be as small as possible such as

by reducing package count and layers.

Zowe base images,

are based on both Ubuntu and Red Hat Universal Base Image,

provide common dependencies including JDK and/or node.js,

support both amd64 and s390x CPU architecture.

If you use your own base image other than Zowe base images, please check this list and make sure it is compatible with

Zowe runtime:

The default shell /bin/sh must be bash . If it's not, you can fix it by installing and overwriting /bin/sh with the

symbolic link of /bin/bash .

These softwares must exist in the image: date , awk , sed , xargs .

These softwares are optional but good to have: ping , dig , netstat .

Multi-CPU Architecture

Zowe core components must release images based on both amd64 and s390x CPU architecture.

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://developers.redhat.com/articles/ubi-faq?redirect_fragment=resources#ubi_details
https://hub.docker.com/_/ubuntu

Zowe core component images must use multiple manifests to define if the image supports multiple CPU

architectures.

Image Label

These descriptive labels are required in the Dockerfile: name , maintainer , vendor , version , release , summary , and

description .

Example line:

Tag

Zowe core component image tags must be a combination of the following information in this format: <version>-<linux-

distro>[-<cpu-arch>][-sources][.<customize-build>] .

version: must follow semantic versioning or partial semantic versioning with major or major + minor. It may also be

latest or lts . For example, 1 , 1.23 , 1.23.0 , lts , latest , etc.

linux-distro: for example, ubi , ubuntu , etc.

cpu-arch: for example, amd64 , s390x , etc.

customize-build: string sanitized by converting non-letters and non-digits to dashes. For example, pr-1234 ,

users-john-fix123 , etc.

Source Build: must be a string -sources appended to the end of the tag.

If this is a source build, the tag must contain full version number (major+minor+patch) information.

Linux Distro information is recommended.

Must NOT contain customize build information.

For example: 1.23.0-ubi-sources .

For example, these are valid image tags:

latest

latest-ubuntu

latest-ubuntu-sources

latest-ubi

latest-ubi-sources

lts

lts-ubuntu

lts-ubi

1

1-ubuntu

1-ubi

1.23

1.23-ubuntu

1.23-ubi

1.23.0

1.23.0-ubuntu

1.23.0-ubuntu-amd64

https://semver.org/

1.23.0-ubuntu-sources

1.23.0-ubi

1.23.0-ubi-s390x

1.23.0-ubi-sources

1.23.0-ubuntu.pr-1234

1.23.0-ubi.users-john-test1

The same image tag pattern is recommended for Zowe extensions.

Files and Directories

These file(s) and folder(s) are REQUIRED for all Zowe components:

/licenses folder holds all license-related files. It MUST include at least the license information for current

application. It's recommended to include a license notice file for all pedigree dependencies. All licenses files must be

in UTF-8 encoding.

/component/README.md provides information about the application for end-user.

/component/manifest.(yaml|yml|json) provides basic information of the component. The format of this file is

defined at Zowe component manifest. Components must use the same manifest file as when it's running on z/OS.

These file(s) and folder(s) are recommended:

/component/bin/<lifecycle-scripts> must remain the same as what it is when running on z/OS.

User zowe

In the Dockerfile, a zowe user and group must be created. The zowe user UID and group GID must be defined as ARG

and with default values of UID=20000 and GID=20000 . Example commands:

USER zowe must be specified before the first CMD or ENTRYPOINT .

If you use Zowe base images, zowe user and group are already created.

Multi-Stage Build

A multi-stage build is recommended to keep images small and concise. Learn more from Use multi-stage builds.

Runtime

This section is mainly for information. No actions are required for components except where it's specified explicitly.

The below sections are mainly targeting Kubernetes or OpenShift environments. Starting Zowe containers in a Docker

environment with docker-compose is in a planning stage and may change some of the requirements.

General rules

Components MUST:

NOT be started as root user in the container.

https://docs.zowe.org/stable/extend/packaging-zos-extensions/#zowe-component-manifest
https://docs.docker.com/develop/develop-images/multistage-build/

listen to only ONE port in the container except for API Mediation Layer Gateway.

be cloud-vendor neutral and must NOT rely on features provided by a specific cloud vendor.

NOT rely on host information such as hostIP , hostPort , hostPath , hostNetwork , hostPID and hostIPC .

accept zowe.yaml as a configuration file, the same as when running on z/OS.

Persistent Volume(s)

This persistent volume MUST be created:

zowe-workspace mounted to /home/zowe/instance/workspace .

Files and Directories

In the runtime, the Zowe content is organized in this structure:

/home/zowe/runtime is a shared volume initialized by the zowe-launch-scripts container.

/home/zowe/runtime/components/<component-id> is a symbolic link to the /component directory. <component-id> is

the name entry defined in /component/manifest.(yaml|yml|json) .

/home/zowe/instance/zowe.yaml is a Zowe configuration file and MUST be mounted from a ConfigMap.

/home/zowe/instance/logs is the logs directory of Zowe instance. This folder will be created automatically by zowe-

launch-scripts container.

/home/zowe/instance/workspace is the persistent volume mounted to every Zowe component container.

Components writing to this directory should be aware of the potential conflicts of same-time writing by multiple

instances of the same component.

Components writing to this directory must NOT write container-specific information to this directory as it may

potentially be overwritten by another container.

/home/zowe/keystore is the directory where certificate is mounted. With a typical setup (by using zwe migrate for

kubernetes command), this folder contains keystore.p12 , truststore.p12 , keystore.key , keystore.cer and

ca.cer .

Any confidential environment variables, for example, a Redis password, in zowe.yaml must be extracted and stored

as Secrets. These configurations must be imported back as environment variables.

ConfigMap and Secrets

zowe.yaml must be stored in a ConfigMap and be mounted under /home/zowe/instance directory.

All certificates must be stored in Secrets. Those files will be mounted under the /home/zowe/keystore directory.

Secrets must be defined manually by a system administrator. Zowe Helm Chart and Zowe Operator do NOT define

the content of Secrets.

ompzowe/zowe-launch-scripts Image and initContainers

The zowe-docker-release.jfrog.io/ompzowe/zowe-launch-scripts:latest-ubuntu or zowe-docker-

release.jfrog.io/ompzowe/zowe-launch-scripts:latest-ubi image contains necessary scripts to start Zowe

components in Zowe context.

This image has a /component directory and it will be used to prepare /home/zowe/runtime and

/home/zowe/instance volumes to help Zowe component start.

In Kubernetes and OpenShift environments this step is defined with initContainers specification.

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

Command Override

Component CMD and ENTRYPOINT directives will be overwritten with the Zowe launch script used to start it in Zowe

context.

Components running in Zowe context requires to be started with bash with argument

/home/zowe/runtime/bin/internal/run-zowe.sh -c /home/zowe/instance . Here is example start command:

Environment Variables

These runtime environment variable(s) are REQUIRED to start Zowe components.

ZWE_POD_NAMESPACE : holds the current Kubernetes namespace. This variable can be optional if the service account

automountServiceAccountToken attribute is true . The value of this variable can be assigned to

metadata.namespace (which default value is zowe) in Pod spec section:

These runtime environment variable(s) are OPTIONAL to start Zowe components.

ZWE_POD_CLUSTERNAME : holds the Kubernetes cluster name. This variable has default value cluster.local . If your

cluster name is not default value, you should pass the variable to all workloads. The value of this variable can be

assigned in Pod spec section:

CI/CD

Build, Test and Release

Zowe core component and extension images MUST be built, tested, and released on their own cadence.

The component CI/CD pipeline MUST NOT rely on the Zowe level CI/CD pipeline and Zowe release schedule.

Zowe core component images must be tested. This includes starting the component and verifying the runtime

container works as expected.

It is recommended to build snapshot images before release. Zowe core components MUST publish snapshot images

to the zowe-docker-snapshot.jfrog.io registry with proper tags.

Zowe core component images MUST be released before Zowe is released.

Zowe core components MUST publish release images to both zowe-docker-release.jfrog.io and Docker Hub

registry under ompzowe/ prefix.

Release images MUST also update relevant major/minor version tags and the latest tag. For example, when a

component releases a 1.2.3 image, the component CI/CD pipeline MUST also tag the image as 1.2 , 1 , and latest .

Update the lts tag when it is applicable.

Zowe core component release images MUST be signed by Zowe committer(s).

https://hub.docker.com/

Version: v3.3.x LTS

Onboarding Overview

As an API developer, you can onboard a REST API service to Zowe™ API Mediation Layer (API ML). Onboarding your REST

service to Zowe™ API Mediation Layer makes your service discoverable by the API ML Discovery Service, enables routing

through the API Gateway, and makes service information and API documentation available through the API Catalog.

The specific method you use to onboard a REST API to Zowe API ML depends on the programming language or

framework used to build your REST service.

NOTE

To streamline the process of onboarding new REST API services to the Zowe API ML, see Onboarding a REST API

service with the YAML Wizard

This Onboarding Overview article addresses the following topics:

Prerequisites

Service Onboarding Guides to onboard your REST service with API ML

Verify successful onboarding to API ML

Using the Sample REST API Service to learn how to onboard a REST service to API ML

Prerequisites

Ensure that you meet the following prerequisites before you onboard your service:

A running instance of Zowe

Note: For static onboarding, access to Zowe runtime is required to create the static service definition.

A certificate that is trusted by Zowe and certificate(s) to trust Zowe services

Zowe uses secured communication over TLSv1.2. As such, the protocol version and the certificate is required. For

more information, see Certificate management in API Mediation Layer and Zowe API ML TLS requirements

A REST API-enabled service that you want to onboard

If you do not have a specific REST API service, you can use the sample service.

Your service should be documented in a valid OpenApi 2.0/3.0 Swagger JSON format.

Access to the Zowe artifactory

Either the Gradle or Maven build automation system

Service Onboarding Guides

Services can be updated to support API Mediation Layer natively by updating the service code. Use one of the following

guides to onboard your REST service to Zowe API Mediation Layer:

https://docs.zowe.org/stable/user-guide/onboard-wizard
https://docs.zowe.org/stable/user-guide/onboard-wizard
https://docs.zowe.org/stable/extend/extend-apiml/onboard-static-definition
https://docs.zowe.org/stable/extend/extend-apiml/certificate-management-in-zowe-apiml
https://docs.zowe.org/stable/extend/extend-apiml/zowe-api-mediation-layer-security-overview#zowe-api-ml-tls-requirements

Recommended guides for services using Java

Onboard an API service with the Plain Java Enabler (PJE)

Onboard a Spring Boot based REST API Service

Onboard a Micronaut based REST API service

Recommended guides for services using Node.js

Onboard a Node.js based REST API Service

Recommended guides for services using Python

Onboard a Python based REST API Service

Guides for Static Onboarding and Direct Call Onboarding

Use one of the following guides if your service is not built with Java, or you do not want to change your codebase or use

the previously mentioned libraries:

Onboard a REST API using static definition without code changes

Onboard a REST API directly calling Zowe Discovery Service

Documentation for legacy enablers

Enabler version 1.2 and previous versions are no longer supported.

TIP

We recommend you use the enabler version 1.3 or higher to onboard your REST API service to Zowe API Medaition

Layer.

Verify successful onboarding to API ML

Verifying that your service was successfully onboraded to API ML can be done by ensuring service registration in the API

ML Discovery Service or visibility of the service in the API ML Catalog.

Verifying service discovery through Discovery Service

Verify that your service is discovered by the Discovery Service with the following procedure.

1. Issue a HTTP GET request to the Discovery Service endpoint /eureka/apps to get service instance information:

Note: The endpoint is protected by client certificate verification. A valid trusted certificate must be provided with

the HTTP GET request.

2. Check your service metadata.

Response example:

https://docs.zowe.org/stable/extend/extend-apiml/onboard-plain-java-enabler
https://docs.zowe.org/stable/extend/extend-apiml/onboard-spring-boot-enabler
https://docs.zowe.org/stable/extend/extend-apiml/onboard-micronaut-enabler
https://docs.zowe.org/stable/extend/extend-apiml/onboard-nodejs-enabler
https://docs.zowe.org/stable/extend/extend-apiml/onboard-python-enabler
https://docs.zowe.org/stable/extend/extend-apiml/onboard-static-definition
https://docs.zowe.org/stable/extend/extend-apiml/onboard-direct-eureka-call

TIPS:

Ensure that addresses and user credentials for individual API ML components correspond to your target

runtime environment.

If you work with local installation of API ML and you use our dummy identity provider, enter user for both

username and password . If API ML was installed by system administrators, ask them to provide you with

actual addresses of API ML components and the respective user credentials.

Verifying service discovery through the API Catalog

Services may not be immediately visible in the API Catalog. We recommend you wait for 2 minutes as it may take a

moment for your service to be visible in the Catalog. If your service still does not appear in the Catalog, ensure that your

configuration settings are correct.

1. Check to see that your API service is displayed in the API Catalog UI, and that all information including API

documentation is correct.

2. Ensure that you can access your API service endpoints through the Gateway.

Sample REST API Service

To demonstrate the concepts that apply to REST API services, we use an example of a Spring Boot REST API service. This

example is used in the REST API onboarding guide REST APIs without code changes required (static onboarding).

You can build this service using instructions in the source code of the Spring Boot REST API service example.

The Sample REST API Service has a base URL. When you start this service on your computer, the service base URL is:

http://localhost:8080 .

NOTE

If a service is deployed to a web application server, the base URL of the service (application) has the following

format: https://application-server-hostname:port/application-name .

This sample service provides one API that has the base path /v2 , which is represented in the base URL of the API as

http://localhost:8080/v2 . In this base URL, /v2 is a qualifier of the base path that was chosen by the developer of

this API. Each API has a base path depending on the particular implementation of the service.

This sample API has only one single endpoint:

/pets/{id} - Find pet by ID.

This endpoint in the sample service returns information about a pet when the {id} is between 0 and 10. If {id} is

greater than 0 or a non-integer, an error is returned. These are conditions set in the sample service.

TIP

Access localhost:8080/v2/pets/1 to see what this REST API endpoint does. You should get the following response:

https://github.com/swagger-api/swagger-samples/tree/master/java/java-spring-boot
https://docs.zowe.org/stable/extend/extend-apiml/onboard-static-definition
https://github.com/swagger-api/swagger-samples/blob/master/java/java-spring-boot/README.md

NOTE

The onboarding guides demonstrate how to add the Sample REST API Service to Zowe API Mediation Layer to make

the service available through the petstore service ID.

The following diagram shows the relations between the Sample REST API Service and its corresponding API, REST API

endpoint, and API Gateway:

«Service»
petstore

«API»
/v2
/pets

API Gateway
/api/v2/petstore

API Gateway routes
HTTP requests to /v2 of the API in the petstore service

The petstore service provides one API (/v2)
This service runs in its own embedded web server

This sample service provides a Swagger document in JSON format at the following URL:

The Swagger document is used by the API Catalog to display API documentation.

Version: v3.3.x LTS

Managing certificates in Zowe API Mediation

Layer

Review details of certificate management in Zowe API Mediation Layer (API ML). This article decribes both how to

manage certificates when running on localhost, as well as certificate management using Zowe runtime on z/OS.

Additional information is provided about the API ML truststore and keystore, and API ML SAF keyring.

Managing certificates in Zowe API Mediation Layer

Running on localhost

How to start API ML on localhost with full HTTPS

Certificate management guide

Generate a certificate for a new service on localhost

Add a service with an existing certificate to API ML on localhost

Service registration to Discovery Service on localhost

Zowe runtime on z/OS

Import the local CA certificate to your browser

Generate a keystore and truststore for a new service on z/OS

Add a service with an existing certificate to API ML on z/OS

Procedure if the service is not trusted

Truststore and keystore or SAF keyring

API ML truststore and keystore

API ML SAF Keyring

Running on localhost

How to start API ML on localhost with full HTTPS

The api-layer repository contains pre-generated certificates that can be used to start API ML with HTTPS on your

computer. The certificates are not trusted by your browser so you can either ignore the security warning, or generate

your own certificates and add them to the truststore of your browser or system.

For more information about certificates, see TLS Certificates for localhost.

NOTE

When running on localhost, only the combination of using a keystore and truststore is supported.

Certificate management guide

Zowe API Mediation Layer provides a guide that can be used to generate a keystore and truststore using the Zowe local

certificate authority on Windows, Mac, Linux, and z/OS.

This guide is maintained in the zowe/api-layer repository keystore/README.md, and uses a combination of openssl and

java keytool.

https://github.com/zowe/api-layer
https://github.com/zowe/api-layer/blob/master/keystore/README.md
https://github.com/zowe/api-layer/blob/v2.x.x/keystore/README.md

Generate a certificate for a new service on localhost

To generate a certificate for a new service on localhost, see Generating certificate for a new service on localhost.

Add a service with an existing certificate to API ML on localhost

For information about adding a service with an existing certificate to API ML on localhost, see Trust certificates of other

services.

Service registration to Discovery Service on localhost

To register a new service to the Discovery Service using HTTPS, provide a valid client certificate that is trusted by the

Discovery Service.

Zowe runtime on z/OS

Certificates for the API ML local CA and API ML service are managed by installing the Zowe runtime on z/OS. For more

information see Installing the Zowe runtime on z/OS.

There are two ways to set up certificates on a z/OS machine:

Certificates in UNIX files (truststore and keystore)

Certificates in SAF keyring

For detailed instructions about how to set up certificates during installation, see the following articles:

Use PKCS12 certificates

Use JCERACFS certificates in a keyring

Follow the procedure in the applicable section in this article during installation.

Import the local CA certificate to your browser

Trust in the API ML server is a necessary precondition for secure communication between a browser or API Client

application. Ensure this trust through the installation of a Certificate Authority (CA) public certificate. By default, API ML

creates a local CA. Import the CA public certificate to the truststore for REST API clients and to your browser. You can also

import the certificate to your root certificate store.

NOTES

If a SAF keyring is being used and set up with ZWEKRING JCL, the procedure to obtain the certificate does not

apply. It is recommended that you work with your security system administrator to obtain the certificate. Start

the procedure at step 2.

The public certificate in the PEM format is stored at <KEYSTORE_DIRECTORY>/local_ca/localca.cer , where

<KEYSTORE_DIRECTORY> is defined in a customized zowe.yaml file during the installation step that generates

Zowe certificates. The certificate is stored in UTF-8 encoding so you need to transfer it as a binary file. Since

this is the certificate to be trusted by your browser, it is recommended to use a secure connection for transfer.

https://github.com/zowe/api-layer/blob/master/keystore/README.md#generating-certificate-for-a-new-service-on-localhost
https://github.com/zowe/api-layer/blob/master/keystore/README.md#trust-certificates-of-other-services
https://github.com/zowe/api-layer/blob/master/keystore/README.md#trust-certificates-of-other-services
https://docs.zowe.org/stable/user-guide/install-zos
https://docs.zowe.org/stable/user-guide/use-certificates#use-pkcs12-certificates
https://docs.zowe.org/stable/user-guide/use-certificates#use-jceracfks-certificates
https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail

Windows currently does not recognize the PEM format. For Windows, use the P12 version of the local_cer .

Follow these steps:

1. Download the local CA certificate to your computer. Use one of the following methods to download the local CA

certificate to your computer:

Use Zowe CLI (Recommended)

Issue the following command:

Use sftp

Issue the following command:

To verify that the file has been transferred correctly, open the file. The following heading and closing should appear:

2. Import the certificate to your root certificate store and trust it.

For Windows, run the following command:

Note: Ensure that you open the terminal as administrator. This will install the certificate to the Trusted Root

Certification Authorities.

For macOS, run the following command:

For Firefox, manually import your root certificate via the Firefox settings, or force Firefox to use the Windows

truststore.

Note: Firefox uses its own certificate truststore.

Create a new Javascript file firefox-windows-truststore.js at C:\Program Files (x86)\Mozilla

Firefox\defaults\pref with the following content:

Generate a keystore and truststore for a new service on z/OS

You can generate a keystore and truststore for a new service using the local CA in the keystore directory.

NOTE

This procedure applies to a UNIX file keystore and truststore only. For the SAF keyring option, it is recommended

that you perform the actions manually using your security system commands.

Use the zwe command available in the zowe distribution package and execute following example.

Example:

cert-alias

Specifies a unique string to identify the key entry. All keystore entries (key and trusted certificate entries) are

accessed via unique aliases. Since the keystore has only one certificate, you can omit this parameter and use the

default value localhost .

service-keystore-directory

Specifies the repository of security certificates plus the corresponding private keys. The <keystore_path> is the path

https://github.com/zowe/zowe-cli#zowe-cli--

excluding the extension to the keystore that is generated. It can be an absolute path or a path relative to the current

working directory. The key store is generated in PKCS12 format with the .p12 extension. Ensure that the path is in

an existing directory where your service expects the keystore.

Example: /opt/myservice/keystore/ .

service-name

Specifies the name of the service for which you want to generate keystore. A keystore will be created in the directory

with the same name. Example: my-new-service .

keystore-password

Specifies the keystore password.

ca-keystore-password

Specifies the local certificate authority keystore password.

ca-alias

Specifies the local certificate authority alias in the keystore. Zowe CA is stored under the local_ca alias.

Add a service with an existing certificate to API ML on z/OS

API Mediation Layer requires validation of the certificate of each service accessed by API Mediation Layer. API Mediation

Layer requires validation of the full certificate chain.

NOTE

This procedure applies only to UNIX file keystore/truststore. For the SAF keyring option, we recommend you perform

the actions manually using your security system commands.

Import the public certificate of the CA that has signed the certificate of the service to the API ML truststore.

NOTE

Validation fails if a service does not provide intermediate CA certificates to the API ML. This can be circumvented by

importing the intermediate CA certificates to the API ML truststore.

Procedure if the service is not trusted

If your service is not trusted, you may receive a response with the HTTP status code 502 Bad Gateway and a JSON

response in the standardized format for error messages. The following request is an example of when this error response

may occur.

Example:

In this example, you receive a similar response:

The message has the key apiml.common.tlsError , and message number AML0105 . The content explains details about

the message.

If you receive this message, import the certificate of your service or the CA that signed it to the truststore of the API

Mediation Layer as described previously.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/502

Truststore and keystore or SAF keyring

There are two options for how certificates are stored when running Zowe on z/OS:

API ML truststore and keystore

API ML SAF keyring

API ML truststore and keystore

A keystore is a repository of security certificates consisting of either authorization certificates or public key certificates

with corresponding private keys (PK), used in TLS encryption. A keystore can be stored in Java specific format (JKS) or

use the standard format (PKCS12). The Zowe API ML uses PKCS12 to enable the keystores to be used by other

technologies in Zowe (Node.js).

API ML SAF Keyring

As an alternative to using a keystore and truststore, API ML can read certificates from a SAF keyring. The user running

the API ML must have rights to access the keyring. From the java perspective, the keyring behaves as the JCERACFKS

keystore. The path to the keyring is specified as safkeyring://user_id/key_ring_id . The content of the SAF keyring is

equivalent to the combined contents of the keystore and the truststore.

NOTE

When using JCERACFKS as the keystore type, ensure that you have IRRRacf.jar in following location:

Review the characteristics of following elements of the API ML SAF keyring:

The API ML local certificate authority (CA)

The API ML local CA contains a local CA certificate and a private key that needs to be securely stored.

The API ML local certificate authority is used to sign certificates of services.

The API ML local CA certificate is trusted by API services and clients.

The API ML keystore or API ML SAF Keyring

The server certificate of the Gateway (with PK)can be signed by the local CA or an external CA.

The server certificate of the Discovery Service (with PK) can be signed by the local CA.

The server certificate of the Catalog (with PK) can be signed by the local CA.

The API ML keystore is used by API ML services.

The API ML truststore or API ML SAF Keyring

Local CA public certificate

External CA public certificate (optional)

Can contain self-signed certificates of API Services that are not signed by the local or external CA

Used by API ML services

Zowe core services

Services can use the same keystore and truststore or the same keyring as API ML for simpler installation and

management.

When using a keystore and truststore, services have to have rights to access and read them on the filesystem.

When using a keyring, the user of the service must have authorization to read the keyring from the security system.

Alternatively, services can have individual stores for higher security.

API service keystore or SAF keyring (for each service)

The API service keystore contains a server and client certificate signed by the local CA.

API service truststore or SAF keyring (for each service)

(Optional) The API service truststore contains a local CA and external CA certificates.

Client certificates

A client certificate is a certificate that is used for validation of the HTTPS client. The client certificate of a Discovery

Service client can be the same certificate as the server certificate of the services which the Discovery Service client

uses.

Version: v3.3.x LTS

Quick Start for Development

To validate that a service is working properly with the API Mediation Layer, you first need to have a running instance of

API Mediation Layer. Choose from the following options:

Install Zowe and validate against a Zowe instance of API Mediation Layer

For this setup you can either run Zowe without certificates, or preferably with certificates generated by

installation in the keystore.

Run API Mediation Layer in Codespace or on a local machine directly.

The details are available in API Mediation Layer repository

Run API Mediation Layer in containers.

The details are available in Docker for API Mediation Layer

Run API Mediation Layer as Java services on z/OS.

This part is not documented but is possible. You would need to build the services first, then upload them to the

mainframe

To learn more about the certificate setup options for API Mediation Layer with respect to the Development purposes

consult Certificate Management in Zowe API Mediation Layer.

https://github.com/zowe/api-layer/
https://github.com/zowe/api-layer/tree/v3.x.x/docker
https://docs.zowe.org/stable/extend/extend-apiml/certificate-management-in-zowe-apiml

Version: v3.3.x LTS

Deploying API Mediation Layer locally

General information

For development purposes, it is possible to deploy API ML locally. For more information, follow the instruction in the file

Run API Mediation Layer locally.

Dummy Authentication Provider

The Dummy Authentication Provider implements simple authentication for development purposes using dummy

credentials (username: user , password user). The Dummy Authentication Provider makes it possible for the API

Gateway to run without authenticating with the z/OSMF service.

Use the following property of the API Gateway to enable the Dummy Authentication Provider :

https://github.com/zowe/api-layer/?tab=readme-ov-file#run-api-mediation-layer-locally

Version: v3.3.x LTS

Libraries for onboarding APIs to Zowe API ML

APIs can be onboarded to Zowe API Mediaiton Layer with any of the following enablers:

Onboarding an API service with the Plain Java Enabler (PJE)

Applies to either REST APIs or GraphQL APIs

Onboarding a Spring Boot based REST API Service

Onboarding a Micronaut based REST API service

Onboarding a Node.js based REST API service

Onboarding a Python based REST API service

Onboarding a REST or GraphQL API without code changes required

https://docs.zowe.org/stable/extend/extend-apiml/onboard-plain-java-enabler
https://docs.zowe.org/stable/extend/extend-apiml/onboard-spring-boot-enabler
https://docs.zowe.org/stable/extend/extend-apiml/onboard-micronaut-enabler
https://docs.zowe.org/stable/extend/extend-apiml/onboard-nodejs-enabler
https://docs.zowe.org/stable/extend/extend-apiml/onboard-python-enabler
https://docs.zowe.org/stable/extend/extend-apiml/onboard-static-definition

Version: v3.3.x LTS

Onboarding an API service with the Plain Java

Enabler (PJE)

This article is part of a series of onboarding guides, which outline the process of onboarding API services to the Zowe API

Mediation Layer (API ML).

ROLE: API SERVICE DEVELOPER

REST or GraphQL API services can be onboarded to the API ML using the Plain Java Enabler (PJE). This enabler is built

without a dependency on Spring Cloud, Spring Boot, or SpringFramework.

TIP

For more information about the range of option to onboard API services with API ML, see the Onboarding Overview.

Introduction

Zowe API ML is a lightweight API management system based on the following Netflix components:

Eureka - a discovery service used for services registration and discovery

Spring CLoud Gateway - reverse proxy / API Gateway

The API ML Discovery Service component uses Netflix/Eureka as a services` registry. Eureka endpoints are used to

register a service with the API ML Discovery Service.

The API ML provides onboarding enabler libraries. The libraries are JAR artifacts available through an artifactory. Using

these libraries is the recommended approach to onboard a REST or GraphQL service with the API ML.

The PJE library serves the needs of Java developers who are not using either Spring Boot or the Spring Framework. If

Spring Boot or the Spring framework are used in the project you would like to onboard, see the Onboarding Overview for

the corresponding enablers.

Additionally, this enabler is not intended for use in projects that depend on Spring Cloud Netflix components.

Configuration settings in the PJE and Spring Cloud Netflix Eureka Client are different. Using the two configuration settings

in combination makes the result state of the discovery registry unpredictable.

TIP

The Plain Java Enabler supports the use of the API Mediation Layer Message Service. For more information about the

Message Service, see Using API Mediation Layer Message Service.

Onboarding your REST or GraphQL service with API ML

The following steps outline the overall process to onboard a service with the API ML using the PJE. Each step is described

in further detail in this article.

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://spring.io/projects/spring-boot
https://spring.io/
https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://spring.io/projects/spring-cloud-netflix
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-message-service

Onboarding an API service with the Plain Java Enabler (PJE)

Introduction

Onboarding your REST or GraphQL service with API ML

Prerequisites

Configuring your project

Gradle build automation system

Maven build automation system

Service identification

Administrative endpoints

API info

API routing information

Authentication parameters

API Security

SAF Keyring configuration

Eureka Discovery Service

Custom Metadata

Registering your service with API ML

Validating the discoverability of your API service by the Discovery Service

Troubleshooting

Log messages during registration problems

Prerequisites

Ensure that the prerequisites from the Onboarding Overview are met.

The REST or GraphQL API service to onboard is written in Java

The service is enabled to communicate with API ML Discovery Service over a TLS v1.2 secured connection

NOTES

This documentation is valid for API ML version ZoweApimlVersion 3.0.0 and higher. We recommend that you

check the Zowe Artifactory for the latest stable versions.

Following this guide enables REST or GraphQL services to be deployed on a z/OS environment. Deployment

to a z/OS environment, however, is not required. As such, you can first develop on a local machine before

you deploy on z/OS.

The API Mediation Layer provides the sample application using the Plain Java Enabler in the api-layer repository

Configuring your project

Use either Gradle or Maven build automation systems to configure the project with the service to be onboarded. Use the

appropriate configuration procedure that corresponds to your build automation system.

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://zowe.jfrog.io/zowe/libs-release/org/zowe/apiml/sdk/onboarding-enabler-java/
https://github.com/zowe/api-layer/tree/v2.x.x/onboarding-enabler-java-sample-app

NOTE

You can use either the Zowe Artifactory or an artifactory of your choice. If you decide to build the API ML from

source, you are required to publish the enabler artifact to your artifactory. Publish the enabler artifact by using the

Gradle tasks provided in the source code.

Gradle build automation system

Follow these steps:

1. Create a gradle.properties file in the root of your project if one does not already exist.

2. In the gradle.properties file, set the URL of the specific artifactory containing the PJE artifact. Provide the

corresponding credentials to gain access to the Maven repository.

3. Add the following Gradle code block to the repositories section of your build.gradle file:

4. In the same build.gradle file, add the necessary dependencies for your service. If you use the Java enabler

from the Zowe Artifactory, add the following code block to your build.gradle script. Replace the

$zoweApimlVersion with the proper version of the enabler, for example: 1.3.0 :

5. In your project home directory, run the gradle clean build command to build your project. Alternatively, you

can run gradlew to use the specific gradle version that is working with your project.

Maven build automation system

Follow these steps:

1. Add the following XML tags within the newly created pom.xml file:

TIP

If you want to use snapshot version, replace libs-release with libs-snapshot in the repository url and

change snapshots->enabled to true .

2. Add the proper dependencies:

3. In the directory of your project, run the mvn clean package command to build the project.

Configuring your service

Click here for the procedure to use Gradle as your build automation system.

Click here for the procedure to use Maven as your build automation system.

To configure your service, create the configuration file service-configuration.yml in your service source tree resources

directory. The default path for a java application is src/main/resources . The service-configuration.yml file is used to

set the application properties and eureka metadata. Application properties are for your service runtime. For example, the

ssl section specifies the keystore and trustore. The eureka metadata is used for registration with API Mediation Layer.

NOTE

To externalize service onboarding configuration, see: Externalizing onboarding configuration.

The following code snippet shows an example of service-configuration.yml . Some parameters which are specific for

your service deployment are in ${parameterValue} format. For your service configuration file, provide actual values or

externalize your onboarding configuration.

Examples:

REST API

GraphQL API

Optional metadata section

The following snippet presents additional optional metadata that can be added.

Example:

The onboarding configuration parameters are broken down into the following groups:

Onboarding an API service with the Plain Java Enabler (PJE)

Introduction

Onboarding your REST or GraphQL service with API ML

Prerequisites

Configuring your project

Gradle build automation system

Maven build automation system

Service identification

Administrative endpoints

API info

Click here for an example of a REST API yaml file.

Click here for an example of a GraphQL API yaml file.

https://docs.zowe.org/stable/extend/extend-apiml/onboard-plain-java-enabler-external-configuration

API routing information

Authentication parameters

API Security

SAF Keyring configuration

Eureka Discovery Service

Custom Metadata

Registering your service with API ML

Validating the discoverability of your API service by the Discovery Service

Troubleshooting

Log messages during registration problems

Service identification

serviceId

The serviceId uniquely identifies one or more instance of a microservice in the API ML and is used as part of the

service URL path in the API ML Gateway address space. Additionally, the API ML Gateway uses the serviceId for

routing to the API service instances. When two API services use the same serviceId , the API Gateway considers the

services as clones of each other. An incoming API request can be routed to either of them through utilized load

balancing mechanism.

IMPORTANT

Ensure that the serviceId is set properly with the following considerations:

The same servicedId should only be set for multiple API service instances for API scalability.

The servicedId value must only contain lowercase alphanumeric characters.

The servicedId cannot contain more than 40 characters.

Example:

If the serviceId is sampleservice , the service URL in the API ML Gateway address space appears as the

following path:

title

Specifies the human readable name of the API service instance. This value is displayed in the API Catalog when a

specific API service instance is selected. This parameter can be externalized and set by the customer system

administrator.

TIP

We recommend that service developer provides a default value of the title . Use a title that describes the

service instance so that the end user knows the specific purpose of the service instance.

description

Specifies a short description of the API service. This value is displayed in the API Catalog when a specific API service

instance is selected. This parameter can be externalized and set by the customer system administrator.

TIP

Describe the service so that the end user understands the function of the service.

baseUrl

Specifies the base URL for the following administrative endpoints:

homePageRelativeUrl

statusPageRelativeUrl

healthCheckRelativeUrl

Use the following format to include your service name in the URL path:

protocol://host:port/servicename

NOTE

Ensure that the baseUrl does not end with a trailing / . Inclusion of / causes a malformed URL if any of the

above administrative endpoints begin with a / . It is expected that each administrative endpoint begins with a

/ . Warnings will be logged if this recommendation is not followed.

serviceIpAddress (Optional)

Specifies the service IP address and can be provided by a system administrator in the externalized service

configuration. If this parameter is not present in the configuration file or is not set as a service context parameter, it

is resolved from the hostname part of the baseUrl .

preferIpAddress (Optional)

Set the value of this parameter to true to advertise a service IP address instead of its hostname.

Administrative endpoints

Administrative endpoint properties use the following format:

homePageRelativeUrl

Specifies the relative path to the home page of your service.

Start this path with / . If your service has no home page, leave this parameter blank.

Examples:

homePageRelativeUrl: This service has no home page

homePageRelativeUrl: / This service has a home page with URL ${baseUrl}/

statusPageRelativeUrl

Specifies the relative path to the status page of your service.

Start this path with / .

Example:

statusPageRelativeUrl: /application/info

This results in the URL: ${baseUrl}/application/info

healthCheckRelativeUrl

Specifies the relative path to the health check endpoint of your service.

Start this path with / .

Example:

healthCheckRelativeUrl: /application/health

This results in the URL: ${baseUrl}/application/health

API info

Services can provide multiple APIs. Add API info parameters for each API that your service wants to expose on the API

ML.

Information properties of a single API are in the following format:

REST API

GraphQL API

apiInfo.apiId

Specifies the API identifier that is registered in the API ML installation. The API ID uniquely identifies the API in the API

ML. The apiId can be used to locate the same APIs that are provided by different service instances. The API

developer defines this ID. The apiId must be a string of up to 64 characters that uses lowercase alphanumeric

characters and a dot: . .

apiInfo.version

Specifies the api version . This parameter is used to correctly retrieve the API documentation according to

requested version of the API.

apiInfo.gatewayUrl

Specifies the base path at the API Gateway where the API is available. Ensure that this value is the same path as the

gatewayUrl value in the routes sections that apply to this API.

apiInfo.swaggerUrl (Optional)

Specifies the Http or Https address where the Swagger JSON document is available.

apiInfo.graphqlUrl (Optional)

Specifies the Http or Https address where the GraphQL server is available.

Parameters Specific for REST API

apiInfo.documentationUrl (Optional)

Specifies the link to the external documentation. A link to the external documentation can be included along with the

Swagger documentation.

apiInfo.defaultApi (Optional)

Specifies that this API is the default one shown in the API Catalog. If no apiInfo fields have defaultApi set to true ,

the default API is the one with the highest API version .

apiInfo.codeSnippet (Optional)

Specifies the customized code snippet for a specific endpoint (API operation). The snippet is displayed in the API

Catalog under the specified operation, after executing the request using the Try it out functionality. When specifying

this configuration, you need to provide the following parameters:

endpoint

The endpoint that represents the API operation of the customized snippet

language

The language of the snippet

codeBlock

The content of the snippet to be displayed in the API Catalog

API routing information

The API routing group provides the required routing information used by the API ML Gateway when routing incoming

requests to the corresponding API service. A single route can be used to direct calls to multiple resources or API

endpoints. The route definition provides rules used by the API ML Gateway to rewrite the URL in the Gateway address

space. Currently, the routing information consists of two parameters per route: The gatewayUrl and serviceUrl . These

two parameters together specify a rule for how the API service endpoints are mapped to the API Gateway endpoints.

API routing information properties are in the following format:

Example:

routes

Specifies the container element for the route.

routes.gatewayUrl

The gatewayUrl parameter specifies the portion of the gateway URL which is replaced by the serviceUrl path part.

routes.serviceUrl

The serviceUrl parameter provides a portion of the service instance URL path which replaces the gatewayUrl part.

Examples:

is routed to:

API major version 1:

is routed to:

APIs docs major version 1:

is routed to:

API Catalog information

The API ML Catalog UI displays information about discoverable services registered with the API ML Discovery Service.

Information displayed in the Catalog is defined by the metadata provided by your service during registration. The

following image is an example of a tile in the API Catalog:

The Catalog groups correlated services in the same tile if these services are configured with the same catalog.tile.id

metadata parameter.

The following yaml presents an example of the configuration of a service tile in the Catalog:

Example:

catalog.tile.id

Specifies the unique identifier for the product family of API services. This is a value used by the API ML to group

multiple API services into a single tile. Each unique identifier represents a single API dashboard tile in the Catalog.

TIP

Specify a value that does not interfere with API services from other products. We recommend that you use your

company and product name as part of the ID.

catalog.tile.title

Specifies the title of the product family of the API service. This value is displayed in the API Catalog dashboard as the

tile title.

catalog.tile.description

The detailed description of the API services product family. This value is displayed in the API Catalog UI dashboard as

the tile description.

catalog.tile.version

specifies the semantic version of this API Catalog tile.

NOTE

Ensure that you increase the version number when you introduce changes to the API service product family

details.

Authentication parameters

These parameters are not required. Default values are used when parameters are not specified.

API Security

Services onboarded with the API ML act as both a client and a server. When communicating to API ML Discovery service,

a service acts as a client. When the API ML Gateway is routing requests to a service, the service acts as a server. These

two roles have different requirements. The Zowe API ML Discovery Service communicates with its clients in secure Https

mode. As such, TLS/SSL configuration setup is required when a service is acting as a server. In this case, the system

administrator decides if the service will communicate with its clients securely or not.

Client services need to configure several TLS/SSL parameters in order to communicate with the API ML Discovery

service. When an enabler is used to onboard a service, the configuration is provided in the ssl section/group in the

same YAML file that is used to configure the Eureka parameters and the service metadata.

For more information about API ML security, see API ML security overview.

TLS/SSL configuration consists of the following parameters:

verifySslCertificatesOfServices

This parameter makes it possible to prevent server certificate validation.

IMPORTANT

Ensure that this parameter is set to true in production environments. Setting this parameter to false in

production environments significantly degrades the overall security of the system.

protocol

Specifies the TLS protocol version currently used by Zowe API ML Discovery Service.

TIP

https://github.com/zowe/api-layer/blob/v3.x.x/docs/api-ml-security-overview.md

We recommend you use TLSv1.2 as your security protocol.

keyAlias

Specifies the alias used to address the private key in the keystore.

keyPassword

Specifies the password associated with the private key.

keyStore

Specifies the keystore file used to store the private key. When using keyring, the value should be set to the SAF

keyring location. For information about required certificates, see Zowe API ML TLS requirements.

If you have an issue with loading the keystore file in your environment, try to provide the absolute path to the keystore

file. The sample keystore file for local deployment is in api-layer repository

keyStorePassword

Specifies the password used to unlock the keystore.

keyStoreType

Specifies the type of the keystore.

trustStore

Specifies the truststore file used to keep other parties public keys and certificates. When using keyring, this value

should be set to the SAF keyring location. For information about required certificates, see Zowe API ML TLS

requirements.

If you have an issue with loading the truststore file in your environment, try to provide the absolute path to the

truststore file. The sample truststore file for local deployment is in api-layer repository

trustStorePassword: password

Specifies the password used to unlock the truststore.

trustStoreType: PKCS12

Specifies the truststore type. The default for this parameter is PKCS12.

NOTE

Ensure that you define both the keystore and the truststore even if your server is not using an Https port.

SAF Keyring configuration

You can choose to use SAF keyring instead of keystore and truststore for storing certificates. For information about

required certificates, see Zowe API ML TLS requirements. For information about running Java on z/OS with keyring, see

SAF Keyring.

https://github.com/zowe/api-layer/blob/v3.x.x/docs/api-ml-security-overview.md#zowe-api-ml-tls-requirements
https://github.com/zowe/api-layer/tree/master/keystore/localhost
https://github.com/zowe/api-layer/blob/v3.x.x/docs/api-ml-security-overview.md#zowe-api-ml-tls-requirements
https://github.com/zowe/api-layer/blob/v3.x.x/docs/api-ml-security-overview.md#zowe-api-ml-tls-requirements
https://github.com/zowe/api-layer/tree/master/keystore/localhost
https://github.com/zowe/api-layer/blob/v3.x.x/docs/api-ml-security-overview.md#zowe-api-ml-tls-requirements
https://docs.zowe.org/stable/extend/extend-apiml/certificate-management-in-zowe-apiml#api-ml-saf-keyring

Make sure that the enabler can access and read the keyring. Please refer to documentation of your security system for

details.

The following example shows enabler configuration with keyrings.

Example:

Eureka Discovery Service

The Eureka Discovery Service parameters group contains a single parameter used to address Eureka Discovery Service

location. An example is presented in the following snippet:

Example:

discoveryServiceUrls

Specifies the public URL of the Discovery Service. The system administrator at the customer site defines this

parameter. It is possible to provide multiple values in order to utilize fail over and/or load balancing mechanisms.

Custom Metadata

For information about custom metadata, see the topic Custom Metadata.

Registering your service with API ML

The following steps outline the process of registering your service with API ML. Each step is described in detail in this

article. The process describes the integration with the usage of the Java application server. The guideline is tested with

the Tomcat application server. The specific steps that apply for other application servers may differ.

1. Add a web application context listener class

2. Register a web application context listener

3. Load service configuration

4. Register with Eureka discovery service

5. Unregister your service

Follow these steps:

1. Implement and add a web application context listener class:

implements javax.servlet.ServletContextListener

The web application context listener implements two methods to perform necessary actions at application start-up

time as well as when the application context is destroyed:

The contextInitialized method invokes the apiMediationClient.register(config) method to register the

application with API Mediation Layer when the application starts.

The contextDestroyed method invokes the apiMediationClient.unregister() method when the application

shuts down. This unregisters the application from the API Mediation Layer.

2. Register a web application context listener.

https://docs.zowe.org/stable/extend/extend-apiml/custom-metadata

Add the following code block to the deployment descriptor web.xml to register a context listener:

3. Load the service configuration.

Load your service configuration from a file service-configuration.yml file. The configuration parameters are

described in the preceding section, Configuring your service.

Use the following code as an example of how to load the service configuration.

Example:

NOTE

The ApiMediationServiceConfigReader class also provides other methods for loading the configuration from

two files, java.util.Map instances, or directly from a string. Check the ApiMediationServiceConfigReader

class JavaDoc for details.

4. Register with Eureka Discovery Service.

Use the following call to register your service instance with Eureka Discovery Service:

Example:

5. Unregister your service.

Use the contextDestroyed method to unregister your service instance from Eureka Discovery Service in the

following format:

Example:

Example:

Validating the discoverability of your API service by the

Discovery Service

Once you are able to build and start your service successfully, you can use the option of validating that your service is

registered correctly with the API ML Discovery Service.

Follow these steps:

1. Validate successful onboarding.

2. Check that you can access your API service endpoints through the Gateway.

3. (Optional) Check that you can access your API service endpoints directly outside of the Gateway.

Click here for a full example of a context listener class implementation.

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview#verify-successful-onboarding-to-api-ml

Specific addresses and user credentials for the individual API ML components depend on your target runtime

environment.

NOTE

If you are working with local installation of API ML and you are using our dummy identity provider, enter user for

both username and password . If API ML was installed by system administrators, ask them to provide you with actual

addresses of API ML components and the respective user credentials.

TIP

Wait for the Discovery Service to discover your service. This process may take a few minutes after your service was

successfully started.

Troubleshooting

Log messages during registration problems

When an Enabler connects to the Discovery service and fails, an error message prints to the Enabler log. The default

setting does not suppress these messages as they are useful to resolve problems during the Enabler registration.

Possible reasons for failure include the location of Discovery service is not correct, the Discovery Service is down, or the

TLS certificate is invalid.

These messages continue to print to the Enabler log, while the Enabler retries to connect to the Discovery Service. To

fully suppress these messages in your logging framework, set the log levels to OFF on the following loggers:

com.netflix.discovery.DiscoveryClient, com.netflix.discovery.shared.transport.decorator.RedirectingEurekaHttpClient

Some logging frameworks provide other tools to suppress repeated messages. Consult the documentation of the logging

framework you use to find out what tools are available. The following example demonstrates how the Logback

framework can be used to suppress repeated messages.

Example:

Add the following code to your configuration file if you use XML configuration:

Version: v3.3.x LTS

API Mediation Layer onboarding configuration

This article describes the process of configuring a REST service to onboard with the Zowe API Mediation Layer using the

API ML Plain Java Enabler.

ROLE: API SERVICE DEVELOPER

Review how to provide basic configuration of a service to onboard to the API ML. You can externalize configuration

parameters for subsequent customization by a systems administrator.

Introduction

The API ML Plain Java Enabler (PJE) is a library which helps to simplify the process of onboarding a REST service with the

API ML. This article describes how to provide and externalize the Zowe API ML onboarding configuration of your REST

service using the PJE. For detailed instructions about how to onboard your API service using the Plain Java Enabler, see

Onboarding a REST API service with the Plain Java Enabler (PJE).

The PJE is the most universal Zowe API ML enabler. This enabler uses only Java, and does not use advanced Inversion of

Control (IoC) or Dependency Injection (DI) technologies. The PJE enables you to onboard any REST service implemented

in Java, avoiding dependencies, versions collisions, unexpected application behavior, and unnecessarily large service

executables.

Service developers provide onboarding configuration as part of the service source code. While this configuration is valid

for the development system environment, it is likely to be different for an automated integration environment. Typically,

system administrators need to deploy a service on multiple sites that have different system environments and

requirements such as security.

The PJE supports both the service developer and the system administrator with the functionality of externalizing the

service onboarding configuration.

The PJE provides a mechanism to load API ML onboarding service configuration from one or two YAML files.

Configuring a REST service for API ML onboarding

In most cases, the API ML Discovery Service, Gateway, and service endpoint addresses are not known at the time of

building the service executables. Similarly, security material such as certificates, private/public keys, and their

corresponding passwords depend on the specific deployment environment, and are not intended to be publicly

accessible. Therefore, to provide a higher level of flexibility, the PJE implements routines to build service onboarding

configuration by locating and loading one or two YAML file sources:

internal service-configuration.yml

The first configuration file is typically internal to the service deployment artifact. This file must be accessible on the

service classpath . This file contains basic API ML configuration based on values known at development time.

Usually, this basic API ML configuration is provided by the service developer and is located in the /resources folder

of the Java project source tree. This file is usually found in the deployment artifacts under /WEB-INF/classes . The

https://docs.zowe.org/stable/extend/extend-apiml/onboard-plain-java-enabler

configuration contained in this file is provided by the service developer or builder. As such, the configuration will not

match every possible production environment and the corresponding requirements of the environment.

external or additional service-configuration.yml

The second configuration file is used to externalize the configuration. This file can be stored anywhere on the local

file system, as long as that the service has access to that location. This file is provided by the service

deployer/system administrator and contains the correct parameter values for the specific production environment.

At service start-up time, both YAML configuration files are merged, where the externalized configuration (if provided) has

higher priority.

The values of parameters in both files can be rewritten by Java system properties or servlet context parameters that

were defined during service installation/configuration, or at start-up time.

In the YAML file, standard rewriting placeholders for parameter values use the following format:

${apiml.parameter.key}

The actual values are taken from [key, value] pairs defined as Java system properties or servlet context parameters. The

system properties can be provided directly on a command line. The servlet context parameters can be provided in the

service web.xml or in an external file.

The specific approach of how to provide the servlet context to the user service application depends on the application

loading mechanism and the specific Java servlet container environment.

Example:

If the service is deployed in a Tomcat servlet container, you can configure the context by placing an XML file with the

same name as the application deployment unit into _$CATALINA_BASE/conf/[enginename]/[hostname]/_ .

Other containers provide different mechanisms for the same purpose.

Plain Java Enabler service onboarding API

You can initialize your service onboarding configuration using different methods of the Plain Java Enabler class

ApiMediationServiceConfigReader :

Automatic initialization of the onboarding configuration by a single method call

The following code block shows automatic initialization of the onboarding configuration by a single method call:

This method receives the ServletContext parameter, which holds a map of parameters that provide all necessary

information for building the onboarding configuration. The following code block is an example of Java Servlet context

configuration.

Example:

The two parameters corresponding to the location of the configuration files are:

apiml.config.location

is parameter describes the location of the basic configuration file.

apiml.config.additional-location

This parameter describes the location of the external configuration file.

The method in this example uses the provided configuration file names in order to load them as YAML files into the

internal Java configuration object of type ApiMediationServiceConfig.

The other context parameters with the apiml prefix are used to rewrite values of properties in the configuration files.

Validating successful onboarding with API Mediation Layer

To ensure that you successfully onboarded a service with the API Mediation Layer, follow these steps:

1. Validate successful onboarding. Follow the procedure described in Verify successful onboarding to API ML.

2. Check that you can access your API service endpoints through the Gateway.

3. (Optional) Check that you can access your API service endpoints directly outside of the Gateway.

Loading YAML configuration files

YAML configuration files can be loaded either as a single YAML file, or by merging two YAML files. Use the

loadConfiguration method described later in this article that corresponds to your service requirements.

After successfully loading a configuration file, the loading method loadConfiguration uses Java system properties to

substitute corresponding configuration properties.

Loading a single YAML configuration file

To build your configuration from multiple sources, load a single configuration file, and then rewrite parameters as needed

using values from another configuration source. See: Loading and merging two YAML configuration files described later

in this article.

Use the following method to load a single YAML configuration file:

This method receives a single String parameter and can be used to load an internal or an external configuration file.

NOTE

This method first attempts to load the configuration as a Java resource. If the file is not found, the method attempts

to resolve the file name as an absolute. If the file name still cannot be found, this method attempts to resolve the

file as a relative path. When the file is found, the method loads the contents of the file and maps them to internal

data classes. After loading the configuration file, the method attempts to substitute/rewrite configuration property

values with corresponding Java System properties.

Loading and merging two YAML configuration files

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview#verify-successful-onboarding-to-api-ml

To load and merge two configuration files, use the following method:

where:

String internalConfigurationFileName

references the basic configuration file name.

String externalizedConfigurationFileName

references the external configuration file name.

NOTE

The external configuration file takes precedence over the basic configuration file in order to match the target

deployment environment. After loading and before merging, each configuration will be separately patched using

Java System properties.

The following code block presents an example of how to load and merge onboarding configuration from YAML files.

Example:

Version: v3.3.x LTS

Onboarding a Spring Boot based REST API

Service

This article is part of a series of onboarding guides, which outline the process of onboarding API services to the Zowe API

Mediation Layer (API ML).

ROLE: API SERVICE DEVELOPER

Review how to onboard your REST API service built with the Spring Boot framework with the Zowe API Mediation Layer.

NOTE

Before API ML version 1.2, the API ML provided an integration enabler based on Spring Cloud Netflix components.

From version 1.3 and later, the API ML uses a new implementation based on the Plain Java Enabler (PJE) that is not

backwards compatible with the previous enabler versions. API ML core services (Discovery Service, Gateway, and

API Catalog) support both the old and new enabler versions.

TIP

For more information about how to utilize another onboarding method, see the Onboarding overview.

Outline of onboarding a REST service using Spring Boot

The following steps outline the overall process to onboard a REST service with the API ML using a Spring Boot enabler.

Each step is described in further detail in this article.

Onboarding a Spring Boot based REST API Service

Outline of onboarding a REST service using Spring Boot

Configuring your project

Gradle build automation system

Maven build automation system

Configuring your Spring Boot based service to onboard with API ML

Sample API ML Onboarding Configuration

Authentication properties

API ML Onboarding Configuration Sample

SAF Keyring configuration

Custom Metadata

Registering and unregistering your service with API ML

Unregistering your service with API ML

Basic routing

Adding API documentation

Validating the discoverability of your API service by the Discovery Service

Troubleshooting

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview

Log messages during registration problems

Configuring your project

Use either Gradle or Maven as your build automation system to manage your project builds.

NOTE

You can download the selected enabler artifact from the Zowe Artifactory for latest stable versions.. Alternatively, if

you decide to build the API ML from source, it is necessary to publish the enabler artifact to your Artifactory. Publish

the enabler artifact by using the Gradle tasks provided in the source code.

Gradle build automation system

Follow these steps:

1. Create a gradle.properties file in the root of your project if one does not already exist.

2. In the gradle.properties file, set the URL of the specific Artifactory containing the SpringEnabler artifact.

3. Add the following Gradle code block to the repositories section of your build.gradle file:

4. In the same build.gradle file, add the necessary dependencies for your service. If you use the SpringEnabler

from the Zowe Artifactory, add the following code block to your build.gradle script:

Use the corresponding artifact according to the Zowe APIML version you are using.

Use the latest version of the following artifact:

Notes:

You may need to add additional dependencies as required by your service implementation.

Replace zoweApimlVersion with the latest update of the major version according to your Zowe installation.

5. In your project home directory, run the gradle clean build command to build your project. Alternatively, you

can run gradlew to use the specific gradle version that is working with your project.

Maven build automation system

Follow these steps:

1. Add the following XML tags within the newly created pom.xml file:

Click here for the procedure to use Gradle as your build automation system.

Click here for the procedure to use Maven as your build automation system.

https://zowe.jfrog.io/zowe/libs-release/org/zowe/apiml/sdk/onboarding-enabler-java/

Tip: If you want to use snapshot version, replace libs-release with libs-snapshot in the repository url and change

snapshots->enabled to true.

2. Add the proper dependencies

Use the latest version of the following artifact:

Notes:

Replace zoweApimlVersion with the latest update of the major version according to your Zowe installation.

3. In the directory of your project, run the mvn clean package command to build the project.

Configuring your Spring Boot based service to onboard with API

ML

To configure a Spring Boot based service, it is useful to first understand how API ML enabled service Spring Boot based

configuration relates to configuration using the Plain Java Enabler.

Spring Boot expects to find the default configuration of an application in an application.yml file that is placed on the

classpath. Typically application.yml contains Spring Boot specific properties such as properties that are used to start a

web application container including TLS security, different spring configuration profiles definitions, and other properties.

This application.yml must contain the Plain Java Enabler API ML service configuration under the apiml.service prefix.

The API ML configuration under this prefix is necessary to synchronize the configuration of apiml.service with the

spring server configuration.

Configuration properties belong to two categories:

Service related properties which include endpoints, relative paths, or API documentation definitions.

Environment related properties which include host names, ports, context etc.

Execution environment related properties should be provided by additional configuration mechanisms that are specific to

the target execution environment. Execution environment related properties for development deployments on a local

machine differ with those properties on a mainframe system.

In a development environment, provide execution environment related properties in an additional YAML file with the

system property in the following format:

On the mainframe system, provide additional configuration properties and values for existing configuration

properties through Java system properties.

Execution environments for local development deployments and mainframe deployment are described in detail later

in this article.

Follow these steps:

1. Provide a configuration section for onboarding with API ML in the application.yml file.

If you have already onboarded your service with API ML, copy and paste the contents of your existing API ML

onboarding configuration file. The default of the API ML onboarding configuration file is the service-

configuration.yml in the application.yml file under the apiml.service prefix.

If you have not yet onboarded your REST service with API ML, use the Sample API Onboarding Configuration to

get started.

2. If you are reusing your existing API ML onboarding configuration, modify the API ML related properties of the

application.yml file.

a) Remove certain properties under the apiml.service section, which must be externalized. Properties for removal

are described in the following sample of API ML onboarding configuration.

b) Provide the following additional properties under the apiml section:

These additional properties are contained in the following sample.

Sample API ML Onboarding Configuration

In the following sample API ML onboarding configuration, properties prefixed with ### (3 hashtags) indicate that their

value must be provided as -Dsystem.property.key=PROPERTY_VALUE defined in the mainframe execution environment.

The -Dsystem.property.key must be the same as the flattened path of the YAML property which is commented out with

. These properties must not be defined (uncommented) in your default service YAML configuration file.

Example:

In this example from the YAML configuration file, when the application service is run on the mainframe, provide your

mainframe hostname value on the Java execution command line in the following format:

Since this value is provided in the Java execution command line, leave the property commented out in the

application.yml .

For development purposes, you can replace or add any property by providing the same configuration structure in an

external YAML configuration file. When running your application, provide the name of the external/additional

configuration file on the command line in the following format:

A property notation provided in the format -Dproperty.key=PROPERTY_VALUE can be used for two purposes:

To provide a runtime value for any YAML property if ${property.key} is used as its value (after :) in the YAML

configuration file

Example:

To add a property to configuration if the property does not already exist

Example:

NOTE

System properties provided with -D notation on the command line will not replace properties defined in any of the

YAML configuration files.

Authentication properties

These parameters are not required. If a parameter is not specified, a default value is used.

API ML Onboarding Configuration Sample

Some parameters which are specific for your service deployment are written in <fill-your-parameterValue> format.

For your service configuration file, provide actual values or externalize your configuration using -D java commandline

parameters.

TIP

To determine if your configuration is complete, set the logging level to debug and run your application. Setting the

logging level to 'debug' enables you to troubleshoot issues with certificates for HTTPS and connections with other

services.

3. Provide the suitable parameter corresponding to your runtime environment:

For a local machine runtime environment, provide the following parameter on your command line:

At runtime, Spring will merge the two YAML configuration files, whereby the properties in the external file have

higher priority.

For a mainframe execution environment, provide environment specific configuration properties. Define these

configuration properties and provide them using Java System Properties on the application execution command line.

Important! Ensure that the default configuration contains only properties which are not dependent on the

deployment environment. Do not include security sensitive data in the default configuration.

Note: For details about the configuration properties, see Configuring your service in the article Onboarding an API

service with the Plain Java Enabler (PJE).

SAF Keyring configuration

You can choose to use a SAF keyring instead of keystore and truststore for storing certificates. For information about

required certificates, see Zowe API ML TLS requirements. For information about running Java on z/OS with a keyring, see

SAF Keyring. Make sure that the enabler can access and read the keyring. Please refer to documentation of your security

system for details.

The following example shows enabler configuration with keyrings:

Custom Metadata

Click here for a full example of API service configuration.

https://docs.zowe.org/stable/extend/extend-apiml/onboard-plain-java-enabler#configuring-your-service
https://docs.zowe.org/stable/extend/extend-apiml/zowe-api-mediation-layer-security-overview#zowe-api-ml-tls-requirements
https://docs.zowe.org/stable/extend/extend-apiml/certificate-management-in-zowe-apiml

For information about customizing metadata to add to the instance information registered in the Discovery Service, see

Customizing Metadata.

Registering and unregistering your service with API ML

Onboarding a REST service to the API ML means registering the service with the API ML Discovery Service. The

registration is triggered automatically by Spring after the service application context is fully initialized by firing a

ContextRefreshed event.

To register your REST service with API ML using a Spring Boot enabler, annotate your application main class with

@EnableApiDiscovery .

Unregistering your service with API ML

Unregistering a service onboarded with API ML is done automatically at the end of the service application shutdown

process in which Spring fires a ContextClosed event. The Spring onboarding enabler listens for this event and issues an

unregister REST call to the API ML Discovery Service.

Basic routing

For information about basic routing in the API ML, see API ML Basic Routing

Adding API documentation

Use the following procedure to add Swagger API documentation to your project.

Follow these steps:

1. Add a SpringFox Swagger dependency.

For Gradle, add the following dependency in build.gradle :

For Maven, add the following dependency in pom.xml :

2. Add a Spring configuration class to your project.

Example:

3. Customize this configuration according to your specifications. For more information about customization properties,

see Springdoc configuration.

Validating the discoverability of your API service by the

Discovery Service

Once you build and start your service successfully, you can use the option of validating that your service is registered

correctly with the API ML Discovery Service.

Follow these steps:

https://docs.zowe.org/stable/extend/extend-apiml/custom-metadata
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-routing
https://springdoc.org/#properties

1. Validate successful onboarding

2. Check that you can access your API service endpoints through the Gateway.

3. (Optional) Check that you can access your API service endpoints directly outside of the Gateway.

Specific addresses and user credentials for the individual API ML components depend on your target runtime

environment.

NOTE

If you are working with local installation of API ML and you are using our dummy identity provider, enter user for

both username and password . If API ML was installed by system administrators, ask them to provide you with actual

addresses of API ML components and the respective user credentials.

TIPS:

Wait for the Discovery Service to fully register your service. This process may take a few minutes after your

service was successfully started.

The Spring Boot Enabler supports the use of the API Mediation Layer Message Service. For more information

about the Message Service, see Using API Mediation Layer Message Service.

Troubleshooting

Log messages during registration problems

When an Enabler connects to the Discovery Service and fails, an error message prints to the Enabler log. The default

setting does not suppress these messages as they are useful to resolve problems during the Enabler registration.

Possible reasons for failure include the location of Discovery Service is not correct, the Discovery Service is down, or the

TLS certificate is invalid. These messages continue to print to the Enabler log, while the Enabler retries to connect to the

Discovery Service.

To fully suppress these messages in your logging framework, set the log levels to OFF on the following loggers:

Some logging frameworks provide other tools to suppress repeated messages. Consult the documentation of the logging

framework you use to find out what tools are available. The following example demonstrates how the Logback

framework can be used to suppress repeated messages.

Example:

Add the following code to your configuration file if you use XML configuration:

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview#verify-successful-onboarding-to-api-ml
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-message-service

Version: v3.3.x LTS

Onboarding a Micronaut based REST API service

This article is part of a series of onboarding guides, which outline the process of onboarding API services to the Zowe API

Mediation Layer (API ML).

ROLE: API SERVICE DEVELOPER

One option to onboard a REST service to the Zowe API Mediation Layer is by using the Micronaut framework.

While using the Spring framework to develop a JVM-based service to register to the API ML is the recommended method,

you can use the procedure described in this article to onboard a service using the Micronaut framework.

NOTE

For more information about onboarding API services with the API ML, see the Onboarding Overview.

For Micronaut-related documentation, see the Micronaut website.

Onboarding a Micronaut based REST API service

Set up your build automation system

Configure the Micronaut application

Add API ML configuration

Add Micronaut configuration

(Optional) Set up logging configuration

Validate successful registration

Set up your build automation system

Currently, the only build automation system for use with onboarding a Micronaut based service is Gradle.

1. Create a gradle.properties file in the root of your project if one does not already exist.

2. In the gradle.properties file, set the URL of the specific Artifactory containing the SpringEnabler artifact.

3. Add the following Gradle code block to the repositories section of your build.gradle file:

4. In the build.gradle file, add the micronaut enabler as a dependency:

5. (Optional) Add a shadow plug-in to create a runnable jar file. Update the gradle.build file with a plugin:

6. Specify the main class with the following script:

7. Define the output jar file.

Add the following script to define the output of the jar file:

The following example shows a sample gradle.build file:

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://docs.micronaut.io/latest/guide/index#introduction

Example:

8. (Optional) Create a shadow jar.

To create a shadow jar, execute the gradle shadowJar task. For this sample, the plugin produces the jar micronaut-

enabler-1.0.jar in build/libs directory.

You can now run your application with the command java -jar micronaut-enabler-1.0.jar .

9. Start the application.

From the root directory of your project, start the application with the gradle run command.

Configure the Micronaut application

Use a yaml file to configure your Micronaut application. Create the following two sections in your yaml file:

apiml for API ML configuration

micronaut for micronaut configuration

Add API ML configuration

Use the following procedure to add API ML configuration to the application.yaml.

Follow these steps:

1. Add the following configuration to the apiml section in the yaml file:

fill.your.service

Specifies the ID of your service

2. Add SSL-resolving properties as shown in the following example. Ensure that you structure the nested objects within

apiml.service as arrays. Be sure to include - (hyphen) before enabled thereby indicating the first element of the

array.

Example:

NOTE

For a sample of this configuration, see API ML Onboarding Configuration Sample.

The yaml now contains configuration to register to the API Mediation Layer.

Add Micronaut configuration

Once you complete API ML configuration, add configuration to provide correct mapping between API ML and micronaut

parameters.

1. Add the following yaml snippet with the micronaut configuration parameters:

https://docs.zowe.org/stable/extend/extend-apiml/onboard-spring-boot-enabler#api-ml-onboarding-configuration-sample

apiml.service.serviceId

Specifies the ID of your service

apiml.service.port

Specifies the port on which the service listens

apiml.service.ssl[0].keyPassword

Specifies the password that protects the key in keystore

apiml.service.ssl[0].keyStoreType

Specifies the type of the keystore, (Example: PKCS12)

apiml.service.ssl[0].keyStore

Specifies the location of the keystore

apiml.service.ssl[0].keyAlias

Specifies the alias under which the key is stored in the keystore

apiml.service.ssl[0].trustStorePassword

Specifies the password that protects the certificates in the truststore

apiml.service.ssl[0].trustStore

Specifies the location of the truststore

apiml.service.ssl[0].trustStoreType

Specifies the type of the truststore, (Example: PKCS12)

apiml.service.ssl[0].ciphers

Specifies the list of ciphers that user wants to enable for TLS communication

apiml.service.ssl[0].protocol

Specifies the type of SSL/TLS protocol (Example: TLSv1.2)

(Optional) Set up logging configuration

Set up custom logging configuration to have more structured output and better control of logs.

Create a logback.xml file in the resources folder and include the application.yml . Update the logback.xml file with

the following configuration:

Validate successful registration

After you complete the configuration, ensure that your application is visible within Zowe API ML. For more information,

see Validating the discoverability of your API service by the Discovery Service, which describes the validation procedure

common for all enablers.

https://docs.zowe.org/stable/extend/extend-apiml/onboard-spring-boot-enabler#validating-the-discoverability-of-your-api-service-by-the-discovery-service

Version: v3.3.x LTS

Onboarding a Node.js based REST API service

This article is part of a series of onboarding articles, which outline the process of onboarding REST API services to the

Zowe API Mediation Layer (API ML).

ROLE: API SERVICE DEVELOPER

Review this article to onboard a REST service based on NodeJS with the Zowe API Mediation Layer by using the Node.js

Enabler.

NOTE

For more information about onboarding API services with the API ML, see the Onboarding Overview.

Introduction

The API ML onboarding Node.js enabler is an NPM package which helps to simplify the process of onboarding a REST

service written in Node.js with the API ML.

For more information about how to utilize another API ML enablers, see the Onboarding Overview.

Onboarding your Node.js service with API ML

The following steps outline the overall process to onboard a REST service with the API ML using the onboarding Node.js

enabler. Each step is described in further detail in this article.

Onboarding a Node.js based REST API service

Introduction

Onboarding your Node.js service with API ML

Prerequisites

Installing the npm dependency

Configuring your service

Registering your service with API ML

Validating the discoverability of your API service by the Discovery Service

Prerequisites

Ensure that you meet the following prerequisites:

You satisfy the prerequisites from the Onboarding Overview.

The REST API service to onboard is written in Node.js.

The service is enabled to communicate with API ML Discovery Service over a TLS v1.2 secured connection.

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://www.npmjs.com/package/@zowe/apiml-onboarding-enabler-nodejs
https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview

Installing the npm dependency

Install the onboarding Node.js enabler package as a dependency of your service. Run the following npm command from

your project directory:

NOTE

If you have a multi-module project, you have to run the npm command from the submodule where your Node.js

project is located.

Configuring your service

Create a yaml file named service-configuration.yml inside a /config directory at the same level of your index.js ,

and add the following configuration properties.

The following example shows a sample configuration.

Example:

Registering your service with API ML

To register your service with API ML, use the following procedure.

1. Inside your Node.js service index.js , add the following code block to register your service with Eureka:

2. Start your Node.js service and verify that the service is registered to the Zowe API Mediation Layer.

Validating the discoverability of your API service by the

Discovery Service

Once you build and start your service successfully, you can use the option of validating that your service is registered

correctly with the API ML Discovery Service.

1. Validate successful onboarding

2. Check that you can access your API service endpoints through the Gateway.

3. (Optional) Check that you can access your API service endpoints directly outside of the Gateway.

Specific addresses and user credentials for the individual API ML components depend on your target runtime

environment.

NOTES:

If you are working with a local installation of API ML, and you are using our dummy identity provider, enter user

for both username and password . If API ML was installed by system administrators, ask them to provide you

with actual addresses of API ML components and the respective user credentials.

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview#verify-successful-onboarding-to-api-ml

Wait for the Discovery Service to fully register your service. This process may take a few minutes after your

service starts successfully.

Version: v3.3.x LTS

Onboarding a Python based REST API service

This article is part of a series of onboarding articles, which outline the process of onboarding REST API services to Zowe

API Mediation Layer (API ML).

ROLE: API SERVICE DEVELOPER

REST services based on Python can be onboarded with Zowe API ML using the Python Enabler.

NOTE

For more information about the range of options to onboard API services with API ML, see the Onboarding Overview.

Introduction

The API ML onboarding Python enabler is a Python package which helps to simplify the process of onboarding a REST

service written in Python with API ML.

Follow the steps described in this article to onboard a REST API service with API ML using the onboarding Python enabler.

Prerequisites

Ensure that you meet the following prerequisites:

You satisfy the prerequisites from the Onboarding Overview.

The REST API service to onboard is written in Python.

The service is enabled to communicate with API ML Discovery Service over a TLS v1.2 secured connection.

Installing the Python dependency

Install the onboarding Python enabler package as a dependency of your service. Run the following pip command from

your project directory:

NOTE

If you have a multi-module project, ensure that you run the pip command from the submodule where your Python

project is located.

Configuring your service

Create a yaml file named service-configuration.yml inside the /config directory at the same level of your app.py .

Add the configuration properties as presented in the following configuration example.

Example:

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://pypi.org/project/zowe-apiml-onboarding-enabler-python/
https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview

Registering your service with API ML

To register your service with API ML, use the following procedure:

1. Inside your Python service app.py , add the following script to register your service with Eureka:

2. Start your Python service and verify that the service is registered to Zowe API Mediation Layer.

Validating the discoverability of your API service by the

Discovery Service

Once you build and start your service successfully, you can validate that your service is registered correctly with the API

ML Discovery Service.

1. Validate successful onboarding.

2. Check that you can access your API service endpoints through the Gateway.

3. (Optional) Check that you can access your API service endpoints directly outside the Gateway.

Specific addresses and user credentials for the individual API ML components depend on your target runtime

environment.

NOTES:

If you are working with a local installation of API ML, and you are using the provided dummy identity provider,

enter user for both username and password . If API ML was installed by system administrators, ask them to

provide you with actual addresses of API ML components and the respective user credentials.

Wait for the Discovery Service to fully register your service. This process may take a few minutes after your

service starts successfully.

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview#verify-successful-onboarding-to-api-ml

Version: v3.3.x LTS

Onboarding a REST or GraphQL API without code

changes required

This article is part of a series of onboarding guides, which outline the process of onboarding API services to the Zowe API

Mediation Layer (API ML).

ROLE: API SERVICE DEVELOPER

Review this article to onboard an existing REST or GraphQL API service to the Zowe™ API Mediation Layer without

changing the code of the API service. This form of onboarding is also refered to as, "static onboarding".

NOTE

When developing a new service, it is not recommended to onboard a service using this method, as this method is

non-native to the API Mediation Layer. For a complete list of methods to onboard a service natively to the API

Mediation Layer, see the Service onboarding guides in the Onboarding overview.

The following procedure outlines the steps to onboard an API service through the API Gateway in the API Mediation Layer

without requiring code changes.

Onboarding a REST or GraphQL API without code changes required

Identify the APIs that you want to expose

Define your service and API in YAML format

Route your API

Customize configuration parameters

Add and validate the definition in the API Mediation Layer running on your machine

Add a definition in the API Mediation Layer in the Zowe runtime

(Optional) Check the log of the API Mediation Layer

(Optional) Reload the services definition after the update when the API Mediation Layer is already started

TIP

For more information about the structure of APIs and which APIs to expose in the Zowe API Mediation Layer, see the

Onboarding Overview.

Identify the APIs that you want to expose

The first step in API service onboarding is to identify the APIs that you want to expose.

Follow these steps:

1. Identify the following parameters of your API service:

Hostname

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview#service-onboarding-guides
https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview

Port

(Optional) base path where the service is available. This URL is called the base URL of the service.

Example:

In the sample service described in the Onboarding Overview, the URL of the service is: http://localhost:8080 .

2. Identify the API of the service that you want to expose through the API Gateway.

Example:

The API provided by the sample service is a second version of the Pet Store API. All the endpoints to be onboarded

are available through http://localhost:8080/v2/ URL. This API is therefore available at the path /v2 relative to

base URL of the service. There is no version 1 in this case.

3. Choose the service ID of your service. The service ID identifies the service uniquely in the API Gateway. The

service ID is an alphanumeric string in lowercase ASCII.

Example:

In the sample service, the service ID is petstore .

4. Decide which URL to use to make this API available in the API Gateway. This URL is referred to as the gateway URL

and is composed of the API type and the major version. The usually used types are: api , ui and ws but you can use

any valid URL element you want.

Example:

In the sample service, we provide a REST API. The first segment is /api as the service provides only one REST API.

To indicate that this is version 2, the second segment is /v2 . This version is required by the Gateway. If your service

does not have a version, use v1 on the Gateway.

Define your service and API in YAML format

After you identify the APIs you want to expose, you need to define your service and API in YAML format as presented in

the following sample petstore service example.

Example:

To define your service in YAML format, provide the following definition in a YAML file as in the following sample petstore

service. This configuration is the minimal configuration necessary for the Gateway to properly route the requests to the

application and to show the Service in the Catalog UI.

NOTE

For more details about configuration, see Customize configuration parameters.

In this example, a suitable name for the file is petstore.yml .

NOTES:

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview#sample-rest-api-service
https://docs.zowe.org/stable/extend/extend-apiml/onboard-static-definition#customize-configuration-parameters

The filename does not need to follow specific naming conventions but it requires the .yml extension.

The file can contain one or more services defined under the services: node.

Each service has a service ID. In this example, the service ID is petstore . The service id is used as a part of the

request URL towards the Gateway. It is removed by the Gateway when forwarding the request to the service.

The service can have one or more instances. In this case, only one instance http://localhost:8080 is used.

One API is provided and the requests with the relative base path api/v2 at the API Gateway (full gateway URL:

https://gateway:port/serviceId/api/v2/...) are routed to the relative base path /v2 at the full URL of the

service (http://localhost:8080/v2/...).

The file on USS should be encoded in ASCII to be read correctly by the API Mediation Layer.

TIPS:

There are more examples of API definitions at this link.

For more details about how to use YAML format, see this link.

Route your API

Routing is the process of sending requests from the API Gateway to a specific API service. Route your API by using the

same format as in the following petstore example. The configuration parameters are explained in Customize

configuration parameters. Gateway URL format:

NOTE

The API Gateway differentiates major versions of an API.

Example:

When the configuration parameters are:

To access API version 2 of the service petstore , gateway URL will be:

It will be routed to:

To access resource pets of the petstore version 2 API, gateway URL will be:

It will be routed to:

NOTE

This method enables you to access the service through a stable URL, and move the service to another machine

without changing the gateway URL. Accessing a service through the API Gateway also enables you to have multiple

instances of the service running on different machines to achieve high-availability.

Customize configuration parameters

This part contains a more complex example of the configuration and an explanation of all the possible parameters:

https://github.com/zowe/api-layer/tree/master/config/local/api-defs
https://learnxinyminutes.com/docs/yaml/

REST API

GraphQL API

serviceId

This parameter specifies the service instance identifier that is registered in the API Mediation Layer installation. The

service ID is used in the URL for routing to the API service through the Gateway. The service ID uniquely identifies

the service in the API Mediation Layer. The system administrator at the customer site defines this parameter.

CAUTION

Ensure that the service ID is set properly with the following considerations:

When two API services use the same service ID, the API Gateway considers the services to be clones (i.e. two

instances for the same service). An incoming API request can be routed to either of them.

The same service ID should be set only for multiple API service instances for API scalability.

The service ID value must contain only lowercase alphanumeric characters.

The service ID cannot contain more than 40 characters.

The service ID is linked to security resources. Changes to the service ID require an update of security resources.

Examples:

If the customer system administrator sets the service ID to monitoringpr1 , the API URL in the API Gateway

appears as the following URL:

https://gateway:port/monitoringpr1/api/v1/...

If customer system administrator sets the service ID to authenticationprod1 , the API URL in the API Gateway

appears as the following URL:

http://gateway:port/authenticationprod1/api/v1/...

title

This parameter specifies the human readable name of the API service instance (for example, Monitoring Prod or

systemInfo LPAR1). This value is displayed in the API catalog when a specific API service instance is selected. This

parameter is externalized and set by the customer system administrator.

Click here for a sample yaml file for a REST API.

Click here for a sample yaml file for a GraphQL API.

Tip: We recommend that you provide a specific default value of the title . Use a title that describes the service

instance so that the end user knows the specific purpose of the service instance.

description

This parameter specifies a short description of the API service.

Examples:

Monitoring Service - Production Instance

System Info Service running on LPAR1

This value is displayed in the API Catalog when a specific API service instance is selected. This parameter is

externalized and set by the customer system administrator.

TIP

Describe the service so that the end user knows the function of the service.

instanceBaseUrls

This parameter specifies a list of base URLs to your service's resource. It will be the prefix for the following URLs:

homePageRelativeUrl

statusPageRelativeUrl

healthCheckRelativeUrl

Examples:

- http://host:port/ftpservice for an HTTP service

- https://host:port/source-code-mngmnt for an HTTPS service

You can provide one URL if your service has one instance. If your service provides multiple instances for the high-

availability then you can provide URLs to these instances.

Examples:

- https://host1:port1/source-code-mngmnt

- https://host2:port2/source-code-mngmnt

homePageRelativeUrl

This parameter specifies the relative path to the homepage of your service. The path should start with / . If your

service has no homepage, omit this parameter. The path is relative to the instanceBaseUrls.

Examples:

homePageRelativeUrl: / The service has homepage with URL ${baseUrl}/

homePageRelativeUrl: /ui/ The service has homepage with URL ${baseUrl}/ui/

homePageRelativeUrl: The service has homepage with URL ${baseUrl}

statusPageRelativeUrl

This parameter specifies the relative path to the status page of your service. Start this path with / . If you service

doesn't have a status page, omit this parameter. The path is relative to the instanceBaseUrls.

Example:

statusPageRelativeUrl: /application/info

the result URL will be:

${baseUrl}/application/info

healthCheckRelativeUrl

This parameter specifies the relative path to the health check endpoint of your service. Start this URL with / . If your

service does not have a health check endpoint, omit this parameter. The path is relative to the instanceBaseUrls.

Example:

healthCheckRelativeUrl: /application/health

This results in the URL:

${baseUrl}/application/health

routes

The following parameters specify the routing rules between the Gateway service and your service. Both specify how

the API endpoints are mapped to the API Gateway endpoints.

routes.gatewayUrl

The gatewayUrl parameter sets the target endpoint on the Gateway. This is the portion of the final URL that is

Gateway specific.

Example:

For the petstore example, the full Gateway URL would be:

https://gatewayUrl:1345/petstore/api/v2/pets/1

In this case, the URL that will be called on the service is:

http://localhost:8080/v2/pets/1

routes.serviceRelativeUrl

The serviceRelativeUrl parameter points to the target endpoint on the service. This is the base path on the

service called through the Gateway.

authentication

The information about the possible ways to integrate authentication are available in Single Sign On Integration for

Extenders article.

https://docs.zowe.org/stable/extend/extend-apiml/api-medation-sso-integration-extenders
https://docs.zowe.org/stable/extend/extend-apiml/api-medation-sso-integration-extenders

apiInfo

This section defines APIs that are provided by the service. Currently, only one API is supported.

apiInfo.apiId

This parameter specifies the API identifier that is registered in the API Mediation Layer installation. The API ID

uniquely identifies the API in the API Mediation Layer. The same API can be provided by multiple services. The

API ID can be used to locate the same APIs that are provided by different services.

The creator of the API defines this ID. The API ID needs to be a string of up to 64 characters that uses lowercase

alphanumeric characters and a dot: . .

Tip: We recommend that you use your organization as the prefix.

Examples:

zowe.file

ca.sysview

ibm.zosmf

apiInfo.gatewayUrl

This parameter specifies the base path at the API Gateway where the API is available. Ensure that this path is the

same as the gatewayUrl value in the routes sections.

apiInfo.swaggerUrl

(Optional) This parameter specifies the HTTP or HTTPS address where the Swagger JSON document is available.

apiInfo.graphqlUrl

(Optional) This parameter specifies the HTTP or HTTPS address where GraphQL server is available.

Specific for REST API

apiInfo.documentationUrl

(Optional) This parameter specifies a URL to a website where external documentation is provided. This can be

used when neither swaggerUrl not graphqlUrl are provided.

apiInfo.version

(Optional) This parameter specifies the actual version of the API in semantic versioning format. This can be used

when swaggerUrl is not provided.

apiInfo.defaultApi

(Optional) This parameter specifics that the API is the default one to show in the API Catalog. If this not set to

true for any API, or multiple APIs have it set to true, then the default API becomes the API with the highest major

version as seen in apiInfo.version .

apiInfo.codeSnippet (Optional)

https://semver.org/

specifies the customized code snippet for a specific endpoint (API operation). The snippet is displayed in the API

Catalog under the specified operation, after executing the request using the Try it out functionality. This can be

used when swaggerUrl is not provided. When specifying this configuration, you need to provide the following

parameters:

endpoint

The endpoint that represents the API operation of the customized snippet

language

The language of the snippet

codeBlock

The content of the snippet to be displayed in the API Catalog

customMetadata

Custom metadata are described here.

catalogUiTileId

This parameter specifies the unique identifier for the API services group. This is the grouping value used by the API

Mediation Layer to group multiple API services together into "tiles". Each unique identifier represents a single API

Catalog UI dashboard tile. Specify the value based on the ID of the defined tile.

catalogUiTile

This section contains definitions of tiles. Each tile is defined in a section that has its tile ID as a key. A tile can be

used by multiple services.

catalogUiTile.{tileId}.title

This parameter specifies the title of the API services product family. This value is displayed in the API Catalog UI

dashboard as the tile title.

catalogUiTile.{tileId}.description

This parameter specifies the detailed description of the API Catalog UI dashboard tile. This value is displayed in

the API Catalog UI dashboard as the tile description.

additionalServiceMetadata

This section contains a list of changes that allows adding or modifying metadata parameters for the corresponding

service.

additionalServiceMetadata.serviceId

This parameter specifies the service identifier for which metadata is updated.

additionalServiceMetadata.mode

This parameter specifies how the metadata are updated. The following modes are available:

UPDATE

Only missing parameters are added. Already existing parameters are ignored.

https://docs.zowe.org/stable/extend/extend-apiml/custom-metadata

FORCE_UPDATE

All changes are applied. Existing parameters are overwritten.

additionalServiceMetadata.{updatedParameter}

This parameter specifies any metadata parameters that are updated.

Add and validate the definition in the API Mediation Layer

running on your machine

After you define the service in YAML format, you are ready to add your service definition to the API Mediation Layer

ecosystem.

The following procedure describes how to add your service to the API Mediation Layer on your local machine.

Follow these steps:

1. Copy or move your YAML file to the config/local/api-defs directory in the directory with API Mediation Layer.

2. Start the API Mediation Layer services.

Tip: For more information about how to run the API Mediation Layer locally, see Running the API Mediation Layer on

Local Machine.

3. Run your Java application.

Tip: Wait for the services to be ready. This process may take a few minutes.

4. Validate successful onboarding

You successfully defined your Java application if your service is running and you can access the service endpoints.

The following example is the service endpoint for the sample application:

https://localhost:10010/petstore/api/v2/pets/1

Add a definition in the API Mediation Layer in the Zowe

runtime

After you define and validate the service in YAML format, you are ready to add your service definition to the API

Mediation Layer running as part of the Zowe runtime installation on z/OS.

Follow these steps:

1. Locate the Zowe instance directory. The Zowe instance directory is the directory from which Zowe was launched, or

else was passed as an argument to the SDSF command used to start Zowe. If you are unsure which instance

directory a particular Zowe job is using, open the JESJCL spool file and navigate to the line that contains STARTING

EXEC ZWESLSTC,INSTANCE= . This is the fully qualified path to the instance directory.

NOTE

https://github.com/zowe/api-layer/blob/master/docs/local-configuration.md
https://github.com/zowe/api-layer/blob/master/docs/local-configuration.md
https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview#verify-successful-onboarding-to-api-ml

The ${zoweInstanceDir} symbol is used in following instructions.

2. Add the fully qualified zFS path of your YAML file to ZWE_STATIC_DEFINITIONS_DIR in zowe.yaml .

To hold your YAML file outside of the instance directory, add ZWE_STATIC_DEFINITIONS_DIR variable to the

zowe.environments section of zowe.yaml . Append the fully qualified zFS path of the YAML file to the

ZWE_STATIC_DEFINITIONS_DIR variable. You may specify multiple zFS paths, separating each path by a

semicolon.

To place your YAML file within the instance directory, copy your YAML file to the

${zoweInstanceDir}/workspace/api-mediation/api-defs directory.

NOTES:

The ${zoweInstanceDir}/workspace/api-mediation/api-defs directory is created the first time that Zowe

starts. If you have not yet started Zowe, this directory might be missing.

The user ID ZWESVUSR that runs the Zowe started task must have permission to read the YAML file.

3. Ensure that your application that provides the endpoints described in the YAML file is running.

4. Restart Zowe runtime or follow steps in section (Optional) Reload the services definition after the update when the

API Mediation Layer is already started which allows you to add your static API service to an already running Zowe.

5. Validate successful onboarding

You successfully defined your Java application if your service is running and you can access its endpoints. The endpoint

displayed for the sample application is:

(Optional) Check the log of the API Mediation Layer

The API Mediation Layer log can contain messages based on the API ML configuration. The API ML prints the following

messages to its log when the API definitions are processed:

NOTE

If these messages are not displayed in the log, ensure that the API ML debug mode is active.

(Optional) Reload the services definition after the update when

the API Mediation Layer is already started

The following procedure enables you to refresh the API definitions after you change the definitions when the API

Mediation Layer is already running.

Follow these steps:

1. Use a REST API client to issue a POST request to the Discovery Service (port 10011):

http://localhost:10011/discovery/api/v1/staticApi

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview#verify-successful-onboarding-to-api-ml
https://docs.zowe.org/stable/troubleshoot/troubleshoot-apiml#enable-api-ml-debug-mode

The Discovery Service requires authentication by a client certificate. If the API Mediation Layer is running on your

local machine, the certificate is stored at keystore/localhost/localhost.pem .

This example uses the HTTPie command-line HTTP client and is run with Python 3 installed:

Alternatively, it is possible to use curl to issue the POST call if it is installed on your system:

2. Check if your updated definition is effective.

NOTE

It can take up to 30 seconds for the API Gateway to pick up the new routing.

https://httpie.org/

Version: v3.3.x LTS

Optional features to use with onboarded APIs

The following features are available to use with APIs that have been onboarded to Zowe API Mediation Layer:

Using API Mediation Layer Message Service

This feature is available for use with the Plain Java and Spring Boot Enablers.

Customizing Metadata (optional)

https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-message-service
https://docs.zowe.org/stable/extend/extend-apiml/onboard-plain-java-enabler
https://docs.zowe.org/stable/extend/extend-apiml/onboard-spring-boot-enabler
https://docs.zowe.org/stable/extend/extend-apiml/custom-metadata

Version: v3.3.x LTS

Using API Mediation Layer Message Service

The API ML Message Service component unifies and stores REST API error messages and log messages in a single file.

The Message Service component enables users to mitigate the problem of message definition redundancy which helps to

optimize the development process.

Message Definition

Creating a message

Mapping a message

API ML Logger

Message Definition

API ML uses a customizable infrastructure to format both REST API error messages and log messages. yaml files make it

possible to centralize both API error messages and log messages. Messages have the following definitions:

Message key - a unique ID in the form of a dot-delimited string that describes the reason for the message. The key

enables the UI or the console to show a meaningful and localized message.

TIPS:

We recommend using the format org.zowe.sample.apiservice.{TYPE}.greeting.empty to define the

message key. {TYPE} can be the api or log keyword.

Use the message key and not the message number . The message number makes the code less readable,

and increases the possibility of errors when renumbering values inside the number .

Message number - a typical mainframe message ID (excluding the severity code)

Message type - There are two Massage types:

REST API error messages: ERROR

Log messages: ERROR , WARNING , INFO , DEBUG , or TRACE

Message text - a description of the issue

Message reason - A reason for why this issue occured

Message action - What should I as a user do to correct the problem

The following example shows the message definition.

Example:

Creating a message

Use the following classes when you create a message:

org.zowe.apiml.message.core.MessageService - lets you create a message from a file.

org.zowe.apiml.message.yaml.YamlMessageService - implements org.zowe.apiml.message.core.MessageService

so that org.zowe.apiml.message.yaml.YamlMessageService can read message information from a yaml file, and

create a message with message parameters.

Use the following process to create a message.

Follow these steps:

1. Load messages from the yaml file.

Example:

2. Use the Message createMessage(String key, Object... parameters); method to create a message.

Example:

Mapping a message

You can map the Message either to a REST API response or to a log message.

When you map a REST API response, use the following methods:

mapToView - returns a UI model as a list of API Message, and can be used for Rest API error messages

mapToApiMessage - returns a UI model as a single API Message

The following example is a result of using the mapToView method.

Example:

The following example is the result of using the mapToApiMessage method.

Example:

API ML Logger

The org.zowe.apiml.message.log.ApimLogger component controls messages through the Message Service component.

The following example uses the log message definition in a yaml file.

Example:

When you map a log message, use mapToLogMessage to return a log message as text. The following example is the

output of the mapToLogMessage .

Example:

Use the ApimlLogger to log messages which are defined in the yaml file.

Example:

The following example shows the output of a successful ApimlLogger usage.

Example:

Version: v3.3.x LTS

Customizing Metadata (optional)

Additional metadata can be added to the instance information that is registered in the Discovery Service in the

customMetadata section. This information is propagated from the Discovery Service to the onboarded services (clients).

In general, additional metadata do not change the behavior of the client. Some specific metadata can configure the

functionality of the API Mediation Layer. Such metadata are generally prefixed with the apiml. qualifier. We recommend

you define your own qualifier, and group all metadata you wish to publish under this qualifier. If you use the Spring

enabler, ensure that you include the prefix apiml.service before the parameter name.

customMetadata.apiml.enableUrlEncodedCharacters

When this parameter is set to true , the Gateway allows encoded characters to be part of URL requests redirected

through the Gateway. The default setting of true is the recommended setting. Change this setting to false only if

you do not want certain encoded characters in your application's requests.

IMPORTANT

When the expected encoded character is an encoded slash or backslash (%2F , %5C), make sure the Gateway is

also configured to allow encoded slashes. For more information, see Zowe runtime in Zowe server-side

installation overview.

NOTE

If you use the Spring enabler, use the following parameter name:

apiml.service.customMetadata.apiml.enableUrlEncodedCharacters

customMetadata.apiml.connectTimeout

The value in milliseconds that specifies a period in which API ML should establish a single, non-managed connection

with this service. If omitted, the default value specified in the API ML Gateway service configuration is used.

NOTE

If you use the Spring enabler, use the following parameter name:

apiml.service.customMetadata.apiml.connectTimeout

customMetadata.apiml.readTimeout

The value in milliseconds that specifies the time of inactivity between two packets in response from this service to

API ML. If omitted, the default value specified in the API ML Gateway service configuration is used.

NOTE

If you use the Spring enabler, use the following parameter name:

apiml.service.customMetadata.apiml.readTimeout

customMetadata.apiml.connectionManagerTimeout

HttpClient employs the HTTP connection manager to manage access to HTTP connections. The purpose of an HTTP

connection manager is to create new HTTP connections, to manage the life cycle of persistent connections, and to

synchronize access to persistent connections. Internally, the HTTP connection manager works with managed

https://docs.zowe.org/stable/user-guide/install-zos#zowe-runtime

connections which serve as proxies for real connections. connectionManagerTimeout specifies a period in which

managed connections with API ML are to be established. The value is in milliseconds. If omitted, the default value

specified in the API ML Gateway service configuration is used.

NOTE

If you use the Spring enabler, use the following parameter name:

apiml.service.customMetadata.apiml.connectionManagerTimeout

customMetadata.apiml.okToRetryOnAllOperations

Specifies whether all operations can be retried for this service. The default value is false . The false value allows

retries for only GET requests if a response code of 503 is returned. Setting this value to true enables retry requests

for all methods, which return a 503 response code. Enabling retry can impact server resources resulting from

buffering of the request body.

NOTE

If you use the Spring enabler, use the following parameter name:

apiml.service.customMetadata.apiml.okToRetryOnAllOperations

customMetadata.apiml.corsEnabled

When this parameter is set to true , CORS handling by the Gateway is enabled on the service level for all service

routes.

For more information, refer to enabling CORS with Custom Metadata on the Gateway: Customizing Cross-Origin

Resource Sharing (CORS). Additional information can be found in this article about Cross-Origin Resource Sharing

(CORS).

NOTE

If you use the Spring enabler, use the following parameter name:

apiml.service.customMetadata.apiml.corsEnabled

customMetadata.apiml.gatewayAuthEndpoint

Specifies the Gateway authentication endpoint used by the ZAAS Client configuration. The default value is

/api/v1/gateway/auth . For more information about ZAAS Client, see ZAAS Client.

NOTE

If you use the Spring enabler, use the following parameter name:

apiml.service.customMetadata.apiml.gatewayAuthEndpoint

customMetadata.apiml.gatewayPort

Specifies the Gateway port used by the ZAAS Client configuration. The default value is 10010 . For more information

about ZAAS Client, see ZAAS Client.

NOTE

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-cors
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-cors
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://docs.zowe.org/stable/extend/extend-apiml/zaas-client
https://docs.zowe.org/stable/extend/extend-apiml/zaas-client

If you use the Spring enabler, use the following parameter name:

apiml.service.customMetadata.apiml.gatewayPort

customMetadata.apiml.corsAllowedOrigins

Optionally, service can specify which origins are to be accepted by the Gateway during CORS handling. When this

parameter is not set, the accepted origins are * by default. You can provide a comma-separated list of values to

explicitly limit the accepted origins.

NOTE

If you use the Spring enabler, use the following parameter name:

apiml.service.customMetadata.apiml.corsAllowedOrigins

For more information, refer to enabling CORS with Custom Metadata on the Gateway: Customizing Cross-Origin

Resource Sharing (CORS).

customMetadata.apiml.lb.type

This parameter is part of the load balancing configuration for the Deterministic Routing capability. Through this

parameter, the service can specify which load balancing schema the service requires. If this parameter is not

specified, the service is routed using the basic round robin schema. This parameter can be set to the following

values:

headerRequest

This value applies the Header Request load balancing schema. Clients can call the API Gateway and provide a

special header with the value of the requested instanceId. The Gateway understands this as a request from the

client for routing to a specific instance. Clients have several possibilities for understanding the topology of

service instances, such as via the /eureka/apps endpoint on the Discovery service, or the /gateway/services

endpoint on the Gateway. In either case, the information is provided. The client can then request a specific

instance by using the special header described below.

The header name is X-InstanceId , and the sample value is discoverable-client:discoverableclient:10012 .

This is identical to instanceId property in the registration of the Discovery service.

In combination with enabling Routed instance header, the client can achieve sticky session functionality. (The

term, 'sticky session' refers to the feature of many load balancing solutions to route the requests for a particular

session to the same physical machine that serviced the first request for that session). The benefit of this

approach is that there is no session on the Gateway, and the client ultimately decides whether or not to go to a

specific instance. This method uses the following sequence:

a. The client calls API Gateway and gets routed to a service.

b. The client reads the X-InstanceId header value from the response to understand the service was routed to.

c. For all subsequent requests, the client provides the X-InstanceId header with previously read value to get

routed to the same instance of the service.

authentication

This value applies the Authentication load balancing schema. This is a sticky session functionality based on the

ID of the user. The user ID is understood from the Zowe SSO token on the client's request. Requests without the

token are routed in a round robin fashion. The user is first routed in a round robin fashion, and then the routed

instance Id is cached. The instance information is used for subsequent requests to route the client to the cached

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-cors
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-cors
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-access-specific-instance-of-service

target service instance. This session's default expiration time is 8 hours. After the session expires, the process

initiates again.

In default configuration, this cache is stored on each Gateway instance. You can choose to distribute this cache

between the Gateway's instances. To do so, follow the steps described in Distributing the load balancer cache.

customMetadata.apiml.lb.cacheRecordExpirationTimeInHours

When the property customMetadata.apiml.lb.type is set to authentication , the user can also define the

expiration time for the selected instance information that is cached. This property aims to prevent any discrepancy

which might occur if the required target server is no longer available. The default value is 8 hours.

customMetadata.apiml.gateway.applyRateLimiterFilter

When this parameter is set to true , the rate limiter is applied to the request for this service. When enabling this

filter, you can also define the following properties:

customMetadata.apiml.gateway.rateLimiterCapacity

Defines the total number of requests that can be allowed at one time per user

customMetadata.apiml.gateway.rateLimiterTokens

Defines the number of requests that are added to the service’s allowance at regular intervals

customMetadata.apiml.gateway.rateLimiterRefillDuration

Sets the time interval (in minutes) at which new requests (or tokens) are added.

When no values are provided, global values defined in the Gateway are applied. For more information about the

default configuration, see Customizing gateway rate limiter filer.

customMetadata.apiml.response.compress

When this parameter is set to true , API ML compresses content for all responses from this services using GZIP. API

ML also adds the Content-Encoding header with value gzip to responses.

customMetadata.apiml.response.compressRoutes

When the customMetadata.apiml.response.compress parameter is set to true , this parameter allows services to

further limit the compressed routes. The parameter accepts ant style routes deliminated by , . The expectation is to

provide the absolute paths.

If relative paths are provided, the starting / is added. If the beginning of the pattern does not need to be specifically

defined, use **/{pathYouAreInterestedIn}

Examples:

/service/**

Compresses all paths starting with /service/

/service/api/v1/compress,/service/api/v1/custom-compress

Compresses the specific two routes

/**/compress/**

Compresses all paths that contain compress as a specific path

customMetadata.apiml.response.headers

(Optional) A service can specify headers that are added to the response by the Gateway. When this parameter is not

set or is empty, no headers are added. Header names and header values are separated by : . Multiple headers can

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-distributed-load-balancer-cache
https://docs.zowe.org/stable/user-guide/api-mediation/customizing-gateway-rate-limiter
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/AntPathMatcher.html

be added, delimited by , . If a header with the same name already exists in the response, the Gateway overwrites

the value of the header.

Examples:

Strict-Transport-Security:max-age=1234; includeSubDomains

Sets a header with name Strict-Transport-Security and value max-age=1234; includeSubDomains .

Strict-Transport-Security:max-age=1234; includeSubDomains, X-Frame-Options:SAMEORIGIN

Sets two headers:

a. Header with name Strict-Transport-Security and value max-age=1234; includeSubDomains .

b. Header with name X-Frame-Options and value `SAMEORIGIN.

customMetadata.apiml.headersToIgnore

(Optional) A service can specify headers that are removed from the request to the southbound service by the

Gateway. When this parameter is not set or is empty, no headers are removed. Multiple headers can be removed,

delimited by , .

Version: v3.3.x LTS

API ML Routing Overview

The API Mediation Layer (API ML) in Zowe acts as a Level 7 Load Balancer, using the API Gateway to route requests to

backend services. The routing feature supports both single and multiple API ML instances.

The following diagram shows a request for a specific job from a customer and the services involved in the delivery of the

request.

Key Concepts

Service

A service provides one or more APIs and is identified by a service ID. Note that sometimes the term "service name"

refers to the service ID.

The default service ID is provided by the service developer in the service configuration file.

A system administrator can replace the service ID with a specific name of the deployment environment using

additional configuration that is external to the service deployment unit. Typically, this name is configured in a JAR or

WAR file. Ensure that you detail how to specify the name in your service documentation.

Services are deployed using one or more service instances, which share the same service ID and implementation.

Instance

Refers to the instance of a specific service providing one or more APIs

Service ID

The unique identifier for each service

Instance Routing

Routes requests based on service instances

Versioning

Supports routing to specific service versions

Basic Routing

In basic routing, requests are routed using the service ID and optionally, the service version:

Example: https://gateway-url/api/v1/service-id

Routing Mechanism Routing can be configured for either single or multiple API ML instances

Single API ML Instance

Uses Eureka metadata for direct routing to a service based on the service ID

Multiple API ML Instances

Uses Eureka metadata for service discovery and load balancing

Implementation Details

Routing configuration is defined in Eureka metadata. Ensure proper setup for accurate routing. The following yaml file is

an example of Eureka metadata configuration:

This part of the service metadata configuration defines how the request coming from the upstream (northbound) service

will be accepted and then passed to the downstream (southbound) service.

The following shows service URL tansformations if the downstream (southbound) service has the contextPath zosmf:

The request https://apiml/zosmf/ui/v1/desktop from the user is transformed to https://service/zosmf/desktop

The request https://apiml/zosmf/api/v1/desktop from the user is transformed to

https://service/zosmf/api/v1/desktop

The request https://apiml/zosmf/ws/v1/desktop from the user is transformed to

https://service/zosmf/ws/desktop

Instance Routing

API ML supports routing to multiple instances of the same service, thereby distributing requests based on load balancing

policies. Ensure each service instance registers with a unique instance ID in Eureka.

Versioning

API ML makes it possible to specify the version of a service in the route. If a version is not specified, the latest version is

used by default. Version specified routing provides flexibility in deploying and updating services without affecting

existing clients.

Example Usage

The following URL is an example of routing to a specific version of a service:

Note that if no version is specified, as in the following example, the request defaults to the latest service version:

Deployments

Deployment can be for single or multiple instances.

A single instance of the API Mediation Layer with one or more instances of the services onboarded

Multiple instances of the API Mediation Layer in High Availability setup with one or more instances of the services

onboarded

The onboarded services may be onboarded in one or more instances and the APIs that the services provide may be

versioned. API Mediation Layer supports distinction on the major version boundary.

Making a GET call to a service through single instance of API ML

When there is one instance of the API Mediation Layer in the system, the API ML is expected to be the entry point to the

system. The following diagrams show the process of making a GET call to a service available on a single instance.

A GET call to a service with a single version on a single instance

The following diagram shows the flow of a GET request through different involved components to the z/OSMF service

deployed on one LPAR with one instance. z/OSMF in this case does not version the API.

A GET call to a service with multiple versions on a single instance

The following diagram shows the flow of a GET request through different involved components to the z/OSMF service

deployed on one LPAR with one instance. In this case, z/OSMF versions the API and the request is intended for a specific

major version.

GET calls to multiple instances of a service

The following diagram shows the flow of a GET request through different involved components to the z/OSMF service

deployed on one LPAR with multiple instances. In this case, z/OSMF versions the API and the request is intended for a

specific major version.

A GET call to a service through multiple API Mediation Layer Instances

When there are multiple API Mediation Layer Instances in the system, DVIPA is expected as the load balancer which

distributes requests to API Mediation Layer instances. API Mediation Layer subsequently distributes the requests to the

running instances of the specific service. The following diagrams shows the flow of a single request.

Same LPAR Multiple API Mediation Layer Instances

The following diagram shows the flow of the GET request through different involved components to the z/OSMF service

deployed on multiple LPARs with multiple instances on one LPAR, and one instance on another LPAR. In this case, z/OSMF

versions the API and the request is intended for a specific major version. DVIPA randomly selects one of the available API

Mediation Layer instances, which then randomly selects one of the available service instances (in this case on the same

LPAR).

Different LPAR Multiple API Mediation Layer Instances

The following diagram shows the flow of the GET request through different involved components to the z/OSMF service

deployed on multiple LPARs with multiple instances on one LPAR, and one instance on another LPAR. In this case, z/OSMF

versions the API and the request is intended for a specific major version. DVIPA randomly selects one of the available API

Mediation Layer instances, which subsequently randomly selects one of the available service instances regardless

whether the instance resides on the same LPAR. In this case the selected instance is on another LPAR.

Advanced Configuration

Advanced routing configurations can include custom load balancing rules, fallback options, and route-specific policies.

Refer to the detailed configuration guide for more advanced settings and examples.

By default, routing through the API Mediation Layer selects the instance to route to in Round-robin fashion for each

specific request. It is possible to change this behavior to assign a specific user to a specific instance or to change the

behavior by providing the option to go to a specific instance of a service.

Version: v3.3.x LTS

Understanding service routing through the

Gateway

As an extender of API Mediation Layer, review how service routing thorough the Gateway works

REQUIRED ROLES: ZOWE EXTENDER, APPLICATION DEVELOPER

Choose from the following routing methods:

Understanding service routing through the Gateway

Routing with versioning

Routing without versioning

Service instances provide information about routing to the API Gateway via Eureka metadata.

Routing with versioning

For basic routing, the gatewayUrl and sericeUrl are specified with the corresponding version:

Example:

routes:

gatewayUrl: "ui/v1" serviceUrl: "/helloworld"

gatewayUrl: "api/v1" serviceUrl: "/helloworld/v1"

gatewayUrl: "api/v2" serviceUrl: "/helloworld/v2"

In this example, the service has a service ID of helloworldservice that exposes the following endpoints:

UI

https://gateway/helloworldservice/ui/v1 routed to https://hwServiceHost:port/helloworld/

API major version 1

https://gateway/helloworldservice/api/v1 routed to https://hwServiceHost:port/helloworld/v1

API major version 2

https://gateway/helloworldservice/api/v2 routed to https://hwServiceHost:port/helloworld/v2

This type of routing has the following features:

The gatewayUrl is matched against the prefix of the URL path used at the Gateway https://gateway/urlPath ,

where urlPath is serviceId/prefix/resourcePath .

The service ID is used to find the service host and port.

The serviceUrl is used to prefix the resourcePath at the service host.

NOTE

The service ID is not included in the routing metadata, but the service ID is in the basic Eureka metadata.

Routing without versioning

This method of routing is similar to the previous method, but does not use the version part of the URL. This approach is

useful for services that handle versioning themselves with different granularity.

One example that only uses a service ID is z/OSMF.

Example:

z/OSMF URL through the Gateway has the following format:

https://gateway:10010/ibmzosmf/api/restjobs/jobs/...

ibmzosmf

Specifies the service ID.

/restjobs/1.0/...

Specifies the rest of the endpoint segment.

Note that no version is specified in this URL.

Version: v3.3.x LTS

Routing Websocket based APIs

As an API developer using Zowe, you can route WebSocket APIs through the API Mediation Layer. For details about

Websocket routing from the client side, see Routing with websockets.

REQUIRED ROLES: ZOWE EXTENDER, APPLICATION DEVELOPER

To accept Websockets, it is necessary that the API Mediation Layer is aware that a Websocket connection is required. To

inform the API Mediation Layer, the issuer of the call to the API needs to add the (/ws/...) prefix in the URL of the

called API.

Example of a valid URL for a Websocket API:

https://gatewayUrl/exampleService/ws/v1/communicate

Configure the service for Websockets

The configuration relevant for Websockets is contained within the routes section in the configuration. A complete

example using a WebSocket that is statically onboarded is available in the API ML repo.

Example:

ws

Specifies a WebSocket connection as presented in the beginning of the Gateway URL.

NOTE

The serviceRelativeUrl is customizable and does not have to contain ws .

Example:

It is possible to access via the URL https://gatewayUrl/exampleService/ws/v1/communicate on the actual server

that would appear as the URL https://serverUrl/exampleService/ui/communicate .

https://docs.zowe.org/stable/user-guide/routing-with-websockets
https://github.com/zowe/api-layer/blob/567c261bbe3e8702b62cdbc73afcdf0afa847a8b/config/docker/api-defs/staticclient.yml#L66

Version: v3.3.x LTS

Creating an Extension for API ML

Zowe allows extenders to define their own extension for API ML. Follow the steps in this article to create your extension

and add it to the API Gateway classpath.

NOTE

The api-sample-extension-package contains a sample manifest.yml and the apiml-sample-extension JAR that

contains the extension.

Follow these steps:

1. Create a JAR file from your extension. See the API ML sample extension to model the format of the JAR.

2. Create a manifest.yml with the following structure. See the sample manifest.yml to model the format of the yaml

file.

For more information, see Packaging z/OS extensions.

Example:

The extension directory <instance>/workspace/gateway/sharedLibs/ is then added to the API Gateway class path as

part of the Zowe instance preparation.

NOTE

The paths defined under gatewaySharedLibs can either be a path to the directory where the extensions JARs are

located, or a path to the files.

Example:

After the JAR file and manifest.yml are customized according to your application, the extension is extracted, scanned

and added to the extension directory during the Zowe instance preparation. When the API Gateway starts, the the API

Gateway consumes the sample extension.

The extension should now be correctly added to the API Gateway classpath.

Call the REST endpoint for validation

Follow these steps to validate that you can call the REST endpoint defined in the controller via the API Gateway:

1. Call the https://<hostname>:<gatewayPort>/api/v1/greeting endpoint though Gateway.

2. Verify that you receive the message, Hello, I'm a sample extension! as the response.

https://github.com/zowe/api-layer/blob/master/apiml-sample-extension
https://github.com/zowe/api-layer/blob/master/apiml-sample-extension-package/src/main/resources/manifest.yaml
https://docs.zowe.org/stable/extend/packaging-zos-extensions

Version: v3.3.x LTS

Implementing a new SAF IDT provider

As a Zowe API ML user, you can use the API Gateway to apply your own SAF Identity Token (IDT) provider by

implementing an existing interface.

How to create a SAF IDT provider

How to integrate your extension with API ML

How to use an existing SAF IDT provider

How to use the SAF IDT provider

To configure SAF IDT on z/OS, see Configure signed SAF Identity tokens (IDT).

How to create a SAF IDT provider

To create your own implementation of the SAF IDT provider, follow these steps:

1. Implement the existing org.zowe.apiml.gateway.security.service.saf.SafIdtProvider interface.

The SafIdtProvider interface contains the generate and verify methods. The generate method can be overridden by

your SAF IDT implementation to generate the SAF token on behalf of the specified user. The verify method can be

overridden to verify that the provided SAF token is valid.

2. Register a bean in order to use the implemented SAF IDT provider.

Example:

You created a SAF IDT provider.

How to integrate your extension with API ML

To use your SAF IDT provider as an extension of API ML, see Create an extension for API ML.

How to use the SAF IDT provider

To use the newly created SAF IDT provider, it is necessary to set the parameter apiml.authentication.scheme to

safIdt in your service configuration. Your application then properly recognizes the SAF IDT scheme and fills the X-SAF-

Token header with the token produced by your SAF IDT provider.

How to use an existing SAF IDT provider

You can generate and verify an existing SAF token by using an implementation of the SAF IDT provider that utilizes a ZSS

solution.

SafRestAuthenticationService is an example of the SAF IDT provider implementation which uses REST as a method of

communication.

https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-signed-saf-identity-tokens-idt
https://docs.zowe.org/stable/extend/extend-apiml/create-apiml-extension
https://github.com/zowe/api-layer/blob/v3.x.x/zaas-service/src/main/java/org/zowe/apiml/zaas/security/service/saf/SafRestAuthenticationService.java

To use SafRestAuthenticationService ensure that ZWE_configs_apiml_security_saf_provider is set to rest . (This is

the default value) Set the following environment parameters in zowe.yaml :

ZWE_configs_apiml_security_saf_urls_authenticate=https://${ZWE_haInstance_hostname}:${ZWE_components_ga

teway_port}/zss/api/v1/saf/authenticate

ZWE_configs_apiml_security_saf_urls_verify=https://${ZWE_haInstance_hostname}:${ZWE_components_gateway_

port}/zss/api/v1/saf/verify

These ZSS endpoints are used by the SafRestAuthenticationService to generate and validate the SAF token.

The following diagram illustrates how communication using the SAF IDT provider works:

Version: v3.3.x LTS

Single Sign On Integration for Extenders

ROLE: INFRASTRUCTURE APPLICATION DEVELOPER

As an infrastructure application developer, review the ways a service can integrate with API Mediation Layer (API ML)

and participate in the Single Sign On for REST APIs on the z/OS platform.

NOTE

This article does not cover the client methods to call API ML and authenticate. For more information about API ML

authentication, see the Single Sign On Overview in the User Guide.

To integrate with API Mediation Layer and leverage Single Sign On, choose from the following three possible methods:

Accepting JWT token (recommended)

Accepting SAF IDT token

Accepting PassTicket

Additional possibilities can potentially be leveraged to enable Single Sign On but are not properly integrated with the

standard API ML:

Bypassing authentication for the service

Note: This option is for SSO only if the service does not have an authenticated endpoint.

Accepting client certificates via x509 scheme

Accepting z/OSMF LTPA token

Service configuration is generally provided in the yaml file when using one of the enablers outlined in this section. Key to

general configuration is the authentication object. The scheme property under the authentication object states what

type of authentication the service expects and is shared across all types of authentication.

Example:

authentication.scheme

Specifies a service authentication scheme. The following schemes participate in single sign on are supported by the

API Gateway: zoweJwt , safIdt , httpBasicPassTicket . Two additional schemes that do not properly participate but

may be relevant are bypass , and x509 .

In the event that there is an issue with authentication, API ML sets X-Zowe-Auth-Failure error headers which are passed

to downstream services. In addition, any X-Zowe-Auth-Failure error headers coming from an upstream service are also

passed to the downstream services without setting valid headers. The X-Zowe-Auth-Failure error header contains

details about the error and suggests potential actions.

Accepting JWT

Accepting JSON Web Tokens (JWT) is the recommended method for integrating. No configuration is needed on the user's

side.

https://docs.zowe.org/stable/user-guide/api-mediation-sso

When a Zowe JWT is provided, this scheme value specifies that the service accepts the Zowe JWT. No additional

processing is done by the API Gateway.

When a client certificate is provided, the certificate is transformed into a Zowe JWT, and the downstream service

performs the authentication.

If the downstream service needs to consume the JWT from a custom HTTP request header to participate in the Zowe

SSO, it is possible to provide a header in the Gateway configuration.

The HTTP header is then added to each request towards the downstream service and contains the Zowe JWT to be

consumed by the service. For more information, see Enabling single sign on for extending services via JWT

configuration.

Accepting SAF IDT

Using the scheme value safIdt specifies that the service accepts SAF IDT, and expects that the token produced by the

SAF IDT provider implementation is in the X-SAF-Token header. It is necessary to provide a service APPLID in the

authentication.applid parameter.

<applid>

Specifies the APPLID value that is used by the API service for PassTicket support (e.g. OMVSAPPL).

For more information, see Implement a SAF IDT provider.

Accepting PassTickets

Using the scheme value httpBasicPassTicket specifies that a service accepts PassTickets in the Authorization header of

the HTTP requests using the basic authentication scheme. It is necessary to provide a service APPLID in the

authentication.applid parameter to prevent PassTicket generation errors and to make sure API Mediation Layer can

generate PassTickets with the given APPLID.

When a JWT is provided, the service validates the Zowe JWT to use for PassTicket generation.

When a client certificate is provided, the service validates the certificate by mapping the certificate to a mainframe

user to use for PassTicket generation.

If the downstream service needs to consume the user ID and the PassTicket from custom HTTP request headers (i.e.

to participate in the Zowe SSO), it is possible to provide the headers in the Gateway configuration.

The HTTP headers are then added to each request towards the downstream service. The headers contain the user ID

and the PassTicket to be consumed by the service. For more information about the custom HTTP request headers,

see Adding a custom HTTP Auth header to store Zowe JWT.

<applid>

Specifies the APPLID value that is used by the API service for PassTicket support (e.g. OMVSAPPL).

For more information, see Enabling single sign on for extending services via PassTicket configuration.

Bypassing authentication for the service

Using the scheme value bypass specifies that the token is passed unchanged to the service.

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-jwt
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-jwt
https://docs.zowe.org/stable/extend/extend-apiml/implement-new-saf-provider
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-jwt#adding-a-custom-http-auth-header-to-store-zowe-jwt
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-passtickets

NOTE

This is the default scheme when no authentication parameters are specified.

Accepting client certificates via x509 scheme

While it is possible to integrate with client certificates by setting the scheme with the value x509 , this approach is not

recommended. We recommend that you use any of the previously described methods, whereby API ML will validate the

certificate for you and ideally provide a Zowe JWT.

The x509 scheme value specifies that a service accepts client certificates forwarded in the HTTP header only. The

Gateway service extracts information from a valid client certificate. For validation, the certificate needs to be trusted by

API Mediation Layer. Extended Key Usage must either be empty or needs to contain a Client Authentication

(1.3.6.1.5.5.7.3.2) entry. To use this scheme, it is also necessary to specify which headers to include. Specify these

parameters in headers . This scheme does not relate to the certificate used in the TLS handshake between API ML and

the downstream service, but rather the certificate that is forwarded in the header that authenticates the user.

authentication.headers

When the x509 scheme is specified, use the headers parameter to select which values to send to a service. Use one

of the following values:

X-Certificate-Public

The public part of client certificate base64 encoded

X-Certificate-DistinguishedName

The distinguished name from client certificate

X-Certificate-CommonName

The common name from the client certificate

Accepting z/OSMF LTPA token

Using the scheme value zosmf specifies that a service accepts z/OSMF LTPA (Lightweight Third-Party Authentication).

This scheme should only be used for a z/OSMF service used by the API Gateway Authentication Service, and other

z/OSMF services that are using the same LTPA key.

TIP

For more information about z/OSMF Single Sign-on, see Establishing a single sign-on environment.

Forwarding x509 client certificate

When client uses a x509 client certificates for authentication, the certificate can be forwarded to a downstream service.

This is an alternative to the Bypassing authentication for the service option for client certificates.

The following steps outline the x509 client certificate forwarding flow:

1. A client sends a request to the API Gateway secured by a client certificate.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zosmfcore.multisysplex.help.doc/izuG00hpManageSecurityCredentials.html

2. The API Gateway extracts the client certificate from the request and puts this certificate into the Client-Cert

header.

3. The API Gateway forwards the request to the downstream service. The request is secured by the Zowe server

certificate.

4. The downstream service must validate the Zowe server certificate in the request to verify the certificate's origin and

extract the original client certificate from the header. This validation makes it possible for the service to then

perform the authentication.

Both the API ML Gateway and the downstream service must conform to the following requirements to support x509

certificate forwarding:

API ML Gateway Requirements

Enable client certificate forwarding in the zowe.yaml

The API Gateway must trust the client certificate's issuer. As such, the API Gateway truststore must contain the client

issuer's certificate.

Downstream service requirements

The downstream service must indicate that it supports forwarded client certificates in the meta-information used in

the onboarding process. The property apiml.service.supportClientCertForwarding must be set to true .

To validate the Zowe server certificate used by the API Gateway, the service must be aware of the Zowe server

certificate chain. This chain is available via the /certificates endpoint provided by every API Gateway instance.

Version: v3.3.x LTS

ZAAS Client

The ZAAS client is a plain Java library that provides authentication through a simple unified interface without the need

for detailed knowledge of the REST API calls presented in this section. The Client function has only a few dependencies

including Apache HTTP Client, Lombok, and their associated dependencies. The client contains methods to perform the

following actions:

To obtain a JWT token

To validate and get details from a JWT token

To invalidate the JWT token

To obtain a PassTicket

This article contains the following topics:

Pre-requisites

API Documentation

Obtain a JWT token (login)

Validate and get details from the token (query)

Invalidate a JWT token (logout)

Obtain a PassTicket (passTicket)

Getting Started (Step by Step Instructions)

Pre-requisites

Java SDK version 1.8.

An active instance of the API ML Gateway Service.

A property file which defines the keystore or truststore certificates.

API Documentation

The plain java library provides the ZaasClient interface with following public methods:

This Java code enables your application to add the following functions:

Obtain a JWT token (login)

Validate and get details from the token (query)

Invalidate a JWT token (logout)

Obtain a PassTicket (passTicket)

Obtain a JWT token (login)

To integrate login, call one of the following methods for login in the ZaasClient interface:

If the user provides credentials in the request body, call the following method from your API:

If the user provides credentials as Basic Auth, use the following method:

These methods return the JWT token as a String. This token can then be used to authenticate the user in subsequent

APIs.

NOTE

Both methods automatically use the truststore file to add a security layer, which requires configuration in the

ConfigProperties class.

Validate and get details from the token (query)

Use the query method to get the details embedded in the token. These details include creation time of the token,

expiration time of the token, and the user who the token is issued to.

Call the query method from your API in the following format:

In return, you receive the ZaasToken Object in JSON format.

This method automatically uses the truststore file to add a security layer, which you configured in the ConfigProperties

class.

The query method is overloaded, so you can provide the HttpServletRequest object that contains the token in the

apimlAuthenticationToken cookie or in an Authorization header. You then receive the ZaasToken Object in JSON format.

Validate the OIDC token (validateOidc)

Use the validateOidc method to get the validity information about the OIDC token.

Call the validateOidc method from your API in the following format:

In return, you receive the ZaasOidcValidationResult Object in JSON format.

This method automatically uses the truststore file to add a security layer, which you configured in the ConfigProperties

class.

Invalidate a JWT token (logout)

The logout method is used to invalidate the JWT token. The token must be provided in the Cookie header and must

follow the format accepted by the API ML.

Call the logout method from your API in the following format:

If the token is successfully invalidated, you receive a 204 HTTP status code in return.

Obtain a PassTicket (passTicket)

The passTicket method has an added layer of protection. To use this method, call the method of the interface, and

provide a valid APPLID of the application and JWT token as input.

The APPLID is the name of the application (up to 8 characters) that is used by security products to differentiate certain

security operations (like PassTickets) between applications.

This method has an added layer of security, whereby you do not have to provide an input to the method since you

already initialized the ConfigProperties class. As such, this method automatically fetches the truststore and keystore

files as an input.

In return, this method provides a valid pass ticket as a String to the authorized user.

TIP

For additional information about PassTickets in API ML see Enabling single sign on for extending services via

PassTicket configuration.

Getting Started (Step by Step Instructions)

To use this library, use the procedure described in this section.

Follow these steps:

1. Add zaas-client as a dependency in your project.

You will need to specify the version of the zaas-client you want. zaas-client versioning following the semantic

versioning format of major.minor.patch . For example, 1.22.0 .

Gradle:

i. Create a gradle.properties file in the root of your project if one does not already exist.

ii. In the gradle.properties file, set the URL of the specific Artifactory containing the SpringEnabler artifact.

iii. Add the following Gradle code block to the repositories section of your build.gradle file:

iv. Add the following Gradle dependency:

Maven:

i. Add the following XML tags within the newly created pom.xml file:

Tip: If you want to use snapshot version, replace libs-release with libs-snapshot in the repository url and change

snapshots->enabled to true.

ii. Then add the following Maven dependency:

Click here for procedural details using Gradle.

Click here for procedural details using Maven.

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-passtickets
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-passtickets

2. In your application, create your Java class which will be used to create an instance of ZaasClient , which enables you

to use its method to login, query, and to issue a PassTicket.

3. To use zaas-client , provide a property file for configuration.

Tip: Check org.zowe.apiml.zaasclient.config.ConfigProperites to see which properties are required in the

property file.

Configuration Properties:

Note: If httpOnly property is set to true, the ZAAS Client will access the API ML via HTTP protocol without TLS. This

meant for z/OS configuration with AT-TLS that will ensure that TLS and the required client certificates are used.

4. Create an instance of ZaasClient in your class and provide the configProperties object.

Example:

You can now use any method from ZaasClient in your class.

Example:

For login, use the following code snippet:

The following codeblock is an example of a SampleZaasClientImplementation .

Example:

Version: v3.3.x LTS

Advanced Server Configuration

The Zowe's App Server and ZSS rely on many required or optional parameters to run, which includes setting up

networking, deployment directories, plugin locations, and more.

Configuration file

The servers use a YAML file for configuration. The global schema describes the parts of configuration that are common

between servers.

The App Server specifically is configured by the components.app-server section of the YAML, and that section follows

this App-server schema.

ZSS is instead configured by the components.zss section, following the ZSS schema.

The App server can additionally use environment variables to override the YAML file.

Environment variables (app-server only)

CLI arguments take precedence over the configuration file, but are overridden by the CLI arguments. The format is

ZWED_key=value , where ZWED_ is a prefix for any configuration object.

The attributes specified will be put within the components.app-server subsection of the Zowe configuration.

The key maps to a JSON object attribute, so to set the value of a nested object, such as the https configuration, you need

multiple values.

For example:

In Environment variable format, this is specified as

The key names are syntax sensitive.

They are case-sensitive.

All ASCII characters except " are allowed in the object attribute names.

An encoding scheme is used for many symbols because environment variables can only have names with the

characters A - Z , a - z , 0 - 9 , _ , . , and - .

The scheme is _x followed by 2 hex numbers will be converted to the corresponding ASCII character, such as

_x41 mapping to A .

_ is used as the object separator, so an escape sequence is used if _ is actually needed for the key.

Single leading and trailing _ are treated as literal _ .

__ will be maps to literal _

___ maps to literal -

____ maps to literal .

The types of the values are syntax-sensitive.

https://github.com/zowe/zowe-install-packaging/blob/v2.x/staging/schemas/zowe-yaml-schema.json
https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/app-server-config.json
https://github.com/zowe/zss/blob/v2.x/staging/schemas/zss-config.json

Numbers are treated as numbers, not strings.

false and true are treated as boolean.

Commas are for arrays. An array of length 1 has a comma at the end.

Strings can have quotes, but otherwise everything that is not an array, boolean, or number is a string.

Objects are never values, they are the keys.

Parameter details

Below is some more detail on certain parameters than can be covered within the json-schema.

Configuration directories

When running, the App Server will access the server's settings and read/modify the contents of its resource storage.

All of this data is stored within a hierarchy of a few folders, which is correspond to scopes:

Product: The contents of this folder are not meant to be modified, but used as defaults for a product.

Site: The contents of this folder are intended to be shared across multiple App Server instances, perhaps on a

network drive.

Instance: This folder represents the broadest scope of data within the given App Server instance.

Group: Multiple users can be associated into one group, so that settings are shared among them.

User: When authenticated, users have their own settings and storage for the Apps that they use.

These directories dictate where the Configuration Dataservice will store content.

Directories example

App configuration

This section does not cover any dynamic runtime inclusion of Apps, but rather Apps defined in advance.

In the configuration file, a directory can be specified which contains JSON files which tell the server what App is to be

included and where to find it on disk. The backend of these Apps use the Server's Plugin structure, so much of the

server-side references to Apps use the term Plugin.

To include Apps, be sure to define the location of the Plugins directory in the configuration file, via the top-level attribute

pluginsDir

NOTE

In this example, the directory for these JSON files is /defaults/plugins. Yet, in order to separate configuration files

from runtime files, the App Server will initialize by copying the contents of this folder into the defined instance

directory, of which the default is ~/.zowe/workspace/app-server . So, the example configuration file uses the latter

directory.

Plug-ins directory example

Logging configuration

https://github.com/zowe/zlux/wiki/Configuration-Dataservice
https://github.com/zowe/zlux-app-server/tree/v3.x/master/defaults/plugins

For more information, see Logging Utility.

ZSS Configuration

ZSS is configured by the same Zowe YAML file used by the App server, within the components.zss section of the file. The

ZSS schema for components.zss be found here. More information about the configuration can be found in its README

file.

Connecting ZSS to App Server

The App Server can connect to ZSS either directly or through the API Mediation Layer Gateway when that is running.

The connection information is stored within the object components.app-server.agent , which describes whether the

Gateway is involved, or if not, on which host and port can ZSS be found. For more information, see the agent section of

the schema

https://docs.zowe.org/stable/extend/extend-desktop/mvd-logutility
https://github.com/zowe/zss/blob/v2.x/staging/schemas/zss-config.json
https://github.com/zowe/zss/#quick-run-how-to-start-zss
https://github.com/zowe/zss/#quick-run-how-to-start-zss
https://github.com/zowe/zlux-app-server/blob/c22105381e129bd999c47e838b424679eba26aa6/schemas/app-server-config.json#L262
https://github.com/zowe/zlux-app-server/blob/c22105381e129bd999c47e838b424679eba26aa6/schemas/app-server-config.json#L262

Version: v3.3.x LTS

Zowe Application Framework overview

You can create application plug-ins to extend the capabilities of the Zowe™ Application Framework. An application plug-

in is an installable set of files that present resources in a web-based user interface, as a set of RESTful services, or in a

web-based user interface and as a set of RESTful services.

Read the following topics to get started with extending the Zowe Application Framework.

How Zowe Application Framework works

Read the following topics to learn how Zowe Application Framework works:

Creating application plug-ins

Plug-ins definition and structure

Dataservices

Zowe Desktop and window management

Configuration Dataservice

URI Broker

Application-to-application communication

Error reporting UI

Logging utility

Tutorials

The following tutorials are available in Github.

Stand up a local version of the Example Zowe Application Server

GITHUB REPO:

zlux-app-server

Internationalization in Angular Templates in Zowe Application Server

GITHUB SAMPLE REPO:

sample-angular-app (Internationalization)

App to app communication

GITHUB SAMPLE REPO :

sample-angular-app (App to app communication)

Using the Widgets Library

https://docs.zowe.org/stable/extend/extend-desktop/mvd-buildingplugins
https://docs.zowe.org/stable/extend/extend-desktop/mvd-plugindefandstruct
https://docs.zowe.org/stable/extend/extend-desktop/mvd-dataservices
https://docs.zowe.org/stable/extend/extend-desktop/mvd-desktopandwindowmgt
https://docs.zowe.org/stable/extend/extend-desktop/mvd-configdataservice
https://docs.zowe.org/stable/extend/extend-desktop/mvd-uribroker
https://docs.zowe.org/stable/extend/extend-desktop/mvd-apptoappcommunication
https://docs.zowe.org/stable/extend/extend-desktop/mvd-errorreportingui
https://docs.zowe.org/stable/extend/extend-desktop/mvd-logutility
https://github.com/zowe/zlux-app-server/tree/staging/README.md
https://github.com/zowe/sample-angular-app/blob/lab/step-2-i18n-complete/README.md
https://github.com/zowe/sample-angular-app/blob/lab/step-3-app2app-complete/README.md

GITHUB SAMPLE REPO:

sample-angular-app (Widgets)

Configuring user preferences (configuration dataservice)

GITHUB SAMPLE REPO:

sample-angular-app (configuration dataservice)

Samples

Zowe allows extensions to be written in any UI framework through the use of an Iframe, or Angular and React natively. In

this section, code samples of various use-cases will be provided with install instructions.

TROUBLESHOOTING SUGGESTIONS:

If you are running into issues, try these suggestions:

Restart the Zowe Server/ VM.

Double check that the name in the plugins folder matches your identifier in pluginDefinition.json located in

the Zowe root.

After logging into the Zowe desktop, use the Chrome or Firefox developer tools and navigate to the "network"

tab to see what errors you are getting.

Check each file with cat <filename> to be sure it wasn't corrupted while uploading. If files were corrupted, try

uploading using a different method like SCP or SFTP.

Sample Iframe App

GITHUB SAMPLE REPO:

sample-iframe-app

Sample Angular App

GITHUB SAMPLE REPO:

sample-angular-app

Sample React App

GITHUB SAMPLE REPO:

sample-react-app

User Browser Workshop Starter App

https://github.com/zowe/sample-angular-app/blob/lab/step-4-widgets-complete/README.md
https://github.com/zowe/sample-angular-app/blob/lab/step-5-config-complete/README.md
https://github.com/zowe/sample-iframe-app
https://github.com/zowe/sample-angular-app/blob/lab/step-1-hello-world/README.md
https://github.com/zowe/sample-react-app/blob/lab/step-1-hello-world/README.md

GITHUB SAMPLE REPO:

workshop-starter-app

This sample is included as the first part of a tutorial detailing communication between separate Zowe apps.

It should be installed on your system before starting the User Browser Workshop App Tutorial

The App's scenario is that it has been opened to submit a task report to a set of users who can handle the task. In this

case, it is a bug report. We want to find engineers who can fix this bug, but this App does not contain a directory listing

for engineers in the company, so we need to communicate with some App that does provide this information. In this

tutorial, you must build an App which is called by this App in order to list engineers, is able to be filtered by the office

that they work from, and is able to submit a list of engineers which would be able to handle the task.

After installing this app on your system, follow directions in the User Browser Workshop App Tutorial to enable app-to-

app communication.

https://github.com/zowe/workshop-starter-app
https://github.com/zowe/workshop-user-browser-app/blob/master/README.md
https://github.com/zowe/workshop-user-browser-app/blob/master/README.md

Version: v3.3.x LTS

Plug-ins definition and structure

The Zowe™ Application Server (zlux-app-server) enables extensiblity with application Plugins. Application Plugins are a

subcategory of the unit of extensibility in the server called a plugin.

The files that define a Plugin are located in the pluginsDir directory.

pluginDefinition.json

This file describes an application Plugin to the Zowe Application Server. (A Plugin is the unit of extensibility for the Zowe

Application Server. An application Plugin is a Plugin of the type "Application", the most common and visible type of

Plugin.) A definition file informs the server whether the application Plugin has server-side dataservices, client-side web

content, or both. The attributes of this file are defined within the pluginDefinition json-schema document

Application Plugin filesystem structure

An application Plugin can be loaded from a filesystem that is accessible to the Zowe Application Server, or it can be

loaded dynamically at runtime. When accessed from a filesystem, there are important considerations for the developer

and the user as to where to place the files for proper build, packaging, and operation.

Root files and directories

The root of an application Plugin directory contains the pluginDefinition.json file, and the following other files and

directories.

Dev and source content

Aside from demonstration or open source application Plugins, the following directories should not be visible on a

deployed server because the directories are used to build content and are not read by the server.

nodeServer

When an application Plugin has router-type dataservices, they are interpreted by the Zowe Application Server by

attaching them as ExpressJS routers. It is recommended that you write application Plugins using Typescript, because it

facilitates well-structured code. Use of Typescript results in build steps because the pre-transpilation Typescript content

is not to be consumed by NodeJS. Therefore, keep server-side source code in the nodeServer directory. At runtime, the

server loads router dataservices from the lib directory.

webClient

When an application Plugin has the webContent attribute in its definition, the server serves static content for a client. To

optimize loading of the application Plugin to the user, use Typescript to write the application Plugin and then package it

using Webpack. Use of Typescript and Webpack result in build steps because the pre-transpilation Typescript and the pre-

webpack content are not to be consumed by the browser. Therefore, separate the source code from the served content

by placing source code in the webClient directory.

Runtime content

https://github.com/zowe/zlux/blob/v2.x/staging/schemas/plugindefinition-schema.json
http://www.typescriptlang.org/
https://webpack.js.org/

At runtime, the following set of directories are used by the server and client.

lib

The lib directory is where router-type dataservices are loaded by use in the Zowe Application Server. If the JS files that

are loaded from the lib directory require NodeJS modules, which are not provided by the server base (the modules

zlux-server-framework requires are added to NODE_PATH at runtime), then you must include these modules in

lib/node_modules for local directory lookup or ensure that they are found on the NODE_PATH environment variable.

nodeServer/node_modules is not automatically accessed at runtime because it is a dev and build directory.

web

The web directory is where the server serves static content for an application Plugin that includes the webContent

attribute in its definition. Typically, this directory contains the output of a webpack build. Anything you place in this

directory can be accessed by a client, so only include content that is intended to be consumed by clients.

Packaging applications as compressed files

Application Plugin files can be served to browsers as compressed files in brotli (.br) or gzip (.gz) format. The file must be

below the application's /web directory, and the browser must support the compression method. If there are multiple

compressed files in the /web directory, the Zowe Application Server and browser perform runtime negotiation to decide

which file to use.

Default user configuration

Configuration Dataservice default settings for users can be packaged within a Plugin.

This is done by putting content within the /config/storageDefaults folder, and more on that subject can be found here

App-to-App Communication

App-to-App communication behaviors can be statically defined or dynamically created at runtime. Static definitions help

as a form of documentation and to be able to depend upon them, so it is recommended that these be packaged with a

Plugin if you wish other's to be able to use App-to-App communication on your App.

This page describes the subject in more detail.

In summary, App-to-App Actions and Recognizers can be stored within an App's /config/actions and

/config/recognizers folders, respectively, where the filenames much match the identifiers of Apps.

Documentation

In order for Zowe servers to pick up documentation to present to UIs, they must be in a uniform place.

The /doc folder of any Plugin can contain at its root any READMEs or documents that an administrator or developer may

care about when working with a Plugin for the first time.

The /doc/swagger folder on the other hand, will be used to store .yaml extension Swagger 2.0 files that document the

APIs of a Plugin's dataservices if they exist.

Other folders may exist, such as /doc/ui to document help behavior that may be shown in a UI, but is not implemented

at this time.

https://docs.zowe.org/stable/extend/extend-desktop/mvd-configdataservice
https://docs.zowe.org/stable/extend/extend-desktop/mvd-configdataservice#packaging-defaults
https://docs.zowe.org/stable/extend/extend-desktop/mvd-apptoappcommunication#saved-on-system

Location of Plugin files

The files that define a Plugin are located in the plugins directory.

pluginsDir directory

At startup, the server reads from the plugins directory. The server loads the valid Plugins that are found by the

information that is provided in the JSON files.

Within the pluginsDir directory are a collection of JSON files. Each file has two attributes, which serve to locate a Plugin

on disk:

location: This is a directory path that is relative to the server's executable (such as zlux-app-server/bin/start.sh) at

which a pluginDefinition.json file is expected to be found.

identifier: The unique string (commonly styled as a Java resource) of a Plugin, which must match what is in the

pluginDefinition.json file.

Application Dataservices

See Dataservices

Application Configuration Data

The App server has a component for managing an App's configuration & user data, organized by scope such as user,

group, and server instance. For more information, see Configuration Dataservice Documentation.

https://docs.zowe.org/stable/extend/extend-desktop/mvd-dataservices
https://docs.zowe.org/stable/extend/extend-desktop/mvd-configdataservice

Version: v3.3.x LTS

Building plugin apps

You can build a plugin app by using the following steps as a model. Alternatively, you can follow the Sample Angular App

tutorial.

Plugins can have any build process desired as long as it doesn't conflict with the packaging structure. The basic

requirement for a plugin app is that static web content must be in a /web directory, and server and other backend files

must be in a /lib directory.

Before you can build a plugin app you must install all prerequisites.

Building web content

1. On the computer where the virtual desktop is installed, use the the following command to specify a value for the

MVD_DESKTOP_DIR environment variable:

Where <path> is the install location of the virtual desktop.

2. Navigate to /<plugin_dir>/webClient . If there is no /webClient directory, proceed to the Building server

content section below.

3. Run the npm install command to install any application dependencies. Check for successful return code.

4. Run one of the following commands to build the application code:

Run the npm run build command to generate static content in the /web directory. (You can ignore warnings as

long as the build is successful.)

Run the npm run start command to compile in real-time. Until you stop the script, it compiles code changes as

you make them.

Building app server content

1. Navigate to the plugin directory. If there is no /nodeServer directory in the plugin directory, proceed to the Building

Javascript content (*.js files) section below.

2. Run the npm install command to install any application dependencies. Check for successful return code.

3. Run one of the following commands to build the application code:

Run the npm run build command to generate static content in the /lib directory.

Run the npm run start command to compile in real-time. Until you stop the script, it compiles code changes as

you make them.

Building zss server content

1. Clone the zss repository and its submodule zowe-common-c.

https://github.com/zowe/sample-angular-app/blob/lab/step-1-hello-world/README.md
https://github.com/zowe/sample-angular-app/blob/lab/step-1-hello-world/README.md
https://github.com/zowe/zlux/wiki/ZLUX-App-filesystem-structure
https://github.com/zowe/zlux-app-server#0-install-prerequisites
https://github.com/zowe/zss

2. Make a build script that compiles your C code with -Wc,dll and -Wl,dll, and other flags as seen in this zowe example

3. Include a ZSS .x file to link zss server APIs to your plugin, as seen in this zowe example

4. Ensure that the build output ends up in the /lib folder as a .so file that has the z/OS program control (+p) extended

attribute.

Tagging plugin files on z/OS

When Zowe App Framework is installed on z/OS developers should tag their plugin files according to the file content.

Tagging files helps programs on z/OS understand how to interpret those files, most importantly to know whether a file is

encoded using EBCDIC (Extended Binary Coded Decimal Interchange Code). If you are unsure if a plugin you are using is

tagged, it can be checked and set using the chtag command. If you want to set the tags, it can be done in bulk with the

help of these programs:

Autotag: This free, open-source application is not part of Zowe. You can download the binary from here for example

https://anaconda.org/izoda/autotag. Source: https://github.com/RocketSoftware/autotag

The Zowe tagging script: This script tags by file extension. It might not work for all cases, but can be altered to suit

your needs. Source: https://github.com/zowe/zowe-install-packaging/blob/master/scripts/tag-files.sh

Building Javascript content (*.js files)

Unlike Typescript, Javascript is an interpreted language and does not need to be built. In most cases, reloading the page

should build new code changes. For Iframes or other JS-based apps, close and open the app.

Installing

Follow the steps described in Installing plugins to add your built plugin to the Zowe desktop.

Packaging

For more information on how to package your Zowe app, developers can see Plugins definition and structure.

https://github.com/zowe/explorer-ip/blob/master/dataService/build/build.sh
https://github.com/zowe/explorer-ip/blob/master/dataService/build/pluginAPI.x
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.bpxa500/chtag.htm
https://anaconda.org/izoda/autotag
https://github.com/RocketSoftware/autotag
https://github.com/zowe/zowe-install-packaging/blob/master/scripts/tag-files.sh
https://docs.zowe.org/stable/extend/extend-desktop/mvd-installplugins
https://docs.zowe.org/stable/extend/extend-desktop/mvd-plugindefandstruct

Version: v3.3.x LTS

Installing Plugins

Plugins can be added or removed from the Zowe App Server, as well as upgraded. There are two ways to do these

actions: By REST API or by filesystem. The instructions below assume you have administrative permissions either to

access the correct REST APIs or to have the necessary permissions to update server directories & files.

NOTE: Plugins must be pre-built, and follow the directory structure, and have all dependencies met to be

successfully installed. Read the appServer or install-app log files within the Zowe instance's <logDirectory>

directory, (ex ~/.zowe/log/install-app.log) if a plugin does not show in the Zowe desktop, but has been

installed successfully.

By filesystem

The App server uses directories of JSON files, described in the server configuration document. Defaults are located in the

folder zlux-app-server/defaults/plugins , but the server reads the list of plugins instead from the instance directory,

at <workspaceDirectory>/app-server/plugins (for example, ~/.zowe/workspace/app-server/plugins which includes

JSON files describing where to find a plugin. Adding or removing JSONs from this folder will add or remove plugins upon

server restart, or you can use REST APIs and cluster mode to add or remove plugins without restarting).

Adding/Installing

Plugins must be packaged as Components. You can install a plugin by running the component installer, zwe components

install . For more information, try the help command zwe components install --help .

Removing

Plugins are hidden from the Desktop when a component is disabled. If a component is removed, the plugins from the

component will be removed too.

Upgrading

Currently, only one version of a plugin can exist per server. So, to upgrade, you either upgrade the plugin within its pre-

existing directory by rebuilding it (with more up to date code), or you alter the locator JSON of that app to point to the

content of the upgraded version.

Modifying without server restart (Exercise to the reader)

The server's reading of the locator JSONs and initializing of plugins only happens during bootstrapping at startup.

However, in cluster mode the bootstrapping happens once per worker process. Therefore, it is possible to manage

plugins without a server restart by killing & respawning all worker processes without killing the cluster master process.

This is what the REST API does, internally. To do this without the REST API, it may be possible to script knowing the

parent process ID, and running a kill command on all child processes of the App server cluster process.

By REST API

https://docs.zowe.org/stable/extend/extend-desktop/mvd-buildingplugins
https://docs.zowe.org/stable/extend/extend-desktop/mvd-plugindefandstruct
https://docs.zowe.org/stable/extend/extend-desktop/mvd-server-config#configuration-directories

The server REST APIs allow plugin management without restarting the server - you can add, remove, and upgrade

plugins in real-time. However, removal or upgrade must be done carefully as it can disrupt users of those plugins.

This swagger file documents the REST API for plugin management

The API only works when RBAC is configured, and an RBAC-compatible security plugin is being used. An example of this

is zss-auth, and use of RBAC is described in this documentation and in the wiki.

NOTE: If you do not see your plugin in the Zowe desktop check the appServer and install-app log files within the Zowe

instance's <logDirectory> directory to troubleshoot the problem. If you are building your own desktop extension then

you need to pre-build your plugin with the correct directory structure, and meet all dependencies.

Plugin management during development

Below are some tasks developers can do to work with plugins. These should not be done in production, as plugins are

managed automatically at the component level.

Installing

When running the app-server without zowe server infrastructure and tooling, it's still possible to install plugins directly.

To add or install a plugin, run the script zlux-app-server/bin/install-app.sh providing the location to a plugin folder.

For example:

./install-app.sh /home/john/zowe/sample-angular-app

This will generate a JSON file <workspaceDirectory>/app-server/plugins/org.zowe.zlux.sample.angular.json that

contains the plugin's ID and its location on disk. These JSON files tell the Desktop where to find apps and are the glue

between the Zowe instance's desktop and the plugin code itself held in its directory.

. For example, if we were to install the sample angular-app in the folder /home/john/zowe/sample-angular-app , then the

JSON would be:

Removing

To remove a plugin, locate the server's instance plugin directory <workspaceDirectory>/app-server/plugins (for

example, ~/.zowe/workspace/app-server/plugins) and remove the locator JSON that is associated with that plugin.

Remove the plugin's content by deleting it from the file system if applicable.

https://github.com/zowe/zlux-app-server/blob/master/doc/swagger/server-plugins-api.yaml
https://github.com/zowe/zlux-server-framework/tree/v2.x/staging/plugins/sso-auth
https://docs.zowe.org/stable/user-guide/mvd-configuration#enabling-rbac
https://github.com/zowe/zlux/wiki/Auth-Plugin-Configuration
https://docs.zowe.org/stable/extend/extend-desktop/mvd-buildingplugins
https://docs.zowe.org/stable/extend/extend-desktop/mvd-plugindefandstruct
https://github.com/zowe/sample-angular-app

Version: v3.3.x LTS

Embedding plugins

Add these imports to a component where you want to embed another plugin:

Inject Angular2PluginEmbedActions into your component constructor:

In the component template prepare a container where you want to embed the plugin:

In the component class add a reference to the container:

In the component class add a reference to the embedded instance:

Everything is ready to start embedding, you just need to know the pluginId that you want to embed:

How to interact with embedded plugin

If the main component of embedded plugin declares Input and Output properties then you can interact with it.

ApplicationManager provides methods to set Input properties and get Output properties of the embedded plugin.

Suppose, that the embedded plugin declares Input and Output properties like this:

Obtain a reference to ApplicationManager in your component constructor:

Note: We are unable to inject ApplicationManager with @Inject() until an AoT-compiler issue with namespaces is

resolved: angular/angular#15613

Now you can set sampleInput property, obtain sampleOutput property and subscribe to it:

How to destroy embedded plugin

There is no special API to destroy embedded plugin. If you want to destroy the embedded plugin just clear the container

for the embedded plugin and set embeddedInstance to null:

How to style a container for the embedded plugin

It is hard to give a universal recipe for a container style. At least, the container needs position: "relative" because

the embedded plugin may have absolutely positioned elements. Here is sample styles you can start with if your

component utilizes flexbox layout:

Applications that use embedding

Workflow app demonstrates advanced usage.

https://github.com/angular/angular/issues/15613
https://github.com/zowe/zlux-workflow/blob/master/webClient/src/app/workflow-step-wizard/workflow-step-wizard.component.ts

Version: v3.3.x LTS

Dataservices

Dataservices are dynamic backend components of Zowe™ plug-in applications. You can optionally add them to your

applications to make the application do more than receive static content from the proxy server. Each dataservice defines

a URL space that the server can use to run extensible code from the application. Dataservices are mainly intended to

create REST APIs and WebSocket channels.

Defining dataservices

You define dataservices in the application's pluginDefinition.json file. Each application requires a definition file to

specify how the server registers and uses the application's backend. You can see an example of a

pluginDefinition.json file in the top directory of the sample-angular-app.

In the definition file is a top level attribute called dataServices , for example:

To define your dataservice, create a set of keys and values for your dataservice in the dataservices array.

Schema

The documentation on dataservice types and parameters for each are specified within the pluginDefinition.json json-

schema document

Defining Java dataservices

In addition to other types of dataservice, you can use Java (also called java-war) dataservices in your applications. Java

dataservices are powered by Java Servlets.

To use a Java dataservice you must meet the prerequisites, define the dataservice in your plug-in definition, and define

the Java Application Server library to the Zowe Application Server.

Prerequisites

Install a Java Application Server library. In this release, Tomcat is the only supported library.

Make sure your plug-in's compiled Java program is in the application's /lib directory, in either a .war archive file or

a directory extracted from a .war archive file. Extracting your file is recommended for faster start-up time.

Defining Java dataservices

To define the dataservice in the pluginDefinition.json file, specify the type as java-war , for example:

To access the service at runtime, the plug-in can use the Zowe dataservice URL standard:

/ZLUX/plugins/[PLUGINID]/services/[SERVICENAME]/[VERSIONNUMBER]

Using the example above, a request to get users might be:

/ZLUX/plugins/[PLUGINID]/services/javaservlet/1.0.0/users

https://github.com/zowe/sample-angular-app
https://github.com/zowe/zlux/blob/v2.x/staging/schemas/plugindefinition-schema.json
https://github.com/zowe/zlux/blob/v2.x/staging/schemas/plugindefinition-schema.json

Note: If you extracted your servlet contents from a .war file to a directory, the directory must have the same name as

the file would have had. Using the example above, javaservlet.war must be extracted to a directory named

\javaservlet .

Defining Java Application Server libraries

In the zlux-app-server/zluxserver.json file, use the example below to specify Java Application Server library

parameters:

Specify the following parameters in the languages.java object:

runtimes (object) - The name and location of a Java runtime that can be used by one or more services. Used to load

a Tomcat instance.

name (object) - The name of the runtime.

home (string) - The path to the runtime root. Must include /bin and /lib directories.

ports (array <number>)(Optional) - An array of port numbers that can be used by instances of Java Application

Servers or microservices. Must contain as many ports as distinct servers that will be spawned, which is defined by

other configuration values within languages.java . Either ports or portRange is required, but portRange has a

higher priority.

portRange (array <number>)(Optional) - An array of length 2, which contains a start number and end number to

define a range of ports to be used by instances of application servers or microservices. You will need as many ports

as distinct servers that will be spawned, which is defined by other configuration values within languages.java .

Either ports or portRange is required, but portRange has a higher priority.

war (object) - Defines how the Zowe Application Server should handle java-war dataservices.

defaultGrouping (string)(Optional) - Defines how services should be grouped into instances of Java Application

Servers. Valid values: appserver or microservice . Default: appserver . appserver means 1 server instance for

all services. microservice means one server instance per service.

pluginGrouping (array <object>)(Optional) - Defines groups of plug-ins to have their java-war services put

within a single Java Application Server instance.

plugins (Array <string>) - Lists the plugins by identifier which should be put into this group. Plug-ins with no

java-war services are skipped. Being in a group excludes a plugin from being handled by defaultGrouping .

runtime (string)(Optional) - States the runtime to be used by the Tomcat server instance, as defined in

languages.java.runtimes .

javaAppServer (object) - Java Application Server properties.

type (string) - Type of server. In this release, tomcat is the only valid value.

path (string) - Path of the server root, relative to zlux-app-server/lib . Must include /bin and /lib

directories.

config (string) - Path of the server configuration file, relative to zlux-app-server/lib .

https (object) - HTTPS parameters.

key (string) - Path of a private key, relative to zlux-app-server/lib .

certificate (string) - Path of an HTTPS certificate, relative to zlux-app-server/lib .

Java dataservice logging

The Zowe Application Server creates the Java Application Server instances required for the java-war dataservices, so it

logs the stdout and stderr streams for those processes in its log file. Java Application Server logging is not managed by

Zowe at this time.

Java dataservice limitations

Using Java dataservices with a Zowe Application Server installed on a Windows computer, the source and Java

dataservice code must be located on the same storage volume.

To create multiple instances of Tomcat on non-Windows computers, the Zowe Application Server establishes symbolic

links to the service logic. On Windows computers, symbolic links require administrative privilege, so the server

establishes junctions instead. Junctions only work when the source and destination reside on the same volume.

Using dataservices with RBAC

If your administrator configures the Zowe Application Framework to use role-based access control (RBAC), then when

you create a dataservice you must consider the length of its paths.

To control access to dataservices, administrators can enable RBAC, then use a z/OS security product such as RACF to

map roles and authorities to a System Authorization Facility (SAF) profile. For information on RBAC, see Controlling

access to dataservices.

SAF profiles have the following format:

<product>.<instance id>.SVC.<pluginid_with_underscores>.<service>.<HTTP method>.<dataservice path with

forward slashes '/' replaced by periods '.'>

For example, to access this dataservice endpoint:

/ZLUX/plugins/org.zowe.foo/services/baz/_current/users/fred

Users must have READ access to the following profile:

ZLUX.DEFAULT.SVC.ORG_ZOWE_FOO.BAZ.POST.USERS.FRED

Profiles cannot contain more than 246 characters. If the path section of an endpoint URL makes the profile name exceed

limit, the path is trimmed to only include elements that do not exceed the limit. For example, imagine that each path

section in this endpoint URL contains 64 characters:

/ZLUX/plugins/org.zowe.zossystem.subsystems/services/data/_current/aa..a/bb..b/cc..c/dd..d

So aa..a is 64 "a" characters, bb..b is 64 "b" characters, and so on. The URL could then map to the following example

profile:

ZLUX.DEFAULT.SVC.ORG_ZOWE_ZOSSYSTEM_SUBSYSTEMS.DATA.GET.AA..A.BB..B

The profile ends at the BB..B section because adding CC..C would put it over 246 characters. So in this example, all

dataservice endpoints with paths that start with AA..A.BB..B are controlled by this one profile.

To avoid this issue, we recommend that you maintain relatively short endpoint URL paths.

Dataservice APIs

Dataservice APIs can be categorized as Router-based or ZSS-based, and either WebSocket or not.

https://docs.zowe.org/stable/user-guide/mvd-configuration#controlling-access-to-dataservices
https://docs.zowe.org/stable/user-guide/mvd-configuration#controlling-access-to-dataservices

Router-based dataservices

Each Router dataservice can safely import Express, express-ws, and bluebird without requiring the modules to be

present, because these modules exist in the proxy server's directory and the NODE_MODULES environment variable can

include this directory.

HTTP/REST Router dataservices

Router-based dataservices must return a (bluebird) Promise that resolves to an ExpressJS router upon success. For more

information, see the ExpressJS guide on use of Router middleware: Using Router Middleware.

Because of the nature of Router middleware, the dataservice need only specify URLs that stem from a root '/' path, as

the paths specified in the router are later prepended with the unique URL space of the dataservice.

The Promise for the Router can be within a Factory export function, as mentioned in the pluginDefinition specification

for routerFactory above, or by the module constructor.

An example is available in the Sample Angular App.

WebSocket Router dataservices

ExpressJS routers are fairly flexible, so the contract to create the Router for WebSockets is not significantly different.

Here, the express-ws package is used, which adds WebSockets through the ws package to ExpressJS. The two changes

between a WebSocket-based router and a normal router are that the method is 'ws', as in router.ws(<url>,

<callback>) , and the callback provides the WebSocket on which you must define event listeners.

See the ws and express-ws topics on www.npmjs.com for more information about how they work, as the API for

WebSocket router dataservices is primarily provided in these packages.

An example is available in zlux-server-framework/plugins/terminal-proxy/lib/terminalProxy.js

Router dataservice context

Every router-based dataservice is provided with a Context object upon creation that provides definitions of its

surroundings and the functions that are helpful. The following items are present in the Context object:

serviceDefinition

The dataservice definition, originally from the pluginDefinition.json file within a plug-in.

serviceConfiguration

An object that contains the contents of configuration files, if present.

logger

An instance of a Zowe Logger, which has its component name as the unique name of the dataservice within a plug-in.

makeSublogger

A function to create a Zowe Logger with a new name, which is appended to the unique name of the dataservice.

addBodyParseMiddleware

http://expressjs.com/en/guide/using-middleware.html#middleware.router
https://github.com/zowe/sample-angular-app/blob/master/nodeServer/ts/helloWorld.ts
https://www.npmjs.com/

A function that provides common body parsers for HTTP bodies, such as JSON and plaintext.

plugin

An object that contains more context from the plug-in scope, including:

pluginDef: The contents of the pluginDefinition.json file that contains this dataservice.

server: An object that contains information about the server's configuration such as:

app: Information about the product, which includes the productCode (for example: ZLUX).

user: Configuration information of the server, such as the port on which it is listening.

Router storage API

ZSS based dataservices

ZSS dataservices much like zlux router services can be used to implement REST or websocket APIs. Each service is

associated with a URL which when requested will call a function to handle the request or websocket message event.

HTTP/REST ZSS dataservices

ZSS REST dataservices are registered into ZSS with a service installer function, where initializerName is the function

name located in the dll libraryName . The methods list what HTTP methods are expected of this dataservice. Example:

The service installer is given DataService , which includes context such as the above definition plus a

loggingIdentifier . The service is also given HttpServer , a reference to ZSS and its configuration. To register the

dataservice, you must make an HttpService object like

Then you must assign properties to the dataservice, such as

authType: What type of authentication and authorization checks should be done before calling this service. values

such as SERVICE_AUTH_NONE when the service does not need securty or SERVICE_AUTH_NATIVE_WITH_SESSION_TOKEN

when the service should be protected by ZSS's cookie are valid.

serviceFunction: The function within this dataservice that will be called whenever a request is received.

runInSubtask: (TRUE/FALSE) Whether to run the service function in a subtask or not whenever a request is received.

doImpersonation: (TRUE/FALSE) When true, the service function will be ran as the authenticated user, rather than

the server user. This is recommended whenever possible to keep permissions management in line with the users

own permissions.

Example of service installer:

When a request is received, the service function is called with the HttpService and HttpResponse objects. HttpService

is used to store and retrieve cached data and access the storage API. HttpRequest is a pointer within the response

object, and utilities exist to help with parsing it.

Example of request handling:

ZSS dataservice context and structs

Headers to important dataservice structs include

HttpResponse

HttpRequest

HttpService

HttpServer

Json handling

DataService context

Utilities

Data structures

ZSS storage API

The DataService struct contains two Storage structs, localStorage and remoteStorage . They implement the same API

for getting, setting, and removing data, but manage the data in different locations. localStorage stores data within the

ZSS server, for high speed access. remoteStorage stores data in the Caching Service, for high availability state storage.

Usage example: Sample angular app storage test api: https://github.com/zowe/sample-angular-app/blob/v1.23.0-

RC1/zssServer/src/storage.c

Documenting dataservices

It is recommended that you document your RESTful application dataservices in OpenAPI (Swagger) specification

documents. The Zowe Application Server hosts Swagger files for users to view at runtime.

To document a dataservice, take the following steps:

1. Create a .yaml or .json file that describes the dataservice in valid Swagger 2.0 format. Zowe validates the file at

runtime.

2. Name the file with the same name as the dataservice. Optionally, you can include the dataservice version number in

the format: <name>_<number> . For example, a Swagger file for a dataservice named user must be named either

users.yaml or users_1.1.0.yaml .

3. Place the Swagger file in the /doc/swagger directory below your application plug-in directory, for example:

/sample-angular-app/doc/swagger/hello.yaml

At runtime, the Zowe Application Server does the following:

Dynamically substitutes known values in the files, such as the hostname and whether the endpoint is accessible

using HTTP or HTTPS.

Builds documentation for each dataservice and for each application plug-in, in the following locations:

Dataservice documentation: /ZLUX/plugins/<app_name>/catalogs/swagger/servicename

Application plug-in documentation: /ZLUX/plugins/<app_name>/catalogs/swagger

In application plug-in documentation, displays only stubs for undocumented dataservices, stating that the

dataservice exists but showing no details. Undocumented dataservices include non-REST dataservices such as

WebSocket services.

https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/httpserver.h#L117
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/http.h#L124
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/httpserver.h#L173
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/httpserver.h#L223
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/json.h
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/dataservice.h#L57
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/utils.h
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/collections.h
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/dataservice.h#L57
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/storage.h#L22
https://github.com/zowe/sample-angular-app/blob/v1.23.0-RC1/zssServer/src/storage.c
https://github.com/zowe/sample-angular-app/blob/v1.23.0-RC1/zssServer/src/storage.c
https://swagger.io/specification/v2/

Version: v3.3.x LTS

Authentication API

This topic describes the web service API for user authentication.

The authentication mechanism of the ZLUX server allows for an administrator to gate access to services by a given auth

handler, while on the user side the authentication structure allows for a user to login to one or more endpoints at once

provided they share the same credentials given.

Handlers

The auth handlers are a type of zlux server plugin (type=nodeAuthentication) which are categorized by which kind of

authentication they can provide. Whether it's to z/OS via type=saf or theoretical authentication such as Facebook or

Amazon cloud, the handler API is abstract to handle different types of security needs.

Handler installation

Auth handler plugins are installed like any other plugin.

Handler configuration

The server top-level configuration attribute dataserviceAuthentication states properties about which plugins to use

and how to use them.

For example,

The dataserviceAuthentication attribute has the following properties:

defaultAuthentication: Which authentication category to choose by default, in case multiple are installed.

rbac: Whether or not the server should do authority checks in addition to authentication checks when requesting a

dataservice.

Handler context

These plugins are given an object, context , in the constructor. Context has attributes to help the plugin know about the

server configuration, provide a named logger, and more. The parameters include:

pluginDefinition: The object describing the plugin's definition file

pluginConf: An object that gives the plugin its configuration from the Config Service internal storage

serverConfiguration: The object describing the server's current configuration

context: An object holding contextual objects

logger: A logger with the name of the plugin's ID

Handler capabilities

A handler's constructor should return a capabilities object that states which capabilities the plugin has. If a capabilities

object is not returned, it is assumed that only the authenticate and authorize functions are implemented, for backward

compatibility support. The capabilities object should include:

https://docs.zowe.org/stable/extend/extend-desktop/mvd-configdataservice#internal-and-bootstrapping

canGetCategories: (true/false) If the getCategories() function exists, which returns a string array of categories of

auth the plugin can support given the server context. This is useful if the plugin can support multiple categories

conditionally.

canLogout: (true/false) If the logout(request, sessionState) function exists. Used to clear state and cookies when a

session should be ended.

canGetStatus: (true/false) If the getStatus(sessionState) function exists

canRefresh: (true/false) If the refreshStatus(request, sessionState) function exists, which is used to renew a session

that has an expiration limit.

canAuthenticate: (true/false) If the authenticate(request, sessionState):Promise function exists (Required, assumed)

canAuthorized: (true/false) If the *authorized(request, sessionState, options) function exists (Required, assumed)

haCompatible: (true/false) Used to be sure that a plugin has no state that would be lost in a high availibility

environment.

canGenerateHaSessionId: (true/false) If generateHaSessionId(request) exists, which is used to set the value used for

an app-server session for a user. When not in a high availability environment, the app-server generates its own

session ID.

canResetPassword: (true/false) If passwordRest(request, sessionState) exists

proxyAuthorizations: (true/false) If the addProxyAuthorizations(req1, req2Options, sessionState) function exists

Examples

sso-auth, which conditionally implements the saf, zss, and apiml security types: https://github.com/zowe/zlux-server-

framework/tree/v2.x/master/plugins/sso-auth

High availability (HA)

Some auth handlers are not capable of working in a high availability environment. In these environments, there can be

multiple zlux servers and there may not be a safe and secure way to share session state data. This extends to the zlux

server cookie as well, which is not sharable between multiple servers by default. Therefore, high availability has the

following two requirements from an auth handler plugin:

1. The plugin must state that it is HA capable by setting the capability flag haCompatible=true , usually indicating that

the plugin has no state data.

2. A plugin must have capability canGenerateHaSessionId=true so that the zlux server cookie is sharable between

multiple zlux servers.

REST API

Check status

Returns the current authentication status of the user to the caller.

Response example:

Every key in the response object is a registered auth type. The value object is guaranteed to have a Boolean field named

"authenticated" which indicates that at least one plugin in the category was able to authenticate the user.

Each item also has a field called "plugins", where every property value is a plugin-specific object.

https://github.com/zowe/zlux-server-framework/tree/v2.x/master/plugins/sso-auth
https://github.com/zowe/zlux-server-framework/tree/v2.x/master/plugins/sso-auth

Authenticate

Authenticates the user against authentication back-ends.

Request body example:

The categories parameter is optional. If omitted, all auth plugins are invoked with the username and password Response

example:

First-level keys are authentication categories or types. "success" means that all of the types requested have been

successful. For example typeA successful AND typeB successful AND ...

Second-level keys are auth plugin IDs. "success" on this level means that there's at least one successful result in that

auth type. For example, pluginA successful OR pluginB successful OR ...

User not authenticated or not authorized

The response received by the browser when calling any service, when the user is either not authenticated or not allowed

to access the service.

Not authenticated

The client is supposed to address this by showing the user a login form which will later invoke the login service for the

plugin mentioned and repeat the request.

Not authorized

There's no general way for the client to address this, except than show the user an error message.

Refresh status

If you have an active session, some auth plugins may be able to renew the session. Not all plugins support this action, so

while the call may return successful, if there is an associated expiration time you may notice that the expiration time has

not changed or been reset.

Response example:

Logout

When you have an active session, you can terminate it early with a logout. This should remove cookies and tell the

server to clear any cache it had about a session.

Password changes

Some auth plugins will allow you to change your password. Depending on the backing security (such as SAF), you may

need to provide your current password to change it.

Version: v3.3.x LTS

Internationalizing applications

You can internationalize Zowe™ application plug-ins using Angular and React frameworks. Internationalized applications

display in translated languages and include structures for ongoing translation updates.

The steps below use the Zowe Sample Angular Application and Zowe Sample React Application as examples. Your

applications might have slightly different requirements, for example the React Sample Application requires the react-

i18next library, but your application might require a different React library.

For detailed information on Angular or React, see their documentation. For detailed information on specific

internationalization libraries, see their documentation. You can also reference the Sample Angular Application

internationalization tutorial, and watch a video on how to internationalize your Angular application.

After you internationalize your application, you can view it by following steps in Changing the desktop language.

Internationalizing Angular applications

Zowe applications that use the Angular framework depend on .xlf formatted files to store static translated content and

.json files to store dynamic translated content. These files must be in the application's web/assets/i18n folder at

runtime. Each translated language will have its own file.

To internationalize an application, you must install Angular-compatible internationalization libraries. Be aware that

libraries can be better suited to either static or dynamic HTML elements. The examples in this task use the ngx-

i18nsupport library for static content and angular-l10n for dynamic content.

To internationalize Zowe Angular applications, take the following steps:

1. To install internationalization libraries, use the npm command, for example:

Note --save-dev commits the library to the application's required libraries list for future use.

2. To support the CLI tools and to control output, create a webClient/tsconfig.i18n.json typescript file and add the

following content:

For example, see this file in the Sample Angular Application.

3. In the static elements in your HTML files, tag translatable content with the i18n attribute within an Angular template,

for example:

The attribute should include a message ID, for example the @@welcome above.

4. To configure static translation builds, take the following steps:

a. In the webClient/package.json script, add the following line:

b. In the in webClient directory, create a xliffmerge.json file, add the following content, and specify the codes for

each language you will translate in the languages parameter:

https://github.com/zowe/sample-angular-app/
https://github.com/zowe/sample-react-app
https://github.com/zowe/sample-angular-app/blob/lab/step-2-i18n-complete/README.md
https://www.youtube.com/watch?v=kkCC2u1NQy4&feature=youtu.be
https://docs.zowe.org/stable/user-guide/mvd-using#changing-the-desktop-language
https://github.com/zowe/sample-angular-app/blob/master/webClient/tsconfig.i18n.json

When you run the i18n script, it reads this file and generates a messages.[lang].xlf file in the src/assets/i18n

directory for each language specified in the languages parameter. Each file contains the untranslated text from

the i18n-tagged HTML elements.

5. Run the following command to run the i18n script and extract i18n tagged HTML elements to .xlf files:

Note If you change static translated content, you must run the npm run build command to build the application,

and then re-run the npm run i18n command to extract the tagged content again.

6. In each .xlf file, replace target element strings with translated versions of the source element strings. For

example:

7. Run the following command to rebuild the application:

When you switch the Zowe Desktop to one of the application's translated languages, the application displays the

translated strings.

8. For dynamic translated content, follow these steps:

a. Import and utilize angular-l10n objects within an Angular component, for example:

b. In the related Angular template, you can implement myDynamicMessage as an ordinary substitutable string, for

example:

9. Create logic to copy the translation files to the web/assets directory during the webpack process, for example in the

sample application, the following JavaScript in the copy-webpack-plugin file copies the files:

Note: Do not edit files in the web/assets/i18n directory. They are overwritten by each build.

Internationalizing React applications

To internationalize Zowe applications using the React framework, take the following steps:

Note: These examples use the recommended react-i18next library, which does not differentiate between dynamic and

static content, and unlike the Angular steps above does not require a separate build process.

1. To install the React library, run the following command:

npm install --save-dev react-i18next

2. In the directory that contains your index.js file, create an i18n.js file and add the translated content, for

example:

3. Import the i18n file from the previous step into index.js file so that you can use it elsewhere, for example:

4. To internationalize a component, include the useTranslation hook and reference it to substitute translation keys

with their translated values. For example:

Internationalizing application desktop titles

To display the translated application name and description in the Desktop, take the following steps:

https://docs.zowe.org/stable/user-guide/mvd-using#changing-the-desktop-language

1. For each language, create a pluginDefinition.i18n.<lang_code>.json file. For example, for German create a

pluginDefinition.i18n.de.json file.

2. Place the .json files in the web/assets/i18n directory.

3. Translate the pluginShortNameKey and descriptionKey values in the application's pluginDefinition.json file. For

example, for the file below you would translate the values "sampleangular" and "sampleangulardescription" :

4. Add the translated values to the translation file. For example, the German translation file example,

pluginDefinition.i18n.de.json , would look like this:

5. Create logic to copy the translation files to the web/assets directory during the webpack process. For example, in

the Sample Angular Application the following JavaScript in the webClient/webpack.config.js file copies files to the

web/assets directory:

https://github.com/zowe/sample-angular-app/blob/v2.x/master/webClient/webpack.config.js

Version: v3.3.x LTS

Zowe Desktop and window management

The Zowe™ Desktop is a web component of Zowe, which is an implementation of MVDWindowManagement , the interface

that is used to create a window manager.

The code for this software is in the zlux-app-manager repository.

The interface for building an alternative window manager is in the zlux-platform repository.

Window Management acts upon Windows, which are visualizations of an instance of an application plug-in. Application

plug-ins are plug-ins of the type "application", and therefore the Zowe Desktop operates around a collection of plug-ins.

Note: Other objects and frameworks that can be utilized by application plug-ins, but not related to window

management, such as application-to-application communication, Logging, URI lookup, and Auth are not described here.

Loading and presenting application plug-ins

Upon loading the Zowe Desktop, a GET call is made to /plugins?type=application . The GET call returns a JSON list of

all application plug-ins that are on the server, which can be accessed by the user. Application plug-ins can be composed

of dataservices, web content, or both. Application plug-ins that have web content are presented in the Zowe Desktop UI.

The Zowe Desktop has a taskbar at the bottom of the page, where it displays each application plug-in as an icon with a

description. The icon that is used, and the description that is presented are based on the application plug-in's

PluginDefinition 's webContent attributes.

Plug-in management

Application plug-ins can gain insight into the environment in which they were spawned through the Plugin Manager. Use

the Plugin Manager to determine whether a plug-in is present before you act upon the existence of that plug-in. When

the Zowe Desktop is running, you can access the Plugin Manager through ZoweZLUX.PluginManager

The following are the functions you can use on the Plugin Manager:

getPlugin(pluginID: string)

Accepts a string of a unique plug-in ID, and returns the Plugin Definition Object (DesktopPluginDefinition) that is

associated with it, if found.

Application management

Application plug-ins within a Window Manager are created and acted upon in part by an Application Manager. The

Application Manager can facilitate communication between application plug-ins, but formal application-to-application

communication should be performed by calls to the Dispatcher. The Application Manager is not normally directly

accessible by application plug-ins, instead used by the Window Manager.

The following are functions of an Application Manager:

Function Description

spawnApplication(plugin: DesktopPluginDefinition,

launchMetadata: any): Promise<MVDHosting.InstanceId>;

Opens an application instance into the Window

Manager, with or without context on what actions

it should perform after creation.

killApplication(plugin:ZLUX.Plugin,

appId:MVDHosting.InstanceId): void;

Removes an application instance from the

Window Manager.

showApplicationWindow(plugin:

DesktopPluginDefinitionImpl): void;

Makes an open application instance visible within

the Window Manager.

isApplicationRunning(plugin:

DesktopPluginDefinitionImpl): boolean;

Determines if any instances of the application are

open in the Window Manager.

Windows and Viewports

When a user clicks an application plug-in's icon on the taskbar, an instance of the application plug-in is started and

presented within a Viewport, which is encapsulated in a Window within the Zowe Desktop. Every instance of an

application plug-in's web content within Zowe is given context and can listen on events about the Viewport and Window

it exists within, regardless of whether the Window Manager implementation utilizes these constructs visually. It is

possible to create a Window Manager that only displays one application plug-in at a time, or to have a drawer-and-panel

UI rather than a true windowed UI.

When the Window is created, the application plug-in's web content is encapsulated dependent upon its framework type.

The following are valid framework types:

"angular2": The web content is written in Angular, and packaged with Webpack. Application plug-in framework

objects are given through @injectables and imports.

"iframe": The web content can be written using any framework, but is included through an iframe tag. Application

plug-ins within an iframe can access framework objects through parent.RocketMVD and callbacks.

"react": The web content is written in React, Typescript, and packaged with Webpack. App framework objects are

provided via the ReactMVDResources object

In the case of the Zowe Desktop, this framework-specific wrapping is handled by the Plugin Manager.

Viewport Manager

Viewports encapsulate an instance of an application plug-in's web content, but otherwise do not add to the UI (they do

not present Chrome as a Window does). Each instance of an application plug-in is associated with a viewport, and

operations to act upon a particular application plug-in instance should be done by specifying a viewport for an

application plug-in, to differentiate which instance is the target of an action. Actions performed against viewports should

be performed through the Viewport Manager.

The following are functions of the Viewport Manager:

https://github.com/zowe/zlux-app-manager/blob/v2.x/master/virtual-desktop/src/pluginlib/react-inject-resources.ts

Function Description

createViewport(providers: ResolvedReflectiveProvider[]):

MVDHosting.ViewportId;

Creates a viewport into which an application

plug-in's webcontent can be embedded.

registerViewport(viewportId: MVDHosting.ViewportId,

instanceId: MVDHosting.InstanceId): void;

Registers a previously created viewport to an

application plug-in instance.

destroyViewport(viewportId: MVDHosting.ViewportId): void;
Removes a viewport from the Window

Manager.

`getApplicationInstanceId(viewportId: MVDHosting.ViewportId):

MVDHosting.InstanceId
null;`

Injection Manager

When you create Angular application plug-ins, they can use injectables to be informed of when an action occurs. iframe

application plug-ins indirectly benefit from some of these hooks due to the wrapper acting upon them, but Angular

application plug-ins have direct access.

The following topics describe injectables that application plug-ins can use.

Plug-in definition

Provides the plug-in definition that is associated with this application plug-in. This injectable can be used to gain context

about the application plug-in. It can also be used by the application plug-in with other application plug-in framework

objects to perform a contextual action.

Logger

Provides a logger that is named after the application plug-in's plugin definition ID.

Launch Metadata

If present, this variable requests the application plug-in instance to initialize with some context, rather than the default

view.

Viewport Events

Presents hooks that can be subscribed to for event listening. Events include:

resized: Subject<{width: number, height: number}>

Fires when the viewport's size has changed.

Window Events

Presents hooks that can be subscribed to for event listening. The events include:

Event Description

maximized: Subject<void> Fires when the Window is maximized.

minimized: Subject<void> Fires when the Window is minimized.

restored: Subject<void> Fires when the Window is restored from a minimized state.

moved: Subject<{top: number, left: number}> Fires when the Window is moved.

resized: Subject<{width: number, height: number}> Fires when the Window is resized.

titleChanged: Subject<string> Fires when the Window's title changes.

Window Actions

An application plug-in can request actions to be performed on the Window through the following:

Item Description

close(): void
Closes the Window of the application plug-in

instance.

maximize(): void
Maximizes the Window of the application plug-in

instance.

minimize(): void
Minimizes the Window of the application plug-in

instance.

restore(): void
Restores the Window of the application plug-in

instance from a minimized state.

setTitle(title: string):void Sets the title of the Window.

setPosition(pos: {top: number, left: number, width:

number, height: number}): void

Sets the position of the Window on the page and the

size of the window.

spawnContextMenu(xPos: number, yPos: number, items:

ContextMenuItem[]): void

Opens a context menu on the application plug-in

instance, which uses the Context Menu framework.

registerCloseHandler(handler: () => Promise<void>):

void

Registers a handler, which is called when the Window

and application plug-in instance are closed.

Framework API examples

The following are examples of how you would access the Window Actions API to begin an App in maximized mode upon

start-up.

Angular

1. Import Angular2InjectionTokens from 'pluginlib/inject-resources'

2. Within the constructor of your App, in the arguments, do @Optional()

@Inject(Angular2InjectionTokens.WINDOW_ACTIONS) private windowActions: Angular2PluginWindowActions

3. Then inside the constructor, check that window actions exist and then execute the action

4. Depending on your App layout, certain UI elements may not have loaded so to wait for them to load, one may want

to use something like Angular's NgOnInit directive.

React

1. Similar to how we do things in Angular, except the Window Actions (& other Zowe resources) are located in the

resources object. So if we were using a React.Component, we could have a constructor with constructor(props){

super(props); ... }

2. Then accessing Window Actions would be as simple as this.props.resources.windowActions

IFrames

1. Iframes are similar to Angular & React, but require a different import step. Instead to use Window Actions (& other

Zowe resources), we have to import the Iframe adapter. The Iframe adapter is located in zlux-app-

manager/bootstrap/web/iframe-adapter.js so something like a relative path in my JS code will suffice,

<script type="text/javascript" src="../../../org.zowe.zlux.bootstrap/web/iframe-adapter.js"></script>

2. Then to use Window Actions would be as simple as await windowActions.minimize();

NOTE: The Iframe adapter is not yet feature-complete. If you are attempting to use an event supported by Angular or

React, but not yet supported in Iframes, try to use the window.parent.ZoweZLUX object instead.

Version: v3.3.x LTS

Configuration Dataservice

The Configuration Dataservice is an essential component of the Zowe™ Application Framework, which acts as a JSON

resource storage service, and is accessible externally by REST API and internally to the server by dataservices.

The Configuration Dataservice allows for saving preferences of applications, management of defaults and privileges

within a Zowe ecosystem, and bootstrapping configuration of the server's dataservices.

The fundamental element of extensibility of the Zowe Application Framework is a plug-in. The Configuration Dataservice

works with data for plug-ins. Every resource that is stored in the Configuration Service is stored for a particular plug-in,

and valid resources to be accessed are determined by the definition of each plug-in in how it uses the Configuration

Dataservice.

The behavior of the Configuration Dataservice is dependent upon the Resource structure for a plug-in. Each plug-in lists

the valid resources, and the administrators can set permissions for the users who can view or modify these resources.

1. Resource Scope

2. REST API

i. REST Query Parameters

ii. REST HTTP Methods

a. GET

b. PUT

c. DELETE

iii. Administrative Access & Group

3. App API

4. Internal and Bootstrapping

5. Packaging Defaults

6. Plugin Definition

7. Aggregation Policies

8. Examples

Resource Scope

Data is stored within the Configuration Dataservice according to the selected Scope. The intent of Scope within the

Dataservice is to facilitate company-wide administration and privilege management of Zowe data.

When a user requests a resource, the resource that is retrieved is an override or an aggregation of the broader scopes

that encompass the Scope from which they are viewing the data.

When a user stores a resource, the resource is stored within a Scope but only if the user has access privilege to update

within that Scope.

Scope is one of the following, from broadest scope (Plugin) to narrowest scope (User):

Scope
YAML Configuration

Parameter
Default Location Description

Plugin N/A

<zowe.extensionDirectory>/<plugin-

name>/config/storageDefaults

Configuration defaults that

come with a plugin. Cannot

be modified.

Product N/A <zowe.runtimeDirectory>

Configuration defaults that

come with the product.

Cannot be modified.

Site
components.app-

server.siteDir

<zowe.workspaceDirectory>/app-server/site

Data that can be used

between multiple Zowe

instances.

Instance
components.app-

server.instanceDir

<zowe.workspaceDirectory>/app-server
Data within an individual

Zowe instance.

User
components.app-

server.usersDir

<zowe.workspaceDirectory>/app-

server/users
Data for individual users.

Note: While Authorization tuning can allow for settings such as GET from Instance to work without login, User scope

queries will be rejected if not logged in due to the requirement to pull resources from a specific user.

When you specify Scope User, the service manages configuration for your particular username, using the authentication

of the session. This way, the User scope is always mapped to your current username.

Consider a case where a user wants to access preferences for their text editor. One way they could do this is to use the

REST API to retrieve the settings resource from the Instance scope.

The Instance scope might contain editor defaults set by the administrator. But, if there are no defaults in Instance, then

the data in Group and User would be checked.

Therefore, the data the user receives would be no broader than what is stored in the Instance scope, but might have

only been the settings they saved within their own User scope (if the broader scopes do not have data for the resource).

Later, the user might want to save changes, and they try to save them in the Instance scope. Most likely, this action will

be rejected because of the preferences set by the administrator to disallow changes to the Instance scope by ordinary

users.

REST API

When you reach the Configuration Service through a REST API, HTTP methods are used to perform the desired operation.

The HTTP URL scheme for the configuration dataservice is:

<Server>/plugins/com.rs.configjs/services/data/<plugin ID>/<Scope>/<resource>/<optional subresources>?

<query>

Where the resources are one or more levels deep, using as many layers of subresources as needed.

Think of a resource as a collection of elements, or a directory. To access a single element, you must use the query

parameter "name="

REST query parameters

Name (string)

Get or put a single element rather than a collection.

Recursive (boolean)

When performing a DELETE, specifies whether to delete subresources too.

Listing (boolean)

When performing a GET against a resource with content subresources, listing=true will provide the names of the

subresources rather than both the names and contents.

REST HTTP methods

Below is an explanation of each type of REST call.

Each API call includes an example request and response against a hypothetical application called the "code editor".

GET

GET /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?name=<element>

This returns JSON with the attribute "content" being a JSON resource that is the entire configuration that was

requested. For example:

/plugins/com.rs.configjs/services/data/org.openmainframe.zowe.codeeditor/user/sessions/default?name=tabs

The parts of the URL are:

Plugin: org.openmainframe.zowe.codeeditor

Scope: user

Resource: sessions

Subresource: default

Element = tabs

The response body is a JSON config:

GET /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>

This returns JSON with the attribute content being a JSON object that has each attribute being another JSON object,

which is a single configuration element.

GET /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>

(When subresources exist.)

This returns a listing of subresources that can, in turn, be queried.

PUT

PUT /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?name=<element>

Stores a single element (must be a JSON object {...}) within the requested scope, ignoring aggregation policies,

depending on the user privilege. For example:

/plugins/com.rs.configjs/services/data/org.openmainframe.zowe.codeeditor/user/sessions/default?name=tabs

Body:

Response:

DELETE

DELETE /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?recursive=true

Deletes all files in all leaf resources below the resource specified.

DELETE /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?name=<element>

Deletes a single file in a leaf resource.

DELETE /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>

Deletes all files in a leaf resource.

Does not delete the directory on disk.

Administrative access and group

By means not discussed here, but instead handled by the server's authentication and authorization code, a user might

be privileged to access or modify items that they do not own.

In the simplest case, it might mean that the user is able to do a PUT, POST, or DELETE to a level above User, such as

Instance.

The more interesting case is in accessing another user's contents. In this case, the shape of the URL is different.

Compare the following two commands:

GET /plugins/com.rs.configjs/services/data/<plugin>/user/<resource>

Gets the content for the current user.

GET /plugins/com.rs.configjs/services/data/<plugin>/users/<username>/<resource>

Gets the content for a specific user if authorized.

This is the same structure that is used for the Group scope. When requesting content from the Group scope, the user is

checked to see if they are authorized to make the request for the specific group. For example:

GET /plugins/com.rs.configjs/services/data/<plugin>/group/<groupname>/<resource>

Gets the content for the given group, if the user is authorized.

Application API

Retrieves and stores configuration information from specific scopes.

Note: This API should only be used for configuration administration user interfaces.

ZLUX.UriBroker.pluginConfigForScopeUri(pluginDefinition: ZLUX.Plugin, scope: string, resourcePath:string,

resourceName:string): string;

A shortcut for the preceding method, and the preferred method when you are retrieving configuration information, is

simply to "consume" it. It "asks" for configurations using the User scope, and allows the configuration service to decide

which configuration information to retrieve and how to aggregate it. (See below on how the configuration service

evaluates what to return for this type of request).

ZLUX.UriBroker.pluginConfigUri(pluginDefinition: ZLUX.Plugin, resourcePath:string, resourceName:string):

string;

Internal and bootstrapping

Some dataservices within plug-ins can take configuration that affects their behavior. This configuration is stored within

the Configuration Dataservice structure, but it is not accessible through the REST API.

Within the instance configuration directory of a zLUX installation, each plugin may optionally have an _internal

directory. An example of such a path would be:

~/.zowe/workspace/app-server/ZLUX/pluginStorage/<pluginName>/_internal

Within each _internal directory, the following directories might exist:

services/<servicename> : Configuration resources for the specific service.

plugin : Configuration resources that are visible to all services in the plug-in.

The JSON contents within these directories are provided as Objects to dataservices through the dataservice context

Object.

Packaging Defaults

The best way to provide default settings for a plugin is to include it as part of the plugin's package.

It's easy to distribute to users, requires no configuration steps, and is read-only from the server.

To package, all content must be stored within the /config/storageDefaults directory of your plugin.

Within, non-leaf resources are folders, and leaf resources are files, regardless of JSON or binary.

The _internal folder and content is also permitted.

Plug-in definition

Because the Configuration Dataservices stores data on a per-plug-in basis, each plug-in must define their resource

structure to make use of the Configuration Dataservice. The resource structure definition is included in the plug-in's

pluginDefinition.json file.

For each resource and subresource, you can define an aggregationPolicy to control how the data of a broader scope

alters the resource data that is returned to a user when requesting a resource from a narrower Scope.

For example:

Aggregation policies

Aggregation policies determine how the Configuration Dataservice aggregates JSON objects from different Scopes

together when a user requests a resource. If the user requests a resource from the User scope, the data from the User

scope might replace or be merged with the data from a broader scope such as Instance, to make a combined resource

object that is returned to the user.

Aggregation policies are defined by a plug-in developer in the plug-in's definition for the Configuration Service, as the

attribute aggregationPolicy within a resource.

The following policies are currently implemented:

NONE: If the Configuration Dataservice is called for Scope User, only user-saved settings are sent, unless there are

no user-saved settings for the query, in which case the dataservice attempts to send data that is found at a broader

scope.

OVERRIDE: The Configuration Dataservice obtains data for the resource that is requested at the broadest level

found, and joins the resource's properties from narrower scopes, overriding broader attributes with narrower ones,

when found.

Examples

zlux-app-manager VT Terminal App

https://github.com/zowe/zlux-app-manager/tree/v3.x/master/bootstrap/src/uri/mvd-uri.ts
https://github.com/zowe/vt-ng2/blob/v3.x/master/webClient/src/app/app.component.ts

Version: v3.3.x LTS

URI Broker

The URI Broker is an object in the application plug-in web framework, which facilitates calls to the Zowe™ Application

Server by constructing URIs that use the context from the calling application plug-in.

1. Accessing the URI Broker

i. Natively

ii. In an iframe

2. Functions

i. Accessing an application plug-in's dataservices

a. HTTP dataservice URI

b. Websocket dataservice URI

ii. Accessing the application plug-in's configuration resources

a. Standard configuration access

b. Scoped configuration access

iii. Accessing static content

iv. Accessing the application plug-in's root

v. Server queries

a. Accessing a list of plug-ins

Accessing the URI Broker

The URI Broker is accessible independent of other frameworks involved such as Angular, and is also accessible through

iframe. This is because it is attached to a global when within the Zowe Desktop. For more information, see Zowe Desktop

and window management. Access the URI Broker through one of two locations:

Natively:

window.ZoweZLUX.uriBroker

In an iframe:

window.parent.ZoweZLUX.uriBroker

Functions

The URI Broker builds the following categories of URIs depending upon what the application plug-in is designed to call.

Accessing an application plug-in's dataservices

Dataservices can be based on HTTP (REST) or Websocket. For more information, see Dataservices.

HTTP Dataservice URI

pluginRESTUri(plugin:ZLUX.Plugin, serviceName: string, relativePath:string): string

https://docs.zowe.org/stable/extend/extend-desktop/mvd-desktopandwindowmgt
https://docs.zowe.org/stable/extend/extend-desktop/mvd-desktopandwindowmgt
https://docs.zowe.org/stable/extend/extend-desktop/mvd-dataservices

Returns: A URI for making an HTTP service request.

Websocket Dataservice URI

pluginWSUri(plugin: ZLUX.Plugin, serviceName:string, relativePath:string): string

Returns: A URI for making a Websocket connection to the service.

Accessing application plug-in's configuration resources

Defaults and user storage might exist for an application plug-in such that they can be retrieved through the

Configuration Dataservice.

There are different scopes and actions to take with this service, and therefore there are a few URIs that can be built:

Standard configuration access

pluginConfigUri(pluginDefinition: ZLUX.Plugin, resourcePath:string, resourceName?:string): string

Returns: A URI for accessing the requested resource under the user's storage.

Scoped configuration access

pluginConfigForScopeUri(pluginDefinition: ZLUX.Plugin, scope: string, resourcePath:string,

resourceName?:string): string

Returns: A URI for accessing a specific scope for a given resource.

Accessing static content

Content under an application plug-in's web directory is static content accessible by a browser. This can be accessed

through:

pluginResourceUri(pluginDefinition: ZLUX.Plugin, relativePath: string): string

Returns: A URI for getting static content.

For more information about the web directory, see Application plug-in filesystem structure.

Accessing the application plug-in's root

Static content and services are accessed off of the root URI of an application plug-in. If there are other points that you

must access on that application plug-in, you can get the root:

pluginRootUri(pluginDefinition: ZLUX.Plugin): string

Returns: A URI to the root of the application plug-in.

Server queries

A client can find different information about a server's configuration or the configuration as seen by the current user by

accessing specific APIs.

https://docs.zowe.org/stable/extend/extend-desktop/mvd-plugindefandstruct#application-plugin-filesystem-structure

Accessing a list of plug-ins

pluginListUri(pluginType: ZLUX.PluginType): string

Returns: A URI, which when accessed returns the list of existing plug-ins on the server by type, such as "Application" or

"all".

Version: v3.3.x LTS

Application-to-application communication

Zowe™ application plug-ins can opt-in to various application framework abilities, such as the ability to have a Logger,

the ability to use a URI builder utility, and more.

The ability for one appliccation plug-in to communicate with another is an ability that is unique to Zowe environments

with multiple application plug-ins. The application framework provides constructs that facilitate this ability.

The constructs are: the Dispatcher, Actions, Recognizers, Registry, and the features that utilize them such as the

framework's Context menu.

1. Why use application-to-application communication?

2. Actions

3. Recognizers

4. Dispatcher

5. Registry

6. Pulling it all together in an example

Why use application-to-application communication?

When working with computers, people often use multiple applications to accomplish a task. For example, a person might

check their email before opening a bank statement in a browser. In many environments, the relationship between one

application and another is not well defined. For example, you may open one program to learn of a situation, which is

then resolved by opening a different program and typing in content. The application framework attempts to solve this

problem by creating structured messages that can be sent from one application plug-in to another.

An application plug-in has a context of the information that it contains. This context can be used to invoke an action on

another application plug-in that is better suited to handle some of the information discovered in the first application

plug-in. Well-structured messages facilitate the process of determining which application plug-in is best suited to handle

a given situation, while also explaining, in detail, what that application plug-in should do.

This way, rather than finding out that an attachment with the extension ".dat" was not meant for a text editor, but rather

for an email client, one application plug-in may be able to invoke an action on an application plug-in that is capable of

opening of an email.

Actions

To manage communication from one application plug-in to another, a specific structure is needed. In the application

framework, the unit of application-to-application communication is an Action. The typescript definition of an Action is as

follows:

An Action has a specific structure of data that is passed, to be filled in with the context at runtime, and a specific target

to receive the data.

The Action is dispatched to the target in one of several modes, for example: to target a specific instance of an

application plug-in, an instance, or to create a new instance.

The Action can be less detailed than a message. It can be a request to minimize, maximize, close, launch, and more.

Finally, all of this information is related to a unique ID and localization string such that it can be managed by the

framework.

Action target modes

When you request an Action on an application plug-in, the behavior is dependent on the instance of the application plug-

in you are targeting. You can instruct the framework to target the application plug-in with a target mode from the

ActionTargetMode enum :

Action types

The application framework performs different operations on application plug-ins depending on the type of an Action. The

behavior can be quite different, from simple messaging to requesting that an application plug-in be minimized. The

types are defined by an enum :

Loading actions

Actions can be created dynamically at runtime, or saved and loaded by the system at login.

App2App via URL

Another way the Zowe Application Framework invokes Actions is via URL Query Parameters, with parameters formatted

in JSON. This feature enables users to bookmark a set of application-to-application communication actions (in the form of

a URL) that will be executed when opening the webpage. Developers creating separate web apps can build a link that

will open the Zowe Desktop and do specific actions in Apps, for example, opening a file in the Editor.

The App2App via URL feature allows you to:

1. Specify one or more actions that will be executed upon login, allowing you to bookmark a series of actions that you

can share with someone else.

2. Specify actions that are declared by plugins (when formatter is equal to a known action ID) or actions that you have

custom-made (when formatter = 'data').

3. Customize the action type, mode, and target plugin (when the formatter is equal to an existing action ID).

Samples

Query parameter format:

?app2app={pluginId}:{actionType}:{actionMode}:{formatter}:{contextData}&app2app={pluginId}:{actionType}:

{actionMode}:{formatter}:{contextData}

pluginId - application identifier, e.g. 'org.zowe.zlux.ng2desktop.webbrowser'

actionType - 'launch' | 'message'

actionMode - 'create' | 'system'

formatter - 'data' | actionId

contextData - context data in form of JSON

windowManager - 'MVD' | undefined : (Optional) While in standalone mode, controls whether to use the Zowe

(MVD) window manager or the deprecated simple window manager. Default is MVD.

showLogin - true | false : (Optional) While in standalone mode, controls whether to show Zowe's login page if

credentials are not retrieved from a previous Desktop session, or if to disable it and load the application anyway

(ideal solution for apps with their own login experiences). Default is true.

Note that some of these parameters are shared with single app mode, therefore, you may need to adjust pluginId and

app2app parameters as follows

(desktop mode)

(single app mode)

Dynamically

You can create Actions by calling the following Dispatcher method: makeAction(id: string, defaultName: string,

targetMode: ActionTargetMode, type: ActionType, targetPluginID: string, primaryArgument: any):Action

Saved on system

Actions can be stored in JSON files that are loaded at login. The JSON structure is as follows:

Recognizers

Actions are meant to be invoked when certain conditions are met. For example, you do not need to open a messaging

window if you have no one to message. Recognizers are objects within the application framework that use the context

that the application plug-in provides to determine if there is a condition for which it makes sense to execute an Action.

Each recognizer has statements about what condition to recognize, and when that statement is met, which Action can be

executed at that time. The invocation of the Action is not handled by the Recognizer; it simply detects that an Action can

be taken.

Recognition clauses

Recognizers associate a clause of recognition with an action, as you can see from the following class:

A clause, in turn, is associated with an operation, and the subclauses upon which the operation acts. The following

operations are supported:

Loading Recognizers at runtime

You can add a Recognizer to the application plug-in environment in one of two ways: by loading from Recognizers saved

on the system, or by adding them dynamically.

Dynamically

You can call the Dispatcher method, addRecognizer(predicate:RecognitionClause, actionID:string):void

Saved on system

Recognizers can be stored in JSON files that are loaded at login. The JSON structure is as follows:

clause can take on one of two shapes:

Or,

Where this one can again, have subclauses.

Recognizer example

Recognizers can be as simple or complex as you write them to be, but here is an example to illustrate the mechanism:

In this case, the Recognizer detects whether it is possible to run the org.zowe.explorer.openmember Action when the

TN3270 Terminal application plug-in is on the screen ISRUDSM (an ISPF panel for browsing PDS members).

Dispatcher

The dispatcher is a core component of the application framework that is accessible through the Global ZLUX Object at

runtime. The Dispatcher interprets Recognizers and Actions that are added to it at runtime. You can register Actions and

Recognizers on it, and later, invoke an Action through it. The dispatcher handles how the Action's effects should be

carried out, acting in combination with the Window Manager and application plug-ins to provide a channel of

communication.

Registry

The Registry is a core component of the application framework, which is accessible through the Global ZLUX Object at

runtime. It contains information about which application plug-ins are present in the environment, and the abilities of

each application plug-in. This is important to application-to-application communication, because a target might not be a

specific application plug-in, but rather an application plug-in of a specific category, or with a specific featureset, capable

of responding to the type of Action requested.

Pulling it all together in an example

The standard way to make use of application-to-application communication is by having Actions and Recognizers that

are saved on the system. Actions and Recognizers are loaded at login, and then later, through a form of automation or

by a user action, Recognizers can be polled to determine if there is an Action that can be executed. All of this is handled

by the Dispatcher, but the description of the behavior lies in the Action and Recognizer that are used. In the Action and

Recognizer descriptions above, there are two JSON definitions: One is a Recognizer that recognizes when the Terminal

application plug-in is in a certain state, and another is an Action that instructs the MVS Explorer to load a PDS member

for editing. When you put the two together, a practical application is that you can launch the MVS Explorer to edit a PDS

member that you have selected within the Terminal application plug-in.

Version: v3.3.x LTS

Configuring IFrame communication

The Zowe Application Framework provides the following shared resource functions through a ZoweZLUX object:

pluginManager , uriBroker , dispatcher , logger , registry , notificationManager , and globalization

Like REACT and Angular apps, IFrame apps can use the ZoweZLUX object to communicate with the framework and other

apps. To enable communication in an IFrame app, you must add the following javascript to your app, for example in your

index.html file:

logger.js is the javascript version of logger.ts and is capable of the same functions, including access to the Logger

and ComponentLogger classes. The Logger class determines the behavior of all the ComponentLoggers created from it.

ComponentLoggers are what the user implements to perform logging.

Iframe-adapter.js is designed to mimic the ZoweZLUX object that is available to apps within the virtual-desktop, and

serves as the middle-man for communication between IFrame apps and the Zowe desktop.

You can see an implementation of this functionality in the sample IFrame app.

The version of ZoweZLUX adapted for IFrame apps is not complete and only implements the functions needed to allow

the Sample IFrame App to function. The notificationManager , logger , globalization , dispatcher , windowActions ,

windowEvents , and viewportEvents are fully implemented. The pluginManager and uriBroker are only partially

implemented. The registry is not implemented.

Unlike REACT and Angular apps, in IFrame apps the ZoweZLUX and initialization objects communicate with Zowe using

the browser's onmessage and postmessage APIs. That means that communication operations are asynchronous, and you

must account for this in your app, for example by using Promise objects and await or then functions.

https://github.com/zowe/zlux-platform/blob/v3.x/master/interface/src/index.d.ts#L720
https://github.com/zowe/sample-iframe-app
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Version: v3.3.x LTS

Error reporting UI

The zLUX Widgets repository contains shared widget-like components of the Zowe™ Desktop, including Button,

Checkbox, Paginator, various pop-ups, and others. To maintain consistency in desktop styling across all applications, use,

reuse, and customize existing widgets to suit the purpose of the application's function and look.

Ideally, a program should have little to no logic errors. Once in a while a few occur, but more commonly an error occurs

from misconfigured user settings. A user might request an action or command that requires certain prerequisites, for

example: a proper ZSS-Server configuration. If the program or method fails, the program should notify the user through

the UI about the error and how to fix it. For the purposes of this discussion, we will use the Workflow application plug-in

in the zlux-workflow repository.

ZluxPopupManagerService

The ZluxPopupManagerService is a standard popup widget that can, through its reportError() method, be used to

display errors with attributes that specify the title or error code, severity, text, whether it should block the user from

proceeding, whether it should output to the logger, and other options you want to add to the error dialog.

ZluxPopupManagerService uses both ZluxErrorSeverity and ErrorReportStruct .

ZluxErrorSeverity

ZluxErrorSeverity classifies the type of report. Under the popup-manager, there are the following types: error,

warning, and information. Each type has its own visual style. To accurately indicate the type of issue to the user, the

error or pop-up should be classified accordingly.

ErrorReportStruct

ErrorReportStruct contains the main interface that brings the specified parameters of reportError() together.

Implementation

Import ZluxPopupManagerService and ZluxErrorSeverity from widgets. If you are using additional services with your

error prompt, import those too (for example, LoggerService to print to the logger or GlobalVeilService to create a

visible semi-transparent gray veil over the program and pause background tasks). Here, widgets is imported from

node_modules\@zlux\ so you must ensure zLUX widgets is used in your package-lock.json or package.json and you

have run npm install .

import { ZluxPopupManagerService, ZluxErrorSeverity } from '@zlux/widgets';

Declaration

Create a member variable within the constructor of the class you want to use it for. For example, in the Workflow

application plug-in under \zlux-workflow\src\app\app\zosmf-server-config.component.ts is a

ZosmfServerConfigComponent class with the pop-up manager service variable. To automatically report the error to the

console, you must set a logger.

Usage

Now that you have declared your variable within the scope of your program's class, you are ready to use the method.

The following example describes an instance of the reload() method in Workflow that catches an error when the

program attempts to retrieve a configuration from a configService and set it to the program's this.config . This

method fails when the user has a faulty zss-Server configuration and the error is caught and then sent to the class'

popupManager variable from the constructor above.

Here, the errorMessage clearly describes the error with a small degree of ambiguity as to account for all types of errors

that might occur from that method. The specifics of the error are then generated dynamically and are printed with the

err.toString() , which contains the more specific information that is used to pinpoint the problem. The

this.popupManager.report() method triggers the error prompt to display. The error severity is set with

ZluxErrorSeverity.ERROR and the err.status.toString() describes the status of the error (often classified by a code,

for example: 404). The optional parameters in options specify that this error will block the user from interacting with

the application plug-in until the error is closed or it until goes away on its own. globalVeilService is optional and is

used to create a gray veil on the outside of the program when the error is caused. You must import globalVeilService

separately (see the zlux-workflow repository for more information).

HTML

The final step is to have the recently created error dialog display in the application plug-in. If you do

this.popupManager.report() without adding the component to your template, the error will not be displayed. Navigate

to your component's .html file. On the Workflow application plug-in, this file will be in \zlux-

workflow\src\app\app\zosmf-server-config.component.html and the only item left is to add the popup manager

component alongside your other classes.

<zlux-popup-manager></zlux-popup-manager>

So now when the error is called, the new UI element should resemble the following:

The order in which you place the pop-up manager determines how the error dialog will overlap in your UI. If you want the

error dialog to overlap other UI elements, place it at the end of the .html file. You can also create custom styling

through a CSS template, and add it within the scope of your application plug-in.

Version: v3.3.x LTS

Logging utility

The zlux-shared repository provides a logging utility for use by dataservices and web content for an application plug-in.

Logging objects

The logging utility is based on the following objects:

Component Loggers: Objects that log messages for an individual component of the environment, such as a REST

API for an application plug-in or to log user access.

Destinations: Objects that are called when a component logger requests a message to be logged. Destinations

determine how something is logged, for example, to a file or to a console, and what formatting is applied.

Logger: Central logging object, which can spawn component loggers and attach destinations.

Logger IDs

Because Zowe™ application plug-ins have unique identifiers, both dataservices and an application plug-in's web content

are provided with a component logger that knows this unique ID such that messages that are logged can be prefixed

with the ID. With the association of logging to IDs, you can control verbosity of logs by setting log verbosity by ID.

Accessing logger objects

Logger

The core logger object is attached as a global for low-level access.

App Server

NodeJS uses global as its global object, so the logger is attached to: global.COM_RS_COMMON_LOGGER

Web

(Angular App Instance Injectible). See Logger in Zowe Desktop and window management.

(others) Browsers use window as the global object, so the logger is attached to: window.COM_RS_COMMON_LOGGER

Component logger

Component loggers are created from the core logger object, but when working with an application plug-in, allow the

application plug-in framework to create these loggers for you. An application plug-in's component logger is presented to

dataservices or web content as follows.

App Server

See Router Dataservice Context in the topic Dataservices.

https://docs.zowe.org/stable/extend/extend-desktop/mvd-desktopandwindowmgt
https://docs.zowe.org/stable/extend/extend-desktop/mvd-dataservices

Logger API

The following constants and functions are available on the central logging object.

Attribute Type Description Arguments

makeComponentLogger function

Returns an existing logger of this name, or

creates a new component logger if no logger

of the specified name exists - Automatically

done by the application framework for

dataservices and web content

componentIDString

setLogLevelForComponentName function
Sets the verbosity of an existing component

logger

componentIDString ,

logLevel

Component Logger API

The following constants and functions are available to each component logger.

Attribute Type Description Arguments

CRITICAL const Is a const for logLevel

SEVERE const Is a const for logLevel

WARN const Is a const for logLevel

WARNING const Is a const for logLevel

INFO const Is a const for logLevel

DEBUG const Is a const for logLevel

FINE const Is a const for logLevel

FINER const Is a const for logLevel

TRACE const Is a const for logLevel

FINEST const Is a const for logLevel

log function Used to write a log, specifying the log level

logLevel ,

messageString

critical function Used to write a CRITICAL log. messageString

Attribute Type Description Arguments

severe function Used to write a SEVERE log. messageString

warn function Used to write a WARNING log. messageString

info function Used to write an INFO log. messageString

debug function Used to write a FINE log. messageString

trace function Used to write a TRACE log. messageString

makeSublogger function
Creates a new component logger with an ID appended by

the string given

componentNameSuffix

Log Levels

An enum, LogLevel , exists for specifying the verbosity level of a logger. The mapping is:

Level Number

CRITICAL 0

WARNING 1

INFO 2

DEBUG 3

FINER 4

TRACE 5

NOTE

The default log level for a logger is INFO.

Logging verbosity

Using the component logger API, loggers can dictate at which level of verbosity a log message should be visible. You can

configure the server or client to show more or less verbose messages by using the core logger's API objects.

Example: You want to set the verbosity of the org.zowe.foo application plug-in's dataservice, bar to show debugging

information.

logger.setLogLevelForComponentName('org.zowe.foo.bar',LogLevel.DEBUG)

Configuring logging verbosity

The application plug-in framework provides ways to specify what component loggers you would like to set default

verbosity for, such that you can easily turn logging on or off.

Server startup logging configuration

The server configuration file allows for specification of default log levels, as a top-level attribute logLevel , which takes

key-value pairs where the key is a regex pattern for component IDs, and the value is an integer for the log levels.

For example:

For more information about the server configuration file, see Zowe Application Framework (zLUX) configuration.

Using log message IDs

To make technical support for your application easier, create IDs for common log messages and use substitution to

generate them. When you use IDs, people fielding support calls can identify and solve problems more quickly. IDs are

particularly helpful if your application is translated, because it avoids users having to explain problems using language

that the tech support person might not understand.

To use log message IDs, take the following steps:

1. Depending on how your application is structured, create message files in the following locations:

Web log messages: {plugin}/web/assets/i18n/log/messages_{language}.json

App server log messages: {plugin}/lib/assets/i18n/log/messages_{language}.json

2. In the files, create ID-message pairs using the following format:

Where "id#" is the message ID and "value#" is the text. For example:

3. Reference the IDs in your code, for example:

Which compiles to:

Or in another supported language, such as Russian:

Message ID logging examples

Server core: https://github.com/zowe/zlux-server-

framework/blob/v2.x/master/plugins/config/lib/assets/i18n/log/messages_en.json

https://docs.zowe.org/stable/extend/extend-desktop/mvd-server-config
https://docs.zowe.org/stable/extend/user-guide/mvd-configuration#configuration-file
https://github.com/zowe/zlux-server-framework/blob/v2.x/master/plugins/config/lib/assets/i18n/log/messages_en.json
https://github.com/zowe/zlux-server-framework/blob/v2.x/master/plugins/config/lib/assets/i18n/log/messages_en.json

Version: v3.3.x LTS

Developing for Zowe CLI

Extend Zowe™ CLI by developing plug-ins and contributing code to Zowe CLI core or existing plug-ins.

How to contribute

Contribute to Zowe CLI in the following ways:

Add new commands, options, or other improvements to the core CLI.

Develop a Zowe CLI plug-in.

You might want to contribute to Zowe CLI to accomplish the following objectives:

Provide new scriptable functionality for yourself, your organization, or to a broader community.

Make use of Zowe CLI infrastructure (such as profiles and programmatic APIs).

Participate in the Zowe CLI community space.

Getting started

If you want to start working with the code immediately, review the Readme file in the Zowe CLI core repository and the

Zowe contribution guidelines. To review a sample plug-in that adheres to the guidelines for contributing to Zowe CLI

projects, see the zowe-cli-sample-plugin GitHub repository.

Contribution guidelines

The Zowe CLI contribution guidelines contain standards and conventions for developing Zowe CLI plug-ins.

The guidelines contain critical information about working with the code, running/writing/maintaining automated tests,

developing consistent syntax in your plug-in, and ensuring that your plug-in integrates with Zowe CLI properly.

For more information about ... See:

General guidelines that apply to contributing to Zowe CLI and plug-ins Contribution guidelines

Conventions and best practices for creating packages and plug-ins for Zowe CLI Package and plug-in guidelines

Guidelines for running tests on Zowe CLI Testing guidelines

Guidelines for running tests on the plug-ins that you build Plug-in testing guidelines

Versioning conventions for Zowe CLI and plug-ins Versioning guidelines

Plug-in development overview

https://github.com/zowe/zowe-cli#zowe-cli--
https://github.com/zowe/zowe-cli/blob/master/CONTRIBUTING.md#contribution-guidelines
https://github.com/zowe/zowe-cli-sample-plugin#zowe-cli-sample-plug-in
https://github.com/zowe/zowe-cli/blob/master/CONTRIBUTING.md
https://github.com/zowe/zowe-cli/blob/master/docs/PackagesAndPluginGuidelines.md
https://github.com/zowe/zowe-cli/blob/master/docs/TESTING.md
https://github.com/zowe/zowe-cli/blob/master/docs/PluginTESTINGGuidelines.md
https://github.com/zowe/zowe-cli/blob/master/docs/MaintainerVersioning.md

At a high level, a plug-in must have imperative-framework configuration (see a sample here). This configuration is

discovered by imperative-framework through the package.json imperative key.

A Zowe CLI plug-in minimally contains the following:

1. Programmatic API: Node.js programmatic APIs to be called by your handler or other Node.js applications.

2. Command definition: The syntax definition for your command.

3. Handler implementation: To invoke your programmatic API to display information in the format that you defined in

the definition.

Imperative CLI Framework documentation

Imperative CLI Framework documentation is a key source of information to learn about the features of Imperative CLI

Framework, the code framework that you use to build plug-ins for Zowe CLI. Refer to these supplementary documents

during development to learn about specific features such as:

Auto-generated help

JSON responses

User profiles

Logging, progress bars, experimental commands, and more

Authentication mechanisms

https://github.com/zowe/zowe-cli-sample-plugin/blob/master/src/pluginDef.ts
https://github.com/zowe/zowe-cli-sample-plugin/blob/master/package.json
https://github.com/zowe/zowe-cli/wiki

Version: v3.3.x LTS

Tutorials

To better understand how to extend Zowe CLI and Zowe CLI plug-ins, read through the Extend tutorials.

The following topics are covered in the tutorials:

1. Setting up: Clone the project and prepare your local environment.

2. Installing a plug-in: Install the sample plug-in to Zowe CLI and run as-is.

3. Extending a plug-in: Extend the sample plug-in with a new command by creating a programmatic API, definition, and

handler.

4. Creating a new plug-in: Create a new CLI plug-in that uses Zowe CLI programmatic APIs and a diff package to

compare two data sets.

5. Implementing user profiles: Implement user profiles with the plug-in.

https://docs.zowe.org/stable/extend/extend-cli/cli-setting-up
https://docs.zowe.org/stable/extend/extend-cli/cli-installing-sample-plugin
https://docs.zowe.org/stable/extend/extend-cli/cli-extending-a-plugin
https://docs.zowe.org/stable/extend/extend-cli/cli-developing-a-plugin
https://docs.zowe.org/stable/extend/extend-cli/cli-implement-profiles

Version: v3.3.x LTS

Setting up your development environment

Before you follow the development tutorials for creating a Zowe™ CLI plug-in, follow these steps to set up your

environment.

Prerequisites

Install Zowe CLI.

Initial setup

Clone and build your project

1. Create a local development folder named zowe-tutorial to clone and build all projects in this folder.

2. Clone zowe-cli-sample-plugin and build from source.

Clone the repository into your development folder to match the following structure:

i. Open a terminal and enter cd zowe-tutorial to change directory into your zowe-tutorial folder.

ii. Enter git clone https://github.com/zowe/zowe-cli-sample-plugin to clone the zowe-cli-sample-plugin

repository.

iii. Enter cd zowe-cli-sample-plugin to change directory into your zowe-cli-sample-plugin folder.

iv. Enter npm install to install all dependencies and modules for the project.

v. Enter npm run build to create a production build.

Optional step: Run automated tests

We recommend running automated tests on all code changes.

To run automated tests:

1. Use Visual Studio Code or your file explorer to copy the content in the example_properties.yaml file to the

custom_properties.yaml file.

2. Use a text editor to edit the properties within custom_properties.yaml to contain valid system information for your

site.

3. In a terminal, enter cd zowe-cli-sample-plugin to change directory into your zowe-cli-sample-plugin folder.

4. Enter npm run test to run the automated test.

Next steps

After you complete your setup, follow the Installing the sample plug-in tutorial to install this sample plug-in to Zowe CLI.

https://docs.zowe.org/stable/user-guide/cli-installcli
https://github.com/zowe/zowe-cli-sample-plugin/#zowe-cli-sample-plug-in
https://docs.zowe.org/stable/extend/extend-cli/cli-installing-sample-plugin

Version: v3.3.x LTS

Installing the sample plug-in

This tutorial covers installing and running the Zowe™ CLI sample plug-in, which adds a command to the CLI to list the

contents of a directory on your computer.

Before you begin, set up your local environment to install a plug-in.

Installing the sample plug-in to Zowe CLI

To install the Zowe CLI sample plug-in:

1. Open a terminal and enter cd zowe-tutorial to change directory into your zowe-tutorial folder.

See Initial setup for instructions on creating the zowe-tutorial folder.

2. Issue the following command to install the sample plug-in to Zowe CLI:

The Zowe CLI Sample Plug-in is installed.

Viewing the installed plug-in

Open a terminal and issue the zowe --help command to return information for the installed zowe-cli-sample command

group:

https://github.com/zowe/zowe-cli-sample-plugin/#zowe-cli-sample-plug-in
https://docs.zowe.org/stable/extend/extend-cli/cli-setting-up
https://docs.zowe.org/stable/extend/extend-cli/cli-setting-up#initial-setup

Using the installed plug-in

Open a terminal and issue the zowe zowe-cli-sample list directory-contents command:

Testing the installed plug-in

1. Open a terminal and enter cd zowe-tutorial/zowe-cli-sample-plugin to run automated tests against the plug-in.

2. Issue the following command:

The command runs the automated unit and system tests defined in the __tests__ folder. Test results are displayed

in the terminal with the count of passed and failed tests. Failed tests are identified in the results.

Next steps

You successfully installed a plug-in to Zowe CLI! Next, try the Extending a plug-in tutorial to learn about developing new

commands for this plug-in.

https://docs.zowe.org/stable/extend/extend-cli/cli-extending-a-plugin

Version: v3.3.x LTS

Extending a plug-in

Before you begin, be sure to complete the Installing the sample plug-in tutorial.

Overview

This tutorial uses the Typicode REST API as a guide for how to build a Zowe CLI plug-in that interacts with REST APIs on

the mainframe.

At the end of this tutorial, you are able to use the following new command from the Zowe CLI interface:

The completed source for this tutorial can be found on the typicode-todos branch of the zowe-cli-sample-plugin

repository.

Creating a Typescript interface for the Typicode response data

First, create a Typescript interface to map the response data from a server:

1. Within zowe-cli-sample-plugin/src/api , create a folder named doc to contain the interface. The interface

specifies the properties that we expect from the JSON response.

2. In the doc folder, create a file named ITodo.ts .

3. Edit the ITodo.ts file to contain the following code:

Creating a programmatic API

Next, create a Node.js API for the command handler to use.

This API can also be used in any Node.js application.

1. Create a file named Typicode.ts in the zowe-cli-sample-plugin/src/api directory.

2. Edit the Typicode.ts file to contain the following code:

The Typicode class provides two programmatic APIs, getTodos and getTodo , to get an array of ITodo objects or a

specific ITodo , respectively.

The Node.js APIs use @zowe/imperative infrastructure to provide logging, parameter validation, and to call a REST

API. See the Imperative CLI Framework documentation for more information.

Exporting the interface and programmatic API for other Node.js applications

Edit the zowe-cli-sample-plugin/src/index.ts file to contain the following code:

This allows a separate, standalone Node.js application to use APIs from the sample Typicode plug-in to get data from the

REST API at jsonplaceholder.typicode.com.

https://docs.zowe.org/stable/extend/extend-cli/cli-installing-sample-plugin
https://github.com/zowe/zowe-cli-sample-plugin/#zowe-cli-sample-plug-in
https://github.com/zowe/zowe-cli/wiki
https://github.com/zowe/zowe-cli-sample-plugin/blob/master/src/index.ts

The following code is an example of how a Node.js application could import classes from your API to interact with the

Typicode REST API:

Verify that you can build the programmatic API

In your terminal, issue npm run build in your terminal to verify a clean compilation and confirm that no lint errors are

present.

At this point, you have a programmatic API that can be used by your handler or another Node.js application. Next, define

the command syntax for the command that uses your programmatic Node.js APIs.

Creating a command definition

This tutorial creates the following command in Zowe CLI:

Defining the syntax of your command

1. Navigate to zowe-cli-sample-plugin/src/cli/list and create a folder titled typicode-todos .

2. In this folder, create a file named TypicodeTodos.definition.ts .

Edit the TypicodeTodos.definition.ts file to contain the following code:

The TypicodeTodos.definition.ts file describes the syntax of your command.

Adding a command to a command group

Add the newly created TypicodeTodosDefinition to the list command group to enable users to list to-dos by running

the zowe zowe-cli-sample list typicode-todos command.

1. In zowe-cli-sample-plugin/src/cli/list/List.definition.ts , add the following code below other import

statements near the top of the file:

2. To the children array, add TypicodeTodosDefinition .

For example:

The command is added to the list command group.

Creating a command handler

1. In the typicode-todos folder, create the file TypicodeTodos.handler.ts .

2. Add the following code to the TypicodeTodos.handler.ts file:

The if statement checks if a user provides an --id flag. If yes, the command handler calls getTodo . Otherwise, the

command handler calls getTodos .

If the Typicoce API throws an error, the error is forwarded to @zowe/imperative to log the error and display an error

message in the terminal.

Verify that you can build your plug-in

Issue npm run build to verify a clean compilation and confirm that no lint errors are present.

You now have a command definition, the command has been added to the list command group, and you have a

handler.

Using the installed plug-in

Issue the command zowe zowe-cli-sample list typicode-todos .

Refer to zowe zowe-cli-sample list typicode-todos --help for more information about your command and to see

how text in the command definition is presented to the end user. You can also see how to use your optional --id flag:

Summary

You extended an existing Zowe CLI plug-in by introducing a Node.js programmatic API, and you created a command

definition with a handler.

For an official Zowe CLI plug-in, you would also add JSDoc to your code and create automated tests.

Next steps

Try the Developing a new plug-in tutorial next to create a new plug-in for Zowe CLI.

https://jsdoc.app/
https://docs.zowe.org/stable/extend/extend-cli/cli-developing-a-plugin

Version: v3.3.x LTS

Developing a new Zowe CLI plug-in

Before you begin, complete the Extending an existing plug-in tutorial.

Overview

The advantage of Zowe CLI and of the CLI approach in mainframe development is that it allows for combining different

developer tools for new and interesting uses.

This tutorial demonstrates how to create a brand new Zowe CLI plug-in that uses Node.js to create a client-side API.

After following all the steps, you will have created a data set diff utility plug-in called Files Util Plug-in. This plug-in

takes in any two data sets, or files, and returns a plain text output in the terminal showing how they differ. This tutorial

also shows you how you can integrate your new plug-in with a third-party utility to make your output colorful and easier

to read, as shown in the image at the bottom of this page.

If you are ready to create your own unique Zowe CLI plug-in, refer to the notes at the end of each tutorial step for

guidance.

If you are interested in creating a credential manager plug-in, see the Zowe CLI secrets for kubernetes plug-in repository.

Setting up the new sample plug-in project

Download the sample plug-in source and delete the irrelevant content to set up your plug-in project:

1. Open a terminal and run the command mkdir zowe-tutorial .

NOTE

All the files created through this tutorial are saved in this tutorial directory.

2. Enter cd zowe-tutorial to change directory into your zowe-tutorial folder.

3. Download the source code zip file from the Zowe CLI sample plug-in repository.

4. In your File Explorer, extract the zip file to the zowe-tutorial folder.

5. Rename the zowe-cli-sample-plugin-master directory to files-util .

This is the project directory used throughout the rest of this tutorial.

6. Delete all content within the following folders:

src/api

src/cli

docs folders

__tests__/__system__/api

https://docs.zowe.org/stable/extend/extend-cli/cli-extending-a-plugin
https://docs.zowe.org/stable/extend/extend-cli/cli-developing-a-plugin#bringing-together-new-tools
https://github.com/zowe/zowe-cli-secrets-for-kubernetes
https://github.com/zowe/zowe-cli-sample-plugin/archive/refs/heads/master.zip

__tests__/__system__/cli

__tests__/api

__tests__/cli

7. Return to your terminal and run cd files-util to enter the project directory.

8. Enter git init to set up a new Git repository.

9. Enter git add --all to stage (track) all files in the current directory with Git.

10. Enter git commit --message "Initial commit" to save a snapshot of the staged files in your repository.

11. Run npm install to install third-party dependencies defined in the package.json file of your Node.js project.

When successful, a progress bar displays. Once the plug-in is installed, a message displays the status of the

packages in the node_modules directory.

NOTE

If vulnerabilities are found in any of the installed dependencies, refer to npm Docs for how to fix them.

TO CREATE A UNIQUE PLUG-IN

Change the files-util directory to a name applicable for your project.

Updating package.json

Change the name property in the package.json file to the plug-in name.

Open the package.json file in a text editor and replace the name field with the following information:

This tutorial uses @zowe/files-util as the tutorial plug-in name.

TO CREATE A UNIQUE PLUG-IN

Replace @zowe/files-util with a unique plug-in name. This allows you to publish the plug-in under that name to

the npm registry in the future. For information regarding npm scoping, see the npm documentation.

Adjusting Imperative CLI Framework configuration

Define json configurations for the plug-in to Imperative.

Change the src/pluginDef.ts file to contain the following configurations:

When successful, the src/pluginDef.ts file contains the new configurations.

TO CREATE A UNIQUE PLUG-IN

https://docs.npmjs.com/cli/v9/commands/npm-audit
https://docs.npmjs.com/cli/v9/using-npm/scope

Change the plug-in name, display name, and description according to your project.

Adding third-party packages

Install third-party packages as dependencies for the plug-in's client-side API:

1. Run npm install --save-exact diff to install the diff package (which includes methods for comparing text).

2. Run npm install --save-dev @types/diff to install the typescript type definitions for the diff package as a

development dependency.

When successful, the diff and @types/diff packages are added to the dependency list in the package.json file.

TO CREATE A UNIQUE PLUG-IN

Instead of the diff package, install the package(s) that are required for your API, if any.

Creating a Node.js client-side API

Create a client-side API that compares the contents of two data sets on the mainframe:

1. In the src/api directory, create a file named DataSetDiff.ts .

2. Copy and paste the following code into the DataSetDiff.ts file:

3. In the src directory, replace the contents of the index.ts file with the following code in order to make the API

available for other developers to import:

When successful, the index.ts file contains the new code.

TO CREATE A UNIQUE PLUG-IN

The file name and code in Step 2 may be entirely different if you want to implement an API to do something else.

Building your plug-in source

Confirm that your project builds successfully:

1. Due to missing license headers, you will come across linting errors. Run npm run lint:fix to resolve the errors

automatically.

When successful, no errors are returned, although an unrelated warning might display. Additionally, the lib

directory contains the built javascript files.

2. In the terminal, run npm run build to verify there are no errors.

This command builds your typescript files by looking at the configuration details in tsconfig.json and placing the

output javascript files in the lib directory.

https://docs.npmjs.com/specifying-dependencies-and-devdependencies-in-a-package-json-file

The lib directory is configurable by modifying this value in the tsconfig.json file.

TO CREATE A UNIQUE PLUG-IN

Follow these same steps.

Creating a Zowe CLI command

To define the command that calls the client-side API:

1. In src/cli , create a folder named diff .

2. In the diff directory, create a file named Diff.definition.ts .

3. Copy and paste the following code into the Diff.definition.ts file:

4. In the diff folder, create a folder named data-sets .

5. In the data-sets folder, create the following two files:

DataSets.definition.ts

DataSets.handler.ts

6. Copy and paste the following code into the DataSets.definition.ts file:

7. Copy and paste the following code into the DataSets.handler.ts file:

When successful, the Diff.definition.ts , DataSets.definition.ts , and DataSets.handler.ts files contain the

new code.

NOTE

If you are adding multiple commands to your CLI plug-in, consider moving the code that creates a session into a

base handler class that can be shared across multiple commands. See the sample plugin code for an example of

how this can be done.

TO CREATE A UNIQUE PLUG-IN

Refer to file names specific to your project. Your code likely follows the same structure, but command name,

handler, definition, and other information would differ.

Trying your command

Before you test your new command, confirm that you are able to connect to the mainframe.

In order for the client-side API to reach the mainframe (to fetch data sets), Zowe CLI needs a z/OSMF profile for access.

See Team configurations for information.

https://github.com/zowe/zowe-cli-sample-plugin/blob/master/tsconfig.json#L12
https://github.com/zowe/zowe-cli-sample-plugin/blob/master/src/cli/list/ListBaseHandler.ts
https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles#team-configurations

Once the connection between Zowe CLI and z/OSMF is confirmed, build and install the plug-in before running it for the

first time:

1. Repeat the steps in Building your plug-in source.

As you make changes, repeat these steps to make sure the changes are reflected in the working plug-in.

2. Issue the following command to install Files Util Plug-in into Zowe CLI:

A success message displays if installed correctly.

NOTE

If you encounter installation errors due to conflicting profiles or command groups, uninstall the sample plug-in

or modify the profile definition in the src/pluginDef.ts file.

3. Replace the data set names with valid mainframe data set names on your system:

The raw diff output displays as a command response:

When successful, the output displays plain text diffs of the entered data sets.

TO CREATE A UNIQUE PLUG-IN

Use Step 3 to run your new command. Note that the command is different based on the plug-in name in the

src/pluginDef.ts file.

Bringing together new tools

You have created a simple CLI plug-in that provides plain text diffs of two data sets. But you may not want to end there.

Depending on the complexity of your changes, it can be difficult to identify data set differences with plain text.

To help fix this, you can extend Files Util Plug-in to create a more visual output. For this tutorial, use diff2html to

generate side-by-side diffs that make it easier to compare changes, as seen in the image below.

https://docs.zowe.org/stable/extend/extend-cli/cli-developing-a-plugin#building-your-plug-in-source
https://diff2html.xyz/

Diff to HTML by rtfpessoa

1. Run npm install --global diff2html-cli to install diff2html .

NOTE

Zowe is not associated with diff2html-cli .

2. To pipe your Zowe CLI plug-in output to diff2html , run the following command with your information:

When successful, this launches a web browser that displays side-by-side diffs using HTML.

For a unique plug-in, consider integrating with more modern tools that make outputs easier to read or manage, or that

can use outputs in scripts.

Next steps

Try the Implementing profiles in a plug-in tutorial to learn about defining new profiles with your plug-in.

https://github.com/rtfpessoa
https://docs.zowe.org/stable/extend/extend-cli/cli-implement-profiles

Version: v3.3.x LTS

Implementing profiles in a plug-in

Users of your plug-in communicate with the mainframe by specifying connection information in a configuration profile.

For profiles to work with services other than z/OSMF, SSH, and TSO, developers must define profile types and the profile

structure for their plug-in in a special file. This plug-in definition file ultimately allows an end user to add the plug-in

profile — and its connection details — to their team configuration.

When creating profile types for a plug-in, apply the following code as a template to the plug-in definition file. Modify the

template as necessary by changing values and/or adding more properties.

Editing the plug-in definition file

You can specify the plug-in definition file name and location in your plug-in's package.json file. For example:

pluginDef.js

The runtime file

src/pluginDef.ts

Location of your definition source

Edit the pluginDef.ts file (or your equivalent) to define profile types for your plug-in:

1. Use a text editor to open the pluginDef.ts file.

2. In the pluginDef.ts file, add the following profile definition:

3. Replace someproduct in type: "someproduct" with your plug-in profile name.

This property represents the name of the profile type option that might be required on commands that allow users to

select a profile from their team configuration. (Zowe CLI has profile types for z/OSMF, SSH, and TSO.)

For example, the zowe zosmf check status --zosmf-profile command includes an option that specifies a

z/OSMF profile from the user's team configuration. For your plug-in, the profile type that you define can be used

in a commands to specify a profile for your plug-in.

This value is used in team configuration to create a plug-in profile to connect to the mainframe.

4. Update the title and description for your plug-in.

5. Add any needed properties to allow users to configure plug-in settings.

Each option property in the template includes an optionDefinition . For a reference of optionDefinition

attributes, see the ICommandOptionDefinition interface.

6. Set the includeInTemplate property to true to dictate that this property is included in any generated team

configuration.

https://github.com/zowe/zowe-cli/blob/master/packages/imperative/src/cmd/src/doc/option/ICommandOptionDefinition.ts

If set to false or not included, end users will have to add the property themselves when editing their team

configuration.

7. Set the secure property to true to ensure that any value the end user specifies for this property is stored by default

in their secure credential store. Otherwise the value is stored as plain text.

The profile has been defined as needed.

Version: v3.3.x LTS

Authentication mechanisms

Zowe CLI uses various methods, or mechanisms, of authentication when communicating with the mainframe. The

default order of precedence for these methods is outlined here.

As an extender, if your extension requires a specific type of authentication that differs from the default, you can tell your

users to add the authOrder property to their configuration. Otherwise, extenders can program the addition of the

authOrder property to their associated profile in the Zowe client configuration.

NOTE

Zowe CLI users are able to change the default order of precedence by adding the authOrder property to their

configuration, or changing its values. Be aware of this possibility as you develop your extension.

Default order of precedence

The method that the CLI ultimately follows is based on the service it is communicating with.

Some services can accept multiple methods of authentication. When multiple methods are provided (in a profile or

command) for a service, the CLI follows an order of precedence to determine which method to apply. Extenders can

modify this order for their plug-in.

To learn the authentication methods used for different services and their order of precedence, refer to the following

table.

Service Order of precedence

API Mediation Layer

Note: To avoid errors, update profiles for services routed

through API ML to store base path instead of port number

1. username, password

2. API ML token

3. PEM certificate

Db2,

FTP,

most other services

username, password

SSH
1. SSH key

2. username, password

ZOSMF

direct connection

1. username, password

2. PEM certificate

https://docs.zowe.org/stable/user-guide/cli-authentication-methods#order-of-precedence

Version: v3.3.x LTS

Creating plug-in lifecycle actions

As a developer, you might want your plug-in to perform certain tasks immediately after install and just before uninstall.

Many different types of tasks can make up these plug-in lifecycle actions, including the following examples:

Post-install actions:

An initial check

Additional setup

Adding the plug-in as an override of Zowe CLI's built-in credential manager

Pre-uninstall actions:

Revert specialized setup

Removing the plug-in as an override of Zowe CLI's built-in credential manager

Creating and using lifecycle actions is optional, but they can be useful tools. Lifecycle actions can automate a manual

process intended for the plug-in user to carry out. They can also avoid the need to create commands with uses limited to

post-install and pre-uninstall tasks.

NOTE

When creating a plug-in to override Zowe CLI's built-in credential manager, it is necessary to implement a post-

install action to configure your plug-in as the credential manager.

Implementing lifecyle actions

To add the pluginLifeCycle property to your plug-in definition file and include a plug-in class to implement lifecycle

functions:

1. Navigate to the plug-in definition file.

The path to this file is the value for the configurationModule property in the plug-in package.json file.

2. In the plug-in definition file, use the pluginLifeCycle property to add the path to the javascript file the plug-in uses

to implement the class containing lifecycle functions.

The pluginLifeCycle property is defined in this file.

The class defined by this property extends the AbstractPluginLifeCycle class found in the Imperative package of

utility functions.

3. In the plug-in lifecycle functions class you created, add instructions for both the postInstall and preUninstall

functions.

If implemented correctly, Zowe CLI calls the postInstall function of the plug-in immediately after the plug-in has

been installed. Similarly, the preUninstall function is called immediately before the Zowe CLI uninstalls the plug-in.

https://github.com/zowe/zowe-cli/blob/master/packages/imperative/src/imperative/src/doc/IImperativeConfig.ts
https://github.com/zowe/zowe-cli/blob/master/packages/imperative/src/imperative/src/plugins/AbstractPluginLifeCycle.ts
https://github.com/zowe/zowe-cli/blob/master/packages/imperative/src/imperative/src/plugins/AbstractPluginLifeCycle.ts

NOTE

If your plug-in needs to perform an operation at only post-install or pre-uninstall, implement the other action to

simply return to Zowe CLI without taking any action.

Version: v3.3.x LTS

Extending Zowe Explorer

You can extend the possibilities of Zowe Explorer by creating you own extensions. For more information on how to create

your own Zowe Explorer extension, see Extensions for Zowe Explorer.

https://github.com/zowe/zowe-explorer-vscode/wiki/Extending-Zowe-Explorer

Version: v3.3.x LTS

Information roadmap for Zowe Client SDKs

This roadmap outlines information resources that are applicable to the various user roles who are interested in Zowe

Client Software Development Kits (SDKs) which is a Zowe component still under development. These resources provide

information about various subject areas, such as learning basic skills, installation, developing, and troubleshooting for

Zowe Client SDKs.

Troubleshooting and support

Submit an issue

If you have an issue that is specific to Zowe SDKs, you can submit an issue against the zowe-cli repo.

Community resources

Slack channel

Join the #zowe-cli Slack channel to ask questions about Zowe CLI and Zowe SDKs, propose new ideas, and interact

with the Zowe community.

Zowe CLI squad meetings

You can join one of the Zowe CLI squad meetings to discuss Zowe SDKs issues and contibute to Zowe SDKs.

Zowe Blogs on Medium

Read a series of blogs about Zowe on Medium to explore use cases, best practices, and more.

https://github.com/zowe/zowe-cli/issues/new/choose
https://openmainframeproject.slack.com/
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://medium.com/zowe

Version: v3.3.x LTS

Developing for Zowe SDKs

The Zowe SDKs are open source. You can contribute to add features, enhancements, and bug fixes to the source code.

The functionality is currently limited to the interfaces provided by IBM z/OSMF. As a plug-in developer, you can enhance

the SDK by creating a package that exposes programmatic APIs for your service.

Contributing to Zowe Client SDKs

For detailed contribution guidelines, see the following documents:

Node.js SDK guidelines

Kotlin SDK guidelines

Coming soon! Python SDK guidelines

Community resources

Join the #zowe-cli Slack channel to ask questions about Zowe CLI and Zowe SDKs, propose new ideas, and interact

with the Zowe community.

You can join one of the Zowe CLI squad meetings to discuss Zowe SDKs issues and contibute to Zowe SDKs.

Read a series of blogs about Zowe on Medium to explore use cases, best practices, and more.

https://github.com/zowe/zowe-cli/blob/master/docs/SDKGuidelines.md
https://github.com/zowe/zowe-explorer-intellij/blob/main/CONTRIBUTING.md
https://openmainframeproject.slack.com/
https://zoom-lfx.platform.linuxfoundation.org/meetings/zowe
https://medium.com/zowe

Version: v3.3.x LTS

Troubleshooting Zowe

To isolate and resolve Zowe™ problems, you can use the troubleshooting and support information.

How to start troubleshooting

When you run into some issues and are looking for troubleshooting tips, the following steps may help you.

1. Search the error message or error code in your error log by using the Search bar in the Zowe Docs site. If there is an

existing solution, follow the instructions to troubleshoot.

2. If no solution is available or the existing solutions cannot apply to your problem, you could search the keywords,

error messages, or error code in the Zowe GitHub repository. If you find a closed issue or pull request, try

troubleshooting by using the information shared in the item's Conversation section. If the issue is still open, post

your question or comment to prompt a discussion on your problem.

3. If your problem is not solved, try the following options:

Create an issue in the Zowe GitHub repository with a detailed description of the problem you have encountered.

Bring up your questions to the corresponding channels as shown below:

Zowe API ML Slack channel

https://docs.zowe.org/
https://github.com/zowe
https://github.com/zowe
https://openmainframeproject.slack.com/archives/CC5UUL005

Zowe Chat Slack channel

Zowe CLI Slack channel

Zowe Documentation Slack channel

Zowe Explorer for VS Code channel

Reach out to your available Zowe support team for assistance.

Known problems and solutions

Some common problems with Zowe are documented in the Zowe Docs Troubleshoot section, along with their solutions

or workarounds. If you have a problem with Zowe installation and components, review the problem-solution topics to

determine whether a solution is available to the problem that you are experiencing.

You can also find error messages and codes, must-gathers, and information about how to get community support in

these topics.

Troubleshooting Zowe server-side components

Troubleshooting Zowe Launcher

Troubleshooting Zowe z/OS component startup

Troubleshooting API Mediation Layer

Troubleshooting Zowe Application Framework

Troubleshooting Zowe client-side components

Troubleshooting Zowe CLI

Troubleshooting Zowe Explorer

Troubleshooting Zowe Chat

Troubleshooting Zowe Explorer plug-in for IntelliJ IDEA

Verifying a Zowe release's integrity

Following a successful install of a Zowe release, the Zowe runtime directory should contain the code needed to launch

and run Zowe. If the contents of the Zowe runtime directory have been modified, this may result in unpredictable

behavior. To assist with this, Zowe provides the ability to validate the integrity of a Zowe runtime directory. See Verify

Zowe runtime directory for more information.

Understanding the Zowe release

Knowing which version of Zowe you are running might help you isolate the problem. Also, the Zowe version number is

needed by the Zowe community enlisted to help you. To learn how to find the version number, see Understanding the

Zowe release.

https://openmainframeproject.slack.com/archives/C03NNABMN0J
https://openmainframeproject.slack.com/archives/CC8AALGN6
https://openmainframeproject.slack.com/archives/CC961JYMQ
https://openmainframeproject.slack.com/archives/CUVE37Z5F
https://docs.zowe.org/stable/troubleshoot/launcher/launcher-troubleshoot
https://docs.zowe.org/stable/troubleshoot/troubleshoot-zos-startup
https://docs.zowe.org/stable/troubleshoot/troubleshoot-apiml
https://docs.zowe.org/stable/troubleshoot/app-framework/app-troubleshoot
https://docs.zowe.org/stable/troubleshoot/cli/troubleshoot-cli
https://docs.zowe.org/stable/troubleshoot/ze/troubleshoot-ze
https://docs.zowe.org/stable/troubleshoot/zowe-chat-troubleshoot/troubleshooting
https://docs.zowe.org/stable/troubleshoot/troubleshoot-intellij
https://docs.zowe.org/stable/troubleshoot/verify-fingerprint
https://docs.zowe.org/stable/troubleshoot/verify-fingerprint
https://docs.zowe.org/stable/troubleshoot/troubleshoot-zowe-release
https://docs.zowe.org/stable/troubleshoot/troubleshoot-zowe-release

Version: v3.3.x LTS

Understanding Zowe release versions

Zowe releases

Zowe uses semantic versioning for its releases, also known as SemVer. In semantic versioning, each release has a

unique ID made up of three numbers that are separated by periods:

Each time a new release is created, the release ID is incremented. Each number represents the content change since the

previous release. For example:

2.5.0 represents the fifth minor release since the second major release.

2.5.1 represents the first patch to the 2.5.0 release.

2.6.0 is the first minor release to be created after 2.5.1 .

To see the Zowe release schedule, see Zowe PI Schedule and Releases.

Major release

Major releases are required for a "breaking" change, or a modification that requires updates to avoid disruptions in your

applications. Major releases also can be used to indicate to the community a significant content update over and above

what would be included in a minor release.

Conformance programs

Zowe V1 is associated with the Zowe V1 conformance program. Offerings that extend Zowe and achieve the Zowe V1

conformance badge remain compatible with Zowe throughout its Version 1 lifetime. A major release increment because

of incompatibility is sometimes referred to as a "breaking" change.

SMP/E builds

Each major release has its own SMP/E Functional Module ID (FMID) in the format AZWE00V , where V represents the major

version. The first SMP/E build for Zowe V3 has a Functional Module ID (FMID) of AZWE003 , which was created with content

from the 3.0.0 release.

Subsequent minor and patch releases to V3 are delivered as SMP/E PTF SYSMODs. Because of the size of the content,

two co-requisite PTFs are created for each Zowe release.

Minor release

A minor release indicates that new functionality is added but the code is compatible with an earlier version.

Patch

A patch is usually reserved for a bug fix to a minor release.

https://github.com/zowe/community/blob/master/Project%20Management/Schedule/Zowe%20PI%20%26%20Sprint%20Cadence.md
https://docs.zowe.org/stable/extend/zowe-conformance-program

Version: v3.3.x LTS

Checking your Zowe version release number

Once Zowe is installed and running, you will likely update Zowe and Zowe plug-ins regularly as new major and minor

releases come out.

To keep track of which release is running as you troubleshoot an issue, the commands and file listed here can help.

Server side

To see the version of a Zowe release, run the zwe version command in USS:

The zwe version command returns a single line with the Zowe release number:

Using other commands

Add the debug or trace options to the zwe version command to show more information.

Using the debug mode:

The debug mode shows the unique build identifier for the installed version of Zowe. Run this when you want to replicate

a bug for testing or troubleshooting.

Using the trace mode:

The trace mode shows the location where the convenience build was extracted (such as <RUNTIME_DIR>). Run this

when you want to confirm the location of your Zowe runtime directory.

Using the manifest file

Find the version number of your Zowe release in the manifest.json file.

1. Extract the PAX file for the Zowe convenience build to <RUNTIME_DIR> .

2. Navigate to <RUNTIME_DIR> to locate the manifest.json file.

3. Open the manifest.json file.

The Zowe version is listed at the beginning of the file:

Client side

Zowe CLI

1. Open the Zowe CLI.

2. Run the following command:

The Zowe CLI version number is returned.

https://docs.zowe.org/stable/user-guide/install-zowe-zos-convenience-build

Zowe CLI plug-ins

1. Open the Zowe CLI.

2. Run the following command:

A list of the installed Zowe CLI plug-ins are returned, along with the version number for each plug-in.

Zowe Explorer for Visual Studio Code

1. Open Visual Studio Code and click the Extensions icon.

The Extensions Side Bar displays.

2. In the Search bar, enter Zowe Explorer .

3. In the Side Bar, select Zowe Explorer from the search results.

An Editor tab displays the Zowe Explorer marketplace details. The version number is located next to the Zowe

Explorer name.

Zowe Explorer for Visual Studio Code Extensions

1. Open Visual Studio Code and click the Extensions icon.

The Extensions Side Bar displays.

2. In the Search bar, enter the name of the Zowe Explorer extension.

3. In the Side Bar, select the entered Zowe Explorer extension from the search results.

An Editor tab displays the Zowe Explorer extension's marketplace details. The version number is located next to the

Zowe Explorer extension's name.

Zowe Explorer plug-in for IntelliJ IDEA

See the guide for instructions.

https://docs.zowe.org/stable/troubleshoot/troubleshoot-check-your-zowe-version/troubleshoot-intellij

Version: v3.3.x LTS

Gathering Information for Support or

Troubleshooting

If you need to contact a support group for Zowe, they will likely need a variety of information from you to help you. This

page details a list of items you should gather to the best of your ability to provide to your support group. You may also

find this list useful for independent troubleshooting.

Describe your environment

Zowe version number:

Install method (pax, smpe, kubernetes, github clone):

Operating system (z/OS, kubernetes, etc) and OS version:

Node.js version number (Shown in logs, or via node --version):

Java version number (Shown in logs, or via java -version):

z/OSMF version:

Browser:

Are you accessing the Desktop from the APIML Gateway? (Recommended):

What is the output of log message ZWES1014I:

Environment variables in use:

Tips on gathering this information

A lot of this information can be gathered automatically using the zwe command zwe support . Otherwise, you can

gather some of the information in the ways below.

z/OS release level

To find the z/OS release level, issue the following command in SDSF:

Zowe version

Locate the file manifest.json within the zowe installation directory. At the top, you will find the version number.

Describe your issue

Do you think your issue is a bug? If so, try to list the steps to reproduce it, and what you expect to happen instead.

Provide the logs

When running Zowe servers on z/OS, the joblog has the most information. Depending on what support group you are

contacting, you may want to sanitize the logs as they can contain basic system information like hostnames, usernames,

and network configuration.

Ensure that your logs were captured with long enough record length to be read by support. Zowe commonly writes lines

as long as 500 characters, especially when tracing.

Enabling debugging and tracing

There are several debug modes in the Zowe servers, and support groups may ask for you to turn some on. Below are

some tracing you can turn on when needed:

When running a zwe command, you can run it with --trace to get the most output from it.

zwe startup tracing can be set via the zowe configuration file property zowe.launchScript.logLevel="trace" . You

can see the property in the example file here

app-server tracing can be enabled by setting various loggers in the property components.app-server.logLevels in

the zowe configuration file. The full list is documented here. More information

zss-tracing tracing can be enabled by setting various loggers in the property components.zss.logLevels in the zowe

configuration file. The full list is documented here. More information

discovery, gateway, api-catalog and other servers can have tracing enabled by setting debug: true within their

zowe configuration file section, such as components.gateway.debug=true

You may find more detail within the Mediation Layer and Application Framework troubleshooting categories.

Screenshots

If you have an issue in the browser, its often helpful to show the issue via screenshots.

https://github.com/zowe/zowe-install-packaging/blob/677a607686e6ee7ecb349dc5925a6f58dd9e61da/example-zowe.yaml#L356
https://github.com/zowe/zowe-install-packaging/blob/677a607686e6ee7ecb349dc5925a6f58dd9e61da/example-zowe.yaml#L356
https://github.com/zowe/zlux-app-server/blob/v2.x/master/schemas/app-server-config.json#L442
https://docs.zowe.org/stable/troubleshoot/user-guide/mvd-configuration#logging-configuration
https://github.com/zowe/zss/blob/v2.x/master/schemas/zss-config.json#L251
https://docs.zowe.org/stable/user-guide/mvd-configuration#logging-configuration

Version: v3.3.x LTS

Verify Zowe runtime directory

Zowe ships a zwe support verify-fingerprints command to help you verify authenticity of your runtime directory.

This command collects and calculates hashes for all files located in Zowe runtime directory and compare the hashes

shipped with Zowe. With this utility, you are able to tell what files are modified, added, or deleted from original Zowe

build.

Here is an example for successful verification:

If this verification fails, the script will exit with code 181 and display error messages like Number of different files:

1 . You can optionally pass --debug or -v parameter to instruct this command to verbosely display which files are

different.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/support/zwe-support-verify-fingerprints

Version: v3.3.x LTS

Troubleshooting Kubernetes environments

The following topics contain information that can help you troubleshoot problems when you encounter unexpected

behavior installing and using Zowe™ containers in a Kubernetes environment.

ISSUE: Deployment and ReplicaSet failed to create pod

Problem:

If you are using OpenShift and see these error messages in ReplicaSet Events:

That means the Zowe ServiceAccount zowe-sa doesn't have any SecurityContextConstraint attached.

Solution:

You can run this command to grant a certain level of permission, for example, privileged , to zowe-sa ServiceAccount:

ISSUE: Failed to create services

Problem:

If you are using OpenShift and apply services, you may see this error:

Solution:

To fix this issue, you can simply find and comment out this line in the Service definition files:

With OpenShift, you can define a PassThrough Route to let Zowe handle TLS connections.

Version: v3.3.x LTS

Diagnosing Return Codes

If one of the Zowe servers ends abnormally with a return code, then this return code may be used as a clue to determine

the cause of the failure. The meaning of a return code depends upon which program generated it; many return codes

can originate from operating system utilities rather than from Zowe itself, but some may originate from Zowe too.

Knowing which program generated the return code is important to finding the relevant documentation on the code. For

example, if you tried to run the app-server and received a return code from a failure, it could have originated from, in

order of execution, the Launcher, shell code and shell utilities such as cat or mkdir , zwe , and finally the app-server

itself.

Return codes that can arise from any of the servers due to the chain of events that start Zowe may be found in the

following documentation:

Zowe launcher error codes

The z/OS shell and programs called from the shell such as cat , mkdir , node or java :

Return codes ("errno"): https://www.ibm.com/docs/en/zos/2.5.0?topic=codes-return-errnos

Reason codes ("errnojr"): https://www.ibm.com/docs/en/zos/2.5.0?topic=codes-reason-errnojrs

zwe error codes are documented specific to each zwe subcommand visible within the --help option of zwe or on

the zwe reference page. Searching for "ZWEL" plus your error code in the search bar of the documentation website

will likely bring you to the appropriate page.

Error codes for the specific Zowe servers may be found in their own troubleshooting sections.

https://docs.zowe.org/stable/troubleshoot/launcher/launcher-error-codes
https://www.ibm.com/docs/en/zos/2.5.0?topic=codes-return-errnos
https://www.ibm.com/docs/en/zos/2.5.0?topic=codes-reason-errnojrs
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/

Version: v3.3.x LTS

Troubleshooting certificate configuration

As an API Mediation Layer user, you may encounter problems when configuring certificates. Review the following article

to troubleshoot errors or warnings that can occur when configuring certificates.

PKCS12 server keystore generation fails in Java 8 SR7FP15, SR7 FP16, and SR7 FP20

Eureka request failed when using entrusted signed z/OSMF certificate

Zowe startup fails with empty password field in the keyring setup

Certificate error when using both an external certificate and Single Sign-On to deploy Zowe

Browser unable to connect due to a CIPHER error

API Components unable to handshake

Java z/OS components of Zowe unable to read certificates from keyring

Java z/OS components of Zowe cannot load the certificate private key pair from the keyring

Exception thrown when reading SAF keyring {ZWED0148E}

ZWEAM400E Error initializing SSL Context when using Java 11

Failed to load JCERACFKS keyring when using Java 11

PKCS12 server keystore generation fails in Java 8 SR7FP15, SR7

FP16, and SR7 FP20

Symptoms

Some Zowe Desktop applications do not work when Zowe creates a PKCS12 keystore. A message may appear in the log

such as the following:

ZWES1060W Failed to init TLS environment, rc=1(Handle is not valid)

ZWES1065E Failed to configure https server. Check agent https setting.

These messages indicate that ZSS cannot read the generated keystore. As such, parts of Zowe are not functional.

Solutions

This error results from the incompatibility between Java and GSK regarding cryptography.

Try one of the following options if you are affected by this error:

Temporarily downgrade Java, for example to Java 8 SR7FP10, and generate the PKCS12 keystore again.

Upgrade Zowe to a later version 2.11.0 or a newer version in which this issue is fixed.

NOTE

This error will not occur if you already have an existing keystore created with a proper Java version, or are using

keyrings.

If you do not plan to use Zowe Desktop, you can disable the ZSS component to avoid receiving ZSS component

errors in the log.

Eureka request failed when using entrusted signed z/OSMF

certificate

Symptoms

A problem may occur when using the entrusted signed z/OSMF certificate, whereby the ZLUX AppServer cannot register

with Eureka. Logs indicate that the cause is the self-signed certificate:

Solution

The error indicates that the keyring does not exist or cannot be found.

Review the keyring information and confirm the corresponding certificate authorities. Ensure that you specify the

certificateAuthorities variable with the correct keyring label, and the label of the connected CA in the

zowe.certificate section of your zowe.yaml file.

For example, if the keyring label is ZoweKeyring and the LABLCERT of the connected CA is CA Internal Cert , the

certificateAuthorities variable should be certificateAuthorities: safkeyring://ZWESVUSR/ZoweKeyring&CA

Internal Cert .

Zowe startup fails with empty password field in the keyring

setup

Symptoms

The certificate appears to be correct, but the Gateway and the Discovery Service fail during start. The setup of the

keyring certificate does not require a value for password in the zowe.certificate.keystore.password and

zowe.certificate.truststore.password .

Solution

The password is only used for USS PKCS12 certificate files. The keyring is protected by SAF permissions. Note that in

some configurations, Zowe does not work if the password value is empty in the keyring configuration. We recommended

that you assign a value to password as shown in the following example:

Example:

Certificate error when using both an external certificate and

Single Sign-On to deploy Zowe

Symptom:

You used an external certificate and Single Sign-On to deploy Zowe. When you log in to the Zowe Desktop, you

encounter an error similar to the following:

Solution:

This issue might occur when you use a Zowe version of 1.12.0 or later. To resolve the issue, you can download your

external root certificate and intermediate certificates in PEM format. Then, add the following parameter in the zowe.yaml

file.

environments.ZWED_node_https_certificateAuthorities: "/path/to/zowe/keystore/local_ca/localca.cer-

ebcdic","/path/to/carootcert.pem","/path/to/caintermediatecert.pem"

Recycle your Zowe server. You should be able to log in to the Zowe Desktop successfully now.

Browser unable to connect due to a CIPHER error

Symptom:

When connecting to the API Mediation Layer, the web browser throws an error saying that the site is unable to provide a

secure connection because of an error with ciphers.

The error shown varies depending on the browser. For example,

For Google Chrome:

For Mozilla Firefox:

Solution:

Remove GCM as a disabled TLS algorithm from the Java runtime being used by Zowe.

To do this, first locate the $JAVA_HOME/lib/security/java.security file. You can find the value of $JAVA_HOME in one of

the following ways.

Method 1: By looking at the java.home value in the zowe.yaml file used to start Zowe.

For example, if the zowe.yaml file contains the following line,

then, the $JAVA_HOME/lib/security/java.security file will be

/usr/lpp/java/J8.0_64/lib/security/java.security .

Method 2: By inspecting the STDOUT JES spool file for the ZWESLSTC started task that launches the API Mediation

Layer.

In the java.security file, there is a parameter value for jdk.tls.disabledAlgorithms .

Example:

Note: This line may have a continuation character \ and be split across two lines due to its length.

Edit the parameter value for jdk.tls.disabledAlgorithms to remove GCM . If, as shown in the previous example, the line

ends <224, GCM , remove the preceding comma so the values remain as a well-formed list of comma-separated

algorithms:

Example:

Note: The file permissions of java.security might be restricted for privileged users at most z/OS sites.

After you remove GCM , restart the ZWESLSTC started task for the change to take effect.

API Components unable to handshake

Symptom:

The API Mediation Layer address spaces ZWE1AG, ZWE1AC and ZWE1AD start successfully and are visible in SDSF,

however they are unable to communicate with each other.

Externally, the status of the API Gateway homepage displays ! icons against the API Catalog, Discovery Service and

Authentication Service (shown on the left side image below) which do not progress to green tick icons as normally occurs

during successful startup (shown on the right side image below).

The Zowe desktop is able to start but logon fails.

The log contains messages to indicate that connections are being reset. For example, the following message shows that

the API Gateway ZWEAG is unable to connect to the API Discovery service, by default 7553.

The Zowe desktop is able to be displayed in a browser but fails to logon.

Solution:

Check that the Zowe certificate has been configured as a client certificate, and not just as a server certificate. For more

informtion, see More detail can be found in Configuring certificates overview.

Java z/OS components of Zowe unable to read certificates from

keyring

Symptom:

Java z/OS components of Zowe are unable to read certificates from a keyring. This problem may appear as an error as in

the following example where Java treats the SAF keyring as a file.

Example:

Solution:

Apply the following APAR to address this issue:

APAR IJ31756

Java z/OS components of Zowe cannot load the certificate

private key pair from the keyring

Symptom:

API ML components configured with SAF keyring are not able to start due to an unrecoverable exception. The exception

message notifies the user that the private key is not properly padded.

Example:

Solution:

Make sure that the private key stored in the keyring is not encrypted by a password, or that the private key integrity is

not protected by a password. This is not related to SAF keyrings themselves, which are not usually protected by

password, but rather to is related to the concrete certificate private key pair stored in the SAF keyring.

Exception thrown when reading SAF keyring {ZWED0148E}

Symptom:

If you see one or more of the following messages in the logs, the cause is keyring configuration.

ZWED0148E - Exception thrown when reading SAF keyring, e= Error: R_datalib call failed: function code: 01, SAF rc:

number , RACF rc: number , RACF rsn: number

java.io.IOException: R_datalib (IRRSDL00) error: profile for ring not found (number , number , number)

https://docs.zowe.org/stable/troubleshoot/user-guide/configure-certificates
https://www.ibm.com/support/pages/apar/IJ31756

You may also see the following log message:

ZWES1060W Failed to init TLS environment, rc=1(Handle is not valid)

Note: This log message can have other causes too, such as lack of READ permission to resources in the CRYPTOZ class.

Solution:

1. Refer to table 2 (DataGetFirst) of the Return and Reason Codes to determine the specific problem.

2. Check your keyring (such as with a LISTRING command) and your zowe configuration file's zowe.certificate

section to spot and resolve the issue.

Example: If ZWED0148E contains the following message, it indicates that Zowe's local certificate authority (local CA)

ZoweCert , the certificate jwtsecret , or the Zowe certificate localhost does not exist in the Zowe keyring.

Zowe's local CA certificate has its default name ZoweCert . Zowe Desktop hardcodes this certificate in the configuration

scripts.

If you are using your own trusted CA certificate in the keyring, and the name is different from the default one, this error

will occur. To resolve the issue, you must match the names in the Zowe configuration.

If you are using Zowe's local CA certificate and you still receive ZWED0148E, you may find the following message in the

same log.

In this case, ensure that the label names exactly match the names in TSO when confirming your keyring. Any difference

in spaces, capitalization, or other places throw the error.

ZWEAM400E Error initializing SSL Context when using Java 11

Symptom:

API ML components configured with SAF keyring are not able to start due to an unrecoverable exception. The message

indicates that safkeyring is an unknown protocol.

Examples:

Solution:

Starting with Java 11, the safkeyring URLs are dependent on the type of RACF keystore as presented in the following

table.

URL Keystore

JCECCARACFKS safkeyringjcecca://ZWESVUSR/ZOWERING

JCERACFKS safkeyringjce://ZWESVUSR/ZOWERING

JCEHYBRIDRACFKS safkeyringjcehybrid://ZWESVUSR/ZOWERING

https://www.ibm.com/docs/en/zos/2.5.0?topic=library-return-reason-codes
https://docs.zowe.org/stable/troubleshoot/user-guide/configure-certificates

Failed to load JCERACFKS keyring when using Java 11

Symptom:

API ML components do not start properly because they fail to load the JCERACFKS keyring. The exception message

indicates that the keyring is not available. The keyring, however, is configured correctly and the STC user can access it.

Examples:

Solution:

In Java 11 releases before 11.0.17.0, the IBMZSecurity security provider is not enabled by default. Locate the

java.security configuration file in the $JAVA_HOME/conf/security USS directory and open the file for editing. Modify

the list of security providers and insert IBMZSecurity on second position. The list of enabled security providers should

resemble the following series:

For more information see the steps in Enabling the IBMZSecurity provider.

https://www.ibm.com/docs/en/semeru-runtime-ce-z/11?topic=guide-ibmzsecurity#ibmzsecurity__enabling_z_provider__title__1

Version: v3.3.x LTS

Troubleshooting startup of Zowe z/OS

components

Review the following topics for information that can help you troubleshoot problems when installing Zowe z/OS

components or starting Zowe's ZWESLSTC started task.

How to check if ZWESLSTC startup is successful

The ZWESLSTC started task on z/OS brings up a number of address spaces. There is no single message that Zowe has

launched and is ready to run as the sequence of address spaces initialization is environment-dependent. Note that

the message ID ZWED0021I is typically the last one that is logged. More details on each subsystem and their startup

messages are described in the following sections.

Troubleshooting startup of Zowe z/OS components

How to check if ZWESLSTC startup is successful

Check the startup of API Mediation Layer

Check the startup of Zowe Desktop

Check the startup of Zowe System Services

The most complete way to check that Zowe started successfully is to check that each component successfully completed

its initialization. Each component writes messages to the JES SYSPRINT and writes severe errors to the STDERR job spool

file.

To learn more about the Zowe components and their role, see Zowe Architecture. It is possible to configure Zowe to bring

up only a subset of its components by using the components.<NAME>.enabled: boolean variables in the zowe.yaml file.

Check the startup of API Mediation Layer

The API Mediation Layer has four address spaces: API Catalog, API Gateway, API Discovery and Caching Service.

To check whether the API Mediation Layer is fully initialized, look for the message ZWEAM000I . Each component writes a

successful startup message ZWEAM000I to JES as shown in the following example. The message also indicates the CPU of

seconds spent. In a normal startup of API ML components, each component writes a ZWEAM000I message as in the

following example:

Example:

In addition to looking for ZWEAM000I in the JES log, you can also log in to the Gateway homepage and check the service

status indicator. The Gateway home page is accessible on the externalPort. The default value for this port is 7554 . If

there is a red or yellow tick beside one of its three services, the components are still starting.

https://docs.zowe.org/stable/getting-started/zowe-architecture

When all services are fully initialized, three green ticks are displayed.

Check the startup of Zowe Desktop

During startup, Zowe Desktop loads its plug-ins and writes the message ZWED0031I when completed.

The ZWED0031I message includes a count of the number of loaded plug-ins as well as the total number of plug-ins, for

example Plugins successfully loaded: 100% (19/19) . A failed plug-in load will not abort the launch of the Desktop.

If Zowe Desktop is started together with the API Gateway, the Zowe Desktop will register itself with the API Gateway.

This step must be completed before a user is able to successfully log in to the Zowe Desktop. The message ZWED0021I

indicates successful registration between the Zowe Desktop and the API Gateway.

Example:

If you try to log into the Zowe Desktop too early before the Eureka client registration is complete, you may receive the

message that Authentication failed on the login page. This is due to an incomplete API ML handshake. If

authentication fails, wait for the registration to complete as indiciated by the ZWED0021I message.

In addition to spooling to the JES SYSPRINT file for the Zowe ZWESLSTC task, the Zowe Desktop writes messages to

zowe.logDirectory/zssServer-yyyy-mm-dd-hh-ss.log .

Check the startup of Zowe System Services

The zssServer is used for system services for the Zowe Desktop.

The zssServer registers itself with the cross memory server running under the address space ZWESISTC . You can use the

attach message ID ZWES1014I to check that this has occurred successfully. If this message contains a nonzero return

code in the cmsRC= value, then a failure occurred. For more information on how to diagnose these, see ZSS server

unable to communicate with ZIS.

https://docs.zowe.org/stable/troubleshoot/app-framework/app-troubleshoot#zss-server-unable-to-communicate-with-zis
https://docs.zowe.org/stable/troubleshoot/app-framework/app-troubleshoot#zss-server-unable-to-communicate-with-zis

Version: v3.3.x LTS

Troubleshooting Zowe API Mediation Layer

As an API Mediation Layer user, you may encounter problems with how the API ML functions. This article presents known

API ML issues and their solutions.

NOTE

To troubleshoot errors or warnings that can occur when configuring certificates, see the article Troubleshooting

certificate configuration.

Install API ML without Certificate Setup

For testing purposes, it is not necessary to set up certificates when configuring the API Mediation Layer. You can

configure Zowe without certificate setup and run Zowe with verify_certificates: DISABLED .

IMPORTANT:

For production environments, certificates are required. Ensure that certificates for each of the following services are

issued by the Certificate Authority (CA) and that all keyrings contain the public part of the certificate for the

relevant CA:

z/OSMF

Zowe

The service that is onboarded to Zowe

Enable API ML Debug Mode

Use debug mode to activate the following functions:

Display additional debug messages for API ML

Enable changing log level for individual code components

Gather atypical debug information

When on z/OS, API ML log messages are written to the STC job log.

IMPORTANT:

We highly recommend that you enable debug mode only when you want to troubleshoot issues. Disable debug

mode when you are not troubleshooting. Running in debug mode while operating API ML can adversely affect its

performance and create large log files that consume a large volume of disk space.

Follow these steps:

1. Open the file zowe.yaml .

2. For each component, find the components.*.debug parameter and set the value to true :

https://docs.zowe.org/stable/troubleshoot/troubleshoot-zos-certificate
https://docs.zowe.org/stable/troubleshoot/troubleshoot-zos-certificate

By default, debug mode is disabled, and the components.*.debug is set to false .

3. Restart Zowe™.

You enabled debug mode for the API ML core services (API Catalog, API Gateway and Discovery service).

4. (Optional) Reproduce a bug that causes issues and review debug messages. If you are unable to resolve the issue,

create an issue here.

Change the Log Level of Individual Code Components

You can change the log level of a particular code component of the API ML internal service at run time.

Follow these steps:

1. Enable API ML Debug Mode as described in Enable API ML Debug Mode. This activates the application/loggers

endpoints in each API ML internal service (Gateway, Discovery service, and Catalog).

2. List the available loggers of a service by issuing the GET request for the given service URL:

scheme

Specifies the API ML service scheme (http or https)

hostname

Specifies the API ML service hostname

port

Specifies the TCP port where API ML service listens on. The port is defined by the configuration parameter

MFS_GW_PORT for the Gateway, MFS_DS_PORT for the Discovery service (by default, set to gateway port + 1),

and MFS_AC_PORT for the Catalog (by default, set to gateway port + 2).

Note: For the Catalog you can list the available loggers by issuing a GET request for the given service URL in the

following format:

Tip: One way to issue REST calls is to use the http command in the free HTTPie tool: https://httpie.org/.

Example:

3. Alternatively, extract the configuration of a specific logger using the extended GET request:

{name}

Specifies the logger name

4. Change the log level of the given component of the API ML internal service. Use the POST request for the given

service URL:

The POST request requires a new log level parameter value that is provided in the request body:

level

https://github.com/zowe/api-layer/issues/
https://httpie.org/

Specifies the new log level: OFF, ERROR, WARN, INFO, DEBUG, TRACE

Example:

Gather atypical debug information

ZWE_configs_debug

This property can be used to unconditionally add active debug profiles.

For more information, see Adding active profiles in the Spring documentation.

ZWE_configs_sslDebug

This property can be used to enable the SSL debugging. This property can also assist with determining what exactly

is happening at the SSL layer.

This property uses the -Djavax.net.debug Java parameter when starting the Gateway component. By setting

ZWE_configs_sslDebug to ssl , all SSL debugging is turned on. The ZWE_configs_sslDebug parameter also accepts

other values that can enable a different level of tracing.

For more information, see the article Debugging Utilities in the IBM documentation.

NOTE

This property can also be enabled for other API ML components.

Services that are not running appear to be running

Services that are not running appear to be running. The following message is displayed in the Discovery service:

EMERGENCY! EUREKA MAY BE INCORRECTLY CLAIMING INSTANCES ARE UP WHEN THEY'RE NOT. RENEWALS

ARE LESSER THAN THRESHOLD AND HENCE THE INSTANCES ARE NOT BEING EXPIRED JUST TO BE SAFE.

Cause:

This message is expected behavior of the Discovery service. If a service is incorrectly terminated without properly

unregistering from Eureka, the service initially enters eviction status for a brief timeframe before the service is

deregistered. Failure to properly terminate occurs when a service fails to respond to three consecutive heartbeat

renewals. After the three heartbeat renewals are returned without a response, the Eureka Discovery service keeps the

service in eviction status for one additional minute. If the service does not respond within this minute, the Eureka service

unregisters this unresponsive service. When more than 15 percent of currently registered services are in eviction status,

self preservation mode is enabled. In self preservation mode, no services in eviction status are deregistered. As a result,

these services continue to appear to be running even though they are not running.

Solution:

Use one of the following options to exit self preservation mode:

Restart the services that appear to be running

Relaunch the services that appear to be registered. After the message disappears, close each of the services one at

https://docs.spring.io/spring-boot/docs/1.2.0.M1/reference/html/boot-features-profiles.html#boot-features-adding-active-profiles

a time. Allow for a 3-minute period between closing each service. The procedure for restarting services that are not

part of Zowe is specific to the services and is documented in the service documentation.

Restart the Discovery service

Manually restart the Discovery service. The new instance will not be in self preservation mode. In a few minutes, the

running services re-register.

Note:

The Discovery service can be stopped with the following command:

F <instance-job-name>,APPL=STOP(<component_name>)

The Discovery service can be started again with the following command:

F <instance-job-name>,APPL=START(<component_name>)

Example:

Adjust the threshold of services in eviction status

Change the frequency of the Discovery service from entering self preservation mode by adjusting the threshold of

services in eviction status.

Note: The default threshold is .85. This results in the Discovery service entering self preservation mode when 15

percent of currently registered services are in eviction status.

Example:

This threshold limit causes the Discovery service to enter self preservation mode when less than 30 percent of

services are not responding.

Debug and Fix Common Problems with SSL/TLS Setup

Review tips described in the blog post Troubleshooting SSL/TLS setup with Zowe Certificate Analyzer to find out how you

can use the Zowe Certificate Analyzer to address the following common issues with SSL/TLS setup:

How to verify if the API ML server certificate is trusted by your service

How to get a CA certificate in the correct format

How to perform a TLS handshake with debug logs

How to debug remote services

How to enable mutual authentication using a client certificate

How to add a trusted certificate to a SAF Key ring

SDSF Job search fails

Search for jobs using SDSF failed for prefix and owner : exc.sdsf_invocation_failed 8 (Issue does not impace ZD&T boxes)

Solution:

You must be authorized to use SDSF with REXX on your z/OS system. For authorization, activate the SDSF RACF class and

add the following 3 profiles to your system:

https://medium.com/zowe/troubleshooting-ssl-tls-setup-with-zowe-certificate-analyser-31aeec9e1144

GROUP.ISFSORIG

GROUP.ISFSPROG.SDSF

ISF.CONNECT.

Users must belong to a group that has READ access to these profiles.

This is quite a complex area and you should ask your systems programmer for advice. On most systems, the GROUP.*

profiles are not required and it is sufficient to have the following ISF profile defined:

class profile SDSF ISF.CONNECT.** (G)

Known Issues with API ML

Error messages from TCP/IP

On starting Zowe, you may see the following messages in DDNAME SYSPRINT :

Alternatively, you may see the following message:

In both cases, more detail should be available on the SYSLOG.

In the first case, it is likely that the SYSTCPD dataset from the TCP/IP job may not be accessible to the user running

Zowe. A message such as the following may be seen on the SYSLOG at the same time as the error is generated in the

Zowe output:

Action:

The security administrator should grant READ access to the SYSTCPD dataset mentioned on the SYSLOG to the user

running Zowe.

API ML stops accepting connections after z/OS TCP/IP stack is recycled

Symptom:

When z/OS TCP/IP stack is restarted, it is possible that the internal services of API Mediation Layer (Gateway, Catalog,

and Discovery service) stop accepting all incoming connections, go into a continuous loop, and write numerous error

messages in the log.

Sample message:

The following message is a typical error message displayed in STDOUT:

Solution:

Restart API Mediation Layer.

Tip: To prevent this issue from occurring, it is strongly recommended not to restart the TCP/IP stack while API ML is

running.

API ML throws I/O error on GET request and cannot connect to other services

Symptom:

The API ML services are running but they are in the DOWN state and not working properly. The following exceptions can

be found in the log: java.net.UnknownHostException and java.net.NoRouteToHostException .

Sample message:

See the following message for full exceptions.

Solution:

The Zowe started task needs to run under a user with sufficient privileges. As a workaround, you can try to run the

started task under the same user ID as z/OSMF (typically IZUSVR).

The hostname that is displayed in the details of the exception is a valid hostname. You can validate that the hostname is

valid by using ping command on the same mainframe system. For example, ping system.lvn.broadcom.net . If it is

valid, then the problem can be caused by insufficient privileges of your started task that is not allowed network access.

You can fix it by setting up the security environment as described in the Zowe documentation.

SEC0002 error when logging in to API Catalog

SEC0002 error typically appears when users fail to log in to API Catalog. The following image shows the API Catalog login

page with the SEC0002 error.

https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-security-environment-switching

The error is caused by failed z/OSMF authentication. To determine the reason authentication failed, open the ZWESLSTC

joblog and look for a message that contains ZosmfAuthenticationProvider . The following is an example of the message

that contains ZosmfAuthenticationProvider :

Check the rest of the message, and identify the cause of the problem. The following list provides the possible reasons

and solutions for the z/OSMF authentication issue:

Connection refused

In the following message, failure to connect to API Catalog occurs when connection is refused:

The reason for the refused connection message is either invalid z/OSMF configuration or z/OSMF being unavailable. The

preceding message indicates that z/OSMF is not on the 127.0.0.1:1443 interface.

Solution:

Configure z/OSMF

Make sure that z/OSMF is running and is on 127.0.0.1:1443 interface, and try to log in to API Catalog again. If you get the

same error message, change z/OSMF configuration.

Follow these steps:

1. Locate the z/OSMF PARMLIB member IZUPRMxx.

For example, locate IZUPRM00 member in SYS1.PARMLIB.

2. Change the current HOSTNAME configuration to HOSTNAME('*') .

3. Change the current HTTP_SSL_PORT configuration to HTTP_SSL_PORT('1443') .

Important! If you change the port in the z/OSMF configuration file, all your applications lose connection to z/OSMF.

For more information, see Syntax rules for IZUPRMxx.

If changing the z/OSMF configuration does not fix the issue, reconfigure Zowe.

Follow these steps:

1. Open .zowe_profile in the home directory of the user who installed Zowe.

2. Modify the value of the ZOWE_ZOSMF_PORT variable.

3. Reinstall Zowe.

Missing z/OSMF host name in subject alternative names

In following message, failure to connect to API Catalog is caused by a missing z/OSMF host name in the subject

alternative names:

Solutions:

Fix the missing z/OSMF host name in subject alternative names using the following methods:

Note: Apply the insecure fix only if you use API Catalog for testing purposes.

Secure fix

Insecure fix

Secure fix

Follow these steps:

1. Obtain a valid certificate for z/OSMF and place it in the z/OSMF keyring. For more information, see Configure the

z/OSMF Keyring and Certificate.

2. Re-create the Zowe keystore by deleting it and re-creating it. For more information, see Zowe certificate

configuration overview and the corresponding sub-articles in this section. The Zowe keystore directory is the value of

the KEYSTORE_DIRECTORY variable in the zowe.yaml file that is used to launch Zowe.

Insecure fix

Follow these steps:

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/izuconfig_IZUPRMxx.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/izuconfig_KeyringAndCertificate.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/izuconfig_KeyringAndCertificate.htm
https://docs.zowe.org/stable/user-guide/configure-certificates
https://docs.zowe.org/stable/user-guide/configure-certificates

1. Re-create the Zowe keystore by deleting it and re-creating it.

2. In the zowe.yaml file that used to launch Zowe, ensure the property zowe.verifyCertificates is set to DISABLED or

NONSTRICT . The default value is STRICT which ensures that Zowe validates the certificate authority's signing chain is

trusted, and that the IP address for Zowe's servers match the certificate's subject alternative name.

Important! Disabling zowe.verifyCertificates may expose your server to security risks. Ensure that you contact your

system administrator before disabling these certificates and use these options only for troubleshooting purposes.

Invalid z/OSMF host name in subject alternative names

In the following message, failure to connect to API Catalog is caused by an invalid z/OSMF host name in the subject

alternative names:

Solutions:

Fix the invalid z/OSMF host name in the subject alternative names using the following methods:

Request a new certificate

Re-create the Zowe keystore

Request a new certificate

Request a new certificate that contains a valid z/OSMF host name in the subject alternative names.

Re-create the Zowe keystore

Re-create the Zowe keystore by deleting it and re-creating it. For more information, see Importing a file-based PKCS12

certificate. The Zowe keystore directory is the value of the KEYSTORE_DIRECTORY variable in the zowe.yaml file that is

used to launch Zowe.

https://docs.zowe.org/stable/user-guide/import-certificates#importing-an-existing-pkcs12-certificate
https://docs.zowe.org/stable/user-guide/import-certificates#importing-an-existing-pkcs12-certificate

Version: v3.3.x LTS

Error Message Codes

The following error message codes may appear on logs or API responses. Use the following message code references

and the corresponding reasons and actions to help troubleshoot issues.

API mediation utility messages

ZWEAM000I

%s started in %s seconds

Reason:

The service started.

Action:

No action required.

ZWEAM001I

API Mediation Layer started

Reason:

All key API Mediation Layer services started.

Action:

No action required.

API mediation common messages

ZWEAO102E

Gateway not yet discovered. The Transform service cannot perform the request

Reason:

The Transform service was requested to transform a url, but the Gateway instance was not discovered.

Action:

Do not begin performing requests until the API Mediation Layer fully initializes after startup. Check that your Discovery

service is running and that all services (especially the Gateway) are discovered correctly.

ZWEAO104W

GatewayInstanceInitializer has been stopped due to exception: %s

Reason:

An unexpected exception occurred while retrieving the Gateway service instance from the Discovery Service.

Action:

Check that both the service and the Gateway can register with Discovery. If the services are not registering, investigate

the reason why. If no cause can be determined, create an issue.

ZWEAO105W

Gateway HTTP Client per-route connection limit (maxConnectionsPerRoute) of %s has been reached for the '%s' route.

Reason:

Too many concurrent connection requests were made to the same route.

Action:

Further connections will be queued until there is room in the connection pool. You may also increase the per-route

connection limit via the gateway start-up script by setting the Gateway configuration for maxConnectionsPerRoute.

ZWEAO106W

Gateway HTTP Client total connection limit (maxTotalConnections) of %s has been reached.

Reason:

Too many concurrent connection requests were made.

Action:

Further connections will be queued until there is room in the connection pool. You may also increase the total connection

limit via the gateway start-up script by setting the Gateway configuration for maxTotalConnections.

ZWEAO400E

The structure of the request is invalid: %s

Reason:

A value in the request is missing or contains an invalid value.

Action:

Fix the request and try again.

ZWEAO401E

Unknown error in HTTPS configuration: '%s'

Reason:

An Unknown error occurred while setting up an HTTP client during service initialization, followed by a system exit.

Action:

Start the service again in debug mode to get a more descriptive message. This error indicates it is not a configuration

issue.

ZWEAO402E

The request has not been applied because it lacks valid authentication credentials.

Reason:

The accessed resource requires authentication. The request is missing valid authentication credentials or the token

expired.

Action:

Review the product documentation for more details about acceptable authentication. Verify that your credentials are

valid and contact security administrator to obtain valid credentials.

ZWEAO404E

The service can not find the requested resource.

Reason:

Action:

ZWEAO405E

The request method has been disabled and cannot be used for the requested resource.

Reason:

Action:

ZWEAO415E

The media format of the requested data is not supported by the service, so the service has rejected the request.

Reason:

Action:

ZWEAO500E

The service has encountered a situation it doesn't know how to handle. Please contact support for further assistance.

More details are available in the log under the provided message instance ID

Reason:

Action:

ZWEAO503E

The server is not ready to handle the request: %s

Reason:

The service is not ready to handle the request, it is being initialized or waiting for another service to start.

Action:

Repeat the request later. Please contact support for further assistance.

Common service core messages

ZWEAM100E

Could not read properties from: '%s'

Reason:

The Build Info properties file is empty or null.

Action:

The jar file is not packaged correctly. Please submit an issue.

ZWEAM101E

I/O Error reading properties from: '%s' Details: '%s'

Reason:

I/O error reading META-INF/build-info.properties or META-INF/git.properties .

Action:

The jar file is not packaged correctly. Please submit an issue.

ZWEAM102E

Internal error: Invalid message key '%s' is provided. Please create an issue with this message.

Reason:

Message service is requested to create a message with an invalid key.

Action:

Create an issue with this message.

ZWEAM103E

Internal error: Invalid message text format. Please create an issue with this message.

Reason:

Message service is requested to create a message with an invalid text format.

Action:

Create an issue with this message.

ZWEAM104E

The endpoint you are looking for '%s' could not be located

Reason:

The endpoint you are looking for could not be located.

Action:

Verify that the URL of the endpoint you are trying to reach is correct.

ZWEAG120E

Invalid username or password for URL '/gateway/api/v1/auth/login'

Reason:

The username or password is invalid.

Action:

Provide a valid username and password.

ZWEAG140E

The 'applicationName' parameter name is missing.

Reason:

The application name is not provided.

Action:

Provide the 'applicationName' parameter.

ZWEAG141E

The generation of the PassTicket failed. Reason: %s

Reason:

An error occurred in the SAF Auth Service. Review the reason in the error message.

Action:

Supply a valid user and application name, and check that corresponding permissions have been set up. For more

information, see Enabling single sign on for extending services via PassTicket configuration.

ZWEAM400E

Error initializing SSL Context: '%s'

Reason:

An error occurred while initializing the SSL Context.

Action:

Refer to the specific message to identify the exact problem. Possible causes include:

Incorrect security algorithm

The keystore is invalid or corrupted

The certificate is invalid or corrupted

ZWEAM500W

The service is not verifying the TLS/SSL certificates of the services

Reason:

This is a warning that the SSL Context will be created without verifying certificates.

Action:

Stop the service and set the verifySslCertificatesOfServices parameter to true , and then restart the service. Do not use

this option in a production environment.

ZWEAM501W

Service is connecting to Discovery service using the non-secure HTTP protocol.

Reason:

The service is connecting to the Discovery Service using the non-secure HTTP protocol.

Action:

For production use, start the Discovery Service in HTTPS mode and configure the services accordingly.

ZWEAM502E

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-passtickets#configuring-zowe-to-use-passtickets

Error reading secret key: '%s'

Reason:

A key with the specified alias cannot be loaded from the keystore.

Action:

Ensure that the configured key is present, in the correct format, and not corrupt.

ZWEAM503E

Error reading secret key: '%s'

Reason:

Error reading secret key.

Action:

Refer to the specific message to identify the exact problem. Possible causes include:

An incorrect security algorithm

The keystore is invalid or corrupted

The certificate is invalid or corrupted

ZWEAM504E

Error reading public key: '%s'

Reason:

Error reading secret key.

Action:

Refer to the specific message to identify the exact problem. Possible causes include:

An incorrect security algorithm

The keystore is invalid or corrupted

The certificate is invalid or corrupted

ZWEAM505E

Error initializing SSL/TLS context: '%s'

Reason:

Error initializing SSL/TLS context.

Action:

Refer to the specific message to identify the exact problem. Possible causes include:

An incorrect security algorithm

The keystore is invalid or corrupted

The certificate is invalid or corrupted

ZWEAM506E

Truststore Password configuration parameter is not defined

Reason:

Your truststore password was not set in the configuration.

Action:

Ensure that the parameter server.ssl.trustStorePassword contains the correct password for your truststore.

ZWEAM507E

Truststore configuration parameter is not defined but it is required

Reason:

The truststore usage is mandatory, but the truststore location is not provided.

Action:

If a truststore is required, define the truststore configuration parameter by editing the server.ssl.truststore,

server.ssl.truststorePassword and server.ssl.truststoreType parameters with valid data. If you do not require a truststore,

change the trustStoreRequired boolean parameter to false .

ZWEAM508E

Keystore not found, server.ssl.keyStore configuration parameter is not defined

Reason:

Your keystore path was not set in the configuration.

Action:

Ensure that the correct path to your keystore is contained in the parameter server.ssl.keyStore in the properties or yaml

file of your service.

ZWEAM509E

Keystore password not found, server.ssl.keyStorePassword configuration parameter is not defined

Reason:

Your keystore password was not set in the configuration.

Action:

Ensure that the correct password to your keystore in the parameter server.ssl.keyStorePassword is contained in the

properties or yaml file of your service.

ZWEAM510E

Invalid key alias '%s'

Reason:

The key alias was not found.

Action:

Ensure that the key alias provided for the key exists in the provided keystore.

ZWEAM511E

There was a TLS request error accessing the URL '%s': '%s'

Reason:

The Gateway refuses to communicate with the requested service.

Action:

Possible actions regarding to message content:

Message: The certificate is not trusted by the API Gateway. Action: Verify trust of the certificate is the issue by

disabling certificate verification and retry the request.

Message: Certificate does not match any of the subject alternative names. Action: Verify that the hostname which

the certificate is issued for matches the hostname of the service.

Message: Unable to find the valid certification path to the requested target. Action: Import the root CA that issued

services' certificate to API Gateway truststore.

Message: Verify the requested service supports TLS. Action: Ensure the requested service is running with TLS

enabled.

Message: Review the APIML debug log for more information. Action: Enable APIML debug mode and retry the

request, then review the APIML log for TLS errors.

ZWEAM600W

Invalid parameter in metadata: '%s'

Reason:

An invalid apiInfo parameter was found while parsing the service metadata.

Action:

Remove or fix the referenced metadata parameter.

ZWEAM700E

No response received within the allowed time: %s

Reason:

No response was received within the allowed time.

Action:

Verify that the URL you are trying to reach is correct and all services are running. To reset the duration of the allowed

time, configure the properties in the zowe.yaml file. For more information about the properties to configure, see the

Customizing Gateway timeouts page.

ZWEAM701E

The request to the URL '%s' has failed: %s caused by: %s

Reason:

The request failed because of an internal error.

Action:

Refer to specific exception details for troubleshooting. Create an issue with this message.

Security common messages

ZWEAT100E

Token is expired for URL '%s'

Reason:

The validity of the token is expired.

Action:

Obtain a new token by performing an authentication request.

ZWEAT103E

Could not write response: %s

Reason:

A message could not be written to the response.

Action:

Please submit an issue with this message.

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-gateway-timeouts

ZWEAT403E

The user is not authorized to the target resource: %s

Reason:

The service has accepted the authentication of the user but the user does not have access rights to the resource.

Action:

Contact your security administrator to give you access.

ZWEAT409E

The platform returned error: %s

Reason:

The platform responded with unknown errno code.

Action:

Please submit an issue with this message.

ZWEAT410E

The platform returned error: %s

Reason:

The specified password is incorrect.

Action:

Provide correct password.

ZWEAT411E

The platform returned error: %s

Reason:

The platform returned error, specified in the error message.

Action:

Contact your security administrator with the message.

ZWEAT412E

The platform returned error: %s

Reason:

The specified password is expired.

Action:

Contact your security administrator to reset your password.

ZWEAT413E

The platform returned error: %s

Reason:

The new password is not valid.

Action:

Provide valid password.

ZWEAT414E

The platform returned error: %s

Reason:

The user name access has been revoked.

Action:

Contact your security administrator to unsuspend your account.

ZWEAT415E

The platform returned error: %s

Reason:

The user name does not exist in the system.

Action:

Provide correct user name.

ZWEAT416E

The platform returned error: %s

Reason:

The specified user name or password is invalid.

Action:

Provide correct user name or password.

ZWEAT500E

Failed to parse the client certificate forwarded from the Gateway. Hostname is %s. Error message is %s. The client

certificate was %s

Reason:

The string sent by the Gateway was not recognized as a valid DER-encoded certificate in Base64 printable form.

Action:

Ensure that forwarding of the client certificate is also enabled in the Gateway. Check for any error messages from the

Gateway.

ZWEAT501E

Failed to get trusted certificates from the Gateway. Unexpected response from %s endpoint. Status code: %s. Response

body: %s

Reason:

The response status code is different from expected 200 OK.

Action:

Ensure that the parameter apiml.security.x509.certificatesUrls is correctly configured with the complete URL to the

Gateway certificates endpoint. Test the URL manually.

ZWEAT502E

Invalid URL specified to get trusted certificates from the Gateway. URL is %s. Error message: %s

Reason:

The parameter apiml.security.x509.certificatesUrls is not correctly configured with the complete URL to the Gateway

certificates endpoint.

Action:

Ensure that the parameter apiml.security.x509.certificatesUrls is correctly configured.

ZWEAT503E

An error occurred during retrieval of trusted certificates from the Gateway. The certificate endpoint is %s. Error message:

%s

Reason:

Communication with the Gateway was interrupted or an error occurred during processing of the response.

Action:

Check the provided error message. Contact the support.

ZWEAT504E

Failed to parse the trusted certificates provided by the Gateway. Certificate endpoint is %s. Error message %s

Reason:

The string sent by the Gateway was not recognized as a valid DER-encoded certificates in Base64 printable form.

Action:

Check that the URL configured in apiml.security.x509.certificatesUrls responds with valid DER-encoded certificates in the

Base64 printable form.

ZWEAT601E

z/OSMF service name not found. Set parameter apiml.security.auth.zosmf.serviceId to your service ID.

Reason:

The parameter zosmfserviceId was not configured correctly and could not be validated.

Action:

Ensure that the parameter apiml.security.auth.zosmf.serviceId is correctly entered with a valid z/OSMF service ID.

ZWEAT602E

The SAF provider endpoint supports only the resource class 'ZOWE', but the current one is '%s'

Reason:

The parameter apiml.security.authorization.provider is set to endpoint

Action:

Change the SAF provider to another one to use this endpoint

ZWEAT603E

Endpoint %s is not properly configured

Reason:

The application cannot call the endpoint to check the SAF resource of the user

Action:

Verify the state of ZSS and IZS, then check if parameters apiml.security.authorization.endpoint.* are matching.

ZWEAT604E

Passwords do not match

Reason:

Re-entered password does not match for password update.

Action:

Enter the same value as the one entered for new password.

ZWEAT605E

Invalid body provided in request to create personal access token

Reason:

The request body is not valid

Action:

Use a valid body in the request. Format of a message: {validity: int , scopes: [string]} .

ZWEAT606E

Body in the HTTP request for Personal Access Token does not contain scopes

Reason:

The request body is not valid

Action:

Provide a list of services for which this token will be valid

ZWEAT608E

Error mapping between distributed and mainframe identity. Reason: %s %s

Reason:

Unexpected error occurred when mapping between distributed and mainframe identity

Action:

Contact Broadcom support.

ZWEAT609W

Mapping between distributed and mainframe identity failed. Reason: %s

Reason:

Mapping between distributed and mainframe identity failed.

Action:

ZWEAT610E

Missing registry name configuration.

Reason:

The registry name configuration is required to correctly map distributed user name from the OIDC access token.

Action:

Make sure that 'components.gateway.apiml.security.oidc.registry' is correctly set in 'zowe.yaml'.

Security client messages

ZWEAS100E

Authentication exception: '%s' for URL '%s'

Reason:

A generic failure occurred while authenticating.

Action:

Refer to the specific message to troubleshoot.

ZWEAS101E

Authentication method '%s' is not supported for URL '%s'

Reason:

The HTTP request method is not supported for the URL.

Action:

Use the correct HTTP request method that is supported for the URL.

ZWEAS103E

API Gateway Service is not available by URL '%s' (API Gateway is required because it provides the authentication

functionality)

Reason:

The security client cannot find a Gateway instance to perform authentication. The API Gateway is required because it

provides the authentication functionality.

Action:

Check that both the service and Gateway are correctly registered in the Discovery service. Allow some time after the

services are discovered for the information to propagate to individual services.

ZWEAS104E

Authentication service is not available by URL '%s'

Reason:

The Authentication service is not available.

Action:

Make sure that the Authentication service is running and is accessible by the URL provided in the message.

ZWEAS105E

Authentication is required for URL '%s'

Reason:

Authentication is required.

Action:

Provide valid authentication.

ZWEAS120E

Invalid username or password for URL '%s'

Reason:

The username or password is invalid.

Action:

Provide a valid username and password.

ZWEAS121E

Authorization header is missing, or the request body is missing or invalid for URL '%s'

Reason:

The authorization header is missing, or the request body is missing or invalid.

Action:

Provide valid authentication.

ZWEAS123E

Invalid token type in response from Authentication service.

Reason:

Could not retrieve the proper authentication token from the Authentication service response.

Action:

Review your APIML authentication provider configuration and ensure your Authentication service is working.

ZWEAS130E

Token is not valid for URL '%s'

Reason:

The token is not valid.

Action:

Provide a valid token.

ZWEAS131E

No authorization token provided for URL '%s'

Reason:

No authorization token is provided.

Action:

Provide a valid authorization token.

ZAAS client messages

ZWEAS100E

Token is expired for URL

Reason:

The application using the token kept it for longer than the expiration time

Action:

When this error occurs it is necessary to get a new JWT token.

ZWEAS120E

Invalid username or password

Reason:

Provided credentials weren't recognized

Action:

Try with different credentials

ZWEAS121E

Empty or null username or password values provided

Reason:

One of the credentials was null or empty

Action:

Try with full set of credentials

ZWEAS122E

Empty or null authorization header provided

Reason:

The authorization header was empty or null

Action:

Try again with a valid authorization header

ZWEAS170E

An exception occurred while trying to get the token

Reason:

General exception. There are more pieces of information in the message

Action:

Log the message from the exception and then handle the exception based on the information provided there.

ZWEAS400E

Unable to generate PassTicket. Verify that the secured signon (PassTicket) function and application ID is configured

properly by referring to Using PassTickets in the guide for your security provider

Reason:

Unable to generate PassTicket.

Action:

Verify that the secured signon (PassTicket) function and application ID is configured properly by referring to Using

PassTickets in the guide for your security provider

ZWEAS401E

Token is not provided

Reason:

There was no JWT token provided for the generation of the PassTicket

Action:

Ensure that you are passing JWT token for PassTicker generation

ZWEAS404E

Gateway service is unavailable

Reason:

Gateway service does not respond.

Action:

Ensure that the Gateway service is up and that the path to the gateway service is properly set.

ZWEAS417E

The application name was not found

Reason:

The application id provided for the generation of the PassTicket was not recognized by the security provider

Action:

Ensure that the security provider recognized the application id.

ZWEAS130E

Invalid token provided

Reason:

The JWT token is not valid

Action:

Provide a valid token.

ZWEAS500E

There was no path to the trust store.

Reason:

The Zaas Client configuration does not contain the path to the trust store

Action:

Ensure that the configuration contains the trustStorePath and that it points to valid trust store.

ZWEAS501E

There was no path to the key store.

Reason:

The Zaas Client configuration does not contain the path to the key store

Action:

Ensure that the configuration contains the keyStorePath and that it points to valid key store.

ZWEAS502E

The configuration provided for SSL is invalid.

Reason:

The type of the keystore, truststore or the included keys/certs aren't considered valid

Action:

Ensure that the combination of the configuration is cryptographically valid.

ZWEAS503E

The SSL configuration contained invalid path.

Reason:

There was an invalid path to either trust store or keystore

Action:

Ensure that both provided paths are resolved to valid trust store and valid key store

ZWEAS504E

Internal server error while generating PassTicket: %s

Reason:

Unable to generate PassTicket.

Action:

Supply a valid user and application name, and check that corresponding permissions have been set up.

Discovery service messages

ZWEAD400E

Cannot notify Gateway on '%s' about new instance '%s'

Reason:

The Discovery Service tried to notify the Gateway about an instance update, but the REST call failed. The purpose of this

call is to update the Gateway caches. The Gateway might be down or a network problem occurred.

Action:

Ensure that there are no network issues and that the Gateway was not restarted. If the problem reoccurs, contact

Broadcom support.

ZWEAD401E

Cannot notify Gateway on '%s' about cancelled registration

Reason:

The Discovery Service tried to notify the Gateway about service un-registration, but the REST call failed. The purpose of

this call is to update the Gateway caches. The Gateway might be down or a network problem occurred.

Action:

Ensure that there are no network issues and that the Gateway was not restarted. If the problem reoccurs, contact

Broadcom support.

ZWEAD700W

Static API definition directory '%s' is not a directory or does not exist

Reason:

One of the specified static API definition directories does not exist or is not a directory.

Action:

Review the static API definition directories and their setup. The static definition directories are specified as a launch

parameter to a Discovery service jar. The property key is: apiml.discovery.staticApiDefinitionsDirectories

ZWEAD701E

Error loading static API definition file '%s'

Reason:

A problem occurred while reading (IO operation) of a specific static API definition file.

Action:

Ensure that the file data is not corrupted or incorrectly encoded.

ZWEAD702W

Unable to process static API definition data: '%s' - '%s'

Reason:

A problem occurred while parsing a static API definition file.

Action:

Review the mentioned static API definition file for errors. Refer to the specific log message to determine the exact cause

of the problem:

ServiceId is not defined in the file '%s'. The instance will not be created. Make sure to specify the ServiceId.

The instanceBaseUrls parameter of %s is not defined. The instance will not be created. Make sure to specify the

InstanceBaseUrl property.

The API Catalog UI tile ID %s is invalid. The service %s will not have an API Catalog UI tile. Specify the correct catalog

title ID.

One of the instanceBaseUrl of %s is not defined. The instance will not be created. Make sure to specify the

InstanceBaseUrl property.

The URL %s does not contain a hostname. The instance of %s will not be created. The specified URL is malformed.

Make sure to specify valid URL.

The URL %s does not contain a port number. The instance of %s will not be created.

The specified URL is missing a port number. Make sure to specify a valid URL.

The URL %s is malformed. The instance of %s will not be created: The Specified URL is malformed. Make sure to

specify a valid URL.

The hostname of URL %s is unknown. The instance of %s will not be created: The specified hostname of the URL is

invalid. Make sure to specify a valid hostname.

Invalid protocol. The specified protocol of the URL is invalid. Make sure to specify valid protocol.

Additional service metadata of %s in processing file %s could not be created: %s

ZWEAD703E

A problem occurred during reading the static API definition directory: '%s'

Reason:

There are three possible causes of this error:

The specified static API definition folder is empty.

The definition does not denote a directory.

An I/O error occurred while attempting to read the static API definition directory.

Action:

Review the static API definition directory definition and its contents on the storage. The static definition directories are

specified as a parameter to launch a Discovery Service jar. The property key is:

apiml.discovery.staticApiDefinitionsDirectories

ZWEAD704E

Gateway Service is not available so it cannot be notified about changes in Discovery Service

Reason:

Gateway Service is probably mis-configured or failed to start from another reason.

Action:

Review the log of Gateway Service and its configuration.

Gateway service messages

ZWEAG111E

The service has encountered a situation it doesn't know how to handle. Please contact support for further assistance.

More details are available in the log under the provided message instance ID

Reason:

Action:

ZWEAG501E

The connection is not secure.

Reason:

AT-TLS is not properly configured.

Action:

Review AT-TLS documentation and make sure your configuration is correct for this service.

ZWEAG701E

Service '%s' does not allow encoded characters in the request path: '%s'.

Reason:

The request that was issued to the Gateway contains an encoded character in the URL path. The service that the request

was addressing does not allow this pattern.

Action:

Contact the system administrator and request enablement of encoded characters in the service.

ZWEAG702E

Gateway does not allow encoded slashes in request: '%s'.

Reason:

The request that was issued to the Gateway contains an encoded slash in the URL path. Gateway configuration does not

allow this encoding in the URL.

Action:

Contact the system administrator and request enablement of encoded slashes in the Gateway.

ZWEAG717E

The service id provided is invalid: '%s'

Reason:

The provided id is not valid under conformance criteria.

Action:

Verify the conformance criteria, provide valid service id.

ZWEAG718E

Cannot retrieve metadata: '%s'

Reason:

Metadata aren't accessible

Action:

Verify that the metadata are accessible and not empty

ZWEAG719I

The service is not conformant: %s

Reason:

The provided service does not satisfy the conformance criteria and is therefore not valid.

Action:

Verify the conformance criteria.

ZWEAG101E

Authentication method '%s' is not supported for URL '%s'

Reason:

The HTTP request method is not supported by the URL.

Action:

Use the correct HTTP request method supported by the URL.

ZWEAG105E

Authentication is required for URL '%s'

Reason:

Authentication is required.

Action:

Provide valid authentication.

ZWEAG167E

No client certificate provided in the request

Reason:

The X509 client certificate was not provided with the request

Action:

Configure your client to provide valid certificate.

ZWEAM400E

Error initializing SSL Context: '%s'

Reason:

An error occurred while initializing the SSL Context.

Action:

Refer to the specific message to identify the exact problem. Possible causes include:

Incorrect security algorithm

The keystore is invalid or corrupted

The certificate is invalid or corrupted

ZWEAT403E

The user is not authorized to the target resource: %s

Reason:

The service has accepted the authentication of the user but the user does not have access rights to the resource.

Action:

Contact your security administrator to give you access.

ZWEAG510E

Request to the resource ended with unexpected status code.

Reason:

The service did not respond properly.

Action:

Verify that the target service is healthy.

ZWESG100W

Cannot receive information about services on API Gateway with apimlId '%s' because: %s

Reason:

Cannot connect to the Gateway service.

Action:

Make sure that the external Gateway service is running and the truststore of the both Gateways contain the

corresponding certificate.

ZWESG101E

An internal exception occurred in ZAAS service %s.

Reason:

ZAAS cannot process authentication required to finish the request.

Action:

Make sure that the ZAAS is configured well and check all security requirements.

ZWESG429E

Request was denied access.

Reason:

Connections limit exceeded.

Action:

Wait for the number of active connections to decrease before retrying your request.

API Catalog messages

ZWEAC100W

Could not retrieve information about service %s from the Discovery Service. Requested URL: %s. Response received:

status code: %s, body: %s

Reason:

The response from The Discovery Service about the registered service instances returned an error or empty body.

Action:

Make sure the Discovery Service and requested service are up and running. If the HTTP response error code refers to a

security issue, make sure that security configuration is correct.

ZWEAC101E

Could not parse service info from discovery -- %s

Reason:

The response from the Discovery Service about the registered instances could not be parsed to extract applications.

Action:

Run debug mode and look at the Discovery Service potential issues while creating a response. If the Discovery Service

does not indicate any error, create an issue.

ZWEAC102E

Could not retrieve containers. Status: %s

Reason:

One or more containers could not be retrieved.

Action:

Check the status of the message for more information and the health of the Discovery Service.

ZWEAC103E

API Documentation not retrieved, %s

Reason:

API documentation was not found.

Action:

Make sure the service documentation is configured correctly.

ZWEAC104E

Could not retrieve container statuses, %s

Reason:

The status of one or more containers could not be retrieved.

Action:

Check the status of the message for more information and the health of the Discovery Service.

ZWEAC105W

API Documentation not retrieved for service '%s' due to communication error, %s

Reason:

Unable to fetch API documentation.

Action:

Make sure the service documentation url or server transport encoding is configured correctly.

ZWEAC106E

Could not retrieve service. Status: %s

Reason:

Service could not be retrieved.

Action:

Check the status of the message for more information and the health of the Discovery Service.

ZWEAC700E

Failed to update cache with discovered services: '%s'

Reason:

Cache could not be updated.

Action:

Check the status of the Discovery Service.

ZWEAC701W

API Catalog Instance not retrieved from Discovery service

Reason:

An error occurred while fetching containers information.

Action:

The jar file is not packaged correctly. Please submit an issue.

ZWEAC702E

An unexpected exception occurred when trying to retrieve an API Catalog instance from the Discovery Service: %s

Reason:

An unexpected error occurred during API Catalog initialization. The API Catalog was trying to locate an instance of itself

in the Discovery Service.

Action:

Review the specific message for more information. Verify if the Discovery Service and service registration work as

expected.

ZWEAC703E

Failed to initialize API Catalog with discovered services

Reason:

The API Catalog could not initialize running services after several retries.

Action:

Ensure services are started and discovered properly.

ZWEAC704E

ApiDoc retrieval problem for '%s' service. %s

Reason:

ApiDoc for service could not be retrieved.

Action:

Verify that the service provides a valid ApiDoc.

ZWEAC705W

The home page url for service %s was not transformed. %s

Reason:

The home page url for service was not transformed. The original url will be used.

Action:

Refer to the specific printed message. Possible causes include:

The Gateway was not found. The Transform service cannot perform the request. Wait for the Gateway to be

discovered.

The URI is not valid. Ensure the service is providing a valid URL.

Not able to select a route for the URL of the specific service. The original URL is used. If necessary, check the routing

metadata of the service.

The path of the service URL is not valid. Ensure the service is providing the correct path.

ZWEAC706E

Service not located, %s

Reason:

The service could not be found.

Action:

Check if the service is up and registered. If it is not registered, review the onboarding guide to ensure that all steps were

completed.

ZWEAC707E

Static API refresh failed, caused by exception: %s

Reason:

The Static API refresh could not be performed because of exception.

Action:

Check the specific exception for troubleshooting.

ZWEAC708E

The API base path for service %s was not retrieved. %s

Reason:

The API base path for service was not retrieved. An empty path will be used.

Action:

Refer to the specific printed message. Possible causes include:

The URI is not valid. Ensure the service is providing a valid URL.

Not able to select a route for the URL of the specific service. The original URL is used. If necessary, check the routing

metadata of the service.

The path of the service URL is not valid. Ensure the service is providing the correct path.

ZWEAC709E

Static definition generation failed, caused by exception: %s

Reason:

The Static definition generation could not be performed because of exception.

Action:

Check the specific exception for troubleshooting.

Version: v3.3.x LTS

Troubleshooting Zowe Application Framework

The following topics contain information that can help you troubleshoot problems when you encounter unexpected

behavior installing and using Zowe™ Application Framework which includes the Zowe Desktop.

Most of the solutions below identify issues by referring to the Zowe logs. To identify and resolve issues, you should be

familiar with their names and locations.

The Zowe Application Framework manages issues in GitHub. When you troubleshoot a problem, you can check whether a

GitHub issue (open or closed) that covers the problem already exists. For a list of issues, see the zlux repo.

Desktop apps fail to load

Symptom:

When you open apps in the Zowe desktop, a page is displayed with the message The plugin failed to load .

Solution:

This problem may occur due to file encoding. If this occurs in a Zowe extension, verify it is correctly encoded.

NODEJSAPP disables immediately

Symptom:

You receive the message CEE5207E The signal SIGABRT was received in stderr .

Solution:

You might have reached the limit for shared message queues on your LPAR. When Node.js applications are terminated by

a SIGKILL signal, shared message queues might not be deallocated. For more information, see the If the NODEJSAPP

disables immediately section in the Troubleshooting Node.js applications topic on IBM Knowledge Center.

Cannot log in to the Zowe Desktop

Symptom:

When you attempt to log in to the Zowe Desktop, you receive the following error message that is displayed beneath the

Username and Password fields.

The Zowe desktop attempts to authenticate the credentials using the types that have been configured, by default the

three above of ["saf","apiml","zss"] . If Zowe has been configured with the components.app-sever.enabled=true and

components.gateway.enabled=false , then the message will just include the types ["saf","zss"] .

Solution:

This can be due to network disruption, a server not running, certificate issues, incorrect password, or a locked account. If

the reason for failure isn't known, you should gather information to contact support

https://docs.zowe.org/stable/troubleshoot/app-framework/app-mustgather
https://github.com/zowe/zlux/issues
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.5.0/troubleshooting/node/node-troubleshooting.html
https://docs.zowe.org/stable/troubleshoot/servers/must-gather

Below are some additional, possible reasons for the failure:

For the Zowe Desktop to work, the node server that runs under the ZWESLSTC started task must be able to make cross

memory calls to the ZWESIS01 load module running under the ZWESISTC started task. If this communication fails, you

see the authentication error.

There are three known problems that might cause this error. The Zowe architecture diagram shows the following

connections. One of these three connections likely failed.

1. The zssServer connection to the ZWESISTC started task using cross memory communication. If this fails, see

zssServer unable to communicate with ZIS. The architecture diagram below has been annotated with a (1) to show

this connection.

2. The Zowe Desktop Application Framework server connection to the zssServer across the default port 7557. If this

fails, see Application Framework unable to communicate with zssServer. The architecture diagram below has been

annotated with a (2) to show this connection.

3. The Zowe Desktop Application Framework server cannot connect to API Mediation Layer for authentication. If this

fails, see Application Framework unable to communicate with API Mediation Layer.

ZSS server unable to communicate with ZIS

Open the log file zowe.logDirectory/zssServer-yyyy-mm-dd-hh-ss.log . This file is created each time ZWESLSTC is

started and only the last five files are kept.

Look for the message that starts with ZIS status .

If the communication works, the message includes Ok . For example:

https://docs.zowe.org/stable/getting-started/zowe-architecture

If the communication works, the problem is likely that the Application Framework server is unable to

communicate to the zssServer. For more information, see Application Framework unable to communicate with

zssServer.

If the communication is not working, the message includes Failure . For example:

or

or

or

In this case, check that the ZWESISTC started task is running. If not, start it with the MVS command /S ZWESISTC

If the problem cannot be easily fixed (such as the ZWESISTC task not running), then it is likely that the ZIS server

is not running. To check whether the server is running, check the started task ZWESISTC log for any errors.

If the ZIS server ZWESISTC started task is running, check that the program name of the cross memory procedure

matches between the ZWESISTC PROCLIB member and the zowe.yaml file used to launch Zowe.

By default the proc value is ZWESIS_STD , and if a new name is chosen then both files need to be updated for the

handshake to be successful.

The line in the ZWESISTC proclib that defines the server name that ZIS will use is

This example in zowe.yaml specifies the cross memory server name that the zssServer will try to attach to

If this is the first time you set up Zowe, it is possible that the ZIS server configuration did not complete

successfully. To set up and configure the ZIS server, follow steps as described in the topic Installing and

configuring the Zowe ZIS server (ZWESISTC). Once ZWESISTC is started, if problems persist, check its log to

ensure it has been able to correctly locate its load module ZWESIS01 as well as the parmlib ZWESIP00.

If there is an authorization problem, the message might include Permission Denied . For example:

Check that the user ID of the ZWESLSTC started task is authorized to access the load module. Only authorized

code can call ZWESIS01 because it is an APF-authorized load module.

Note: If you are using RACF security manager, a common reason for seeing Permission Denied is that the user

running the started task ZWESLSTC (typically ZWESVUSR) does not have READ access to the FACILITY class

ZWES.IS.

If the message includes the following text, the configuration of the Application Framework server may be

incomplete:

If you are using AT/TLS, then the components.app-server.agent.http.attls=true statement might be missing from

the server configuration file. For more information, see Configuring Zowe App Server for HTTPS communication with

ZSS.

Application Framework unable to communicate with zssServer

Follow these steps:

https://docs.zowe.org/stable/user-guide/configure-xmem-server
https://docs.zowe.org/stable/user-guide/configure-xmem-server
https://docs.zowe.org/stable/user-guide/mvd-configuration
https://docs.zowe.org/stable/user-guide/mvd-configuration

Open the log file zowe.logDirectory/appServer-yyyy-mm-dd-hh-ss.log . This file is created each time ZWESLSTC is

started and only the last five files are kept.

Look for the message that starts with GetAddrInfoReqWrap.onlookup and the log messages below.

These messages show that the host name localhost cannot be reached between the Zowe desktop server and the

zssServer because localhost has not been mapped to an IP address.

Map localhost to port 127.0.0.1.

Create an entry in the file /etc/hosts that contains the line

Restart the ZWESLSTC address space.

Slow performance of the VT terminal on SSH

Symptom:

When you try to use VT terminal on the Zowe Desktop to connect to the UNIX System Services through SSH, the VT

terminal on node v12 slows down. Then, the connection fails because the connecting process can run into the 3-minute

limit.

Solution:

To solve this issue, use Telnet through port 1023 to connect to the UNIX System Services.

Application Framework unable to communicate with API Mediation Layer

Follow these steps:

Verify whether API Mediation Layer is started or not. If it is started, you can see a service status page with all green

check marks by visiting https://<your-zowe-host>:<gateway-port> . If there are any red cross marks, follow the

instructions in Troubleshooting API ML to identify and solve the issue.

You may need to wait a little longer to allow API Mediation Layer Gateway to complete the environment test.

Server startup problem ret=1115

Symptom: When ZWESLSTC is restarted, the following message is returned in the output of the ZSS server log file,

zowe.logDirectory/zssServer-yyyy-mm-dd-hh-ss.log :

Solution: This message means that some other process is already listening on port 7542, either at address 127.0.0.1

(localhost) or at 0.0.0.0 (all addresses). This prevents the ZSS server from starting.

One possibility is that a previously running ZSS server did not shut down correctly, and either the operating system has

not released the socket after the ZSS server shut down, or the ZSS server is still running.

Server error EACCESS on z/os

Symptoms: When you see messages like this in the server logs:

https://docs.zowe.org/stable/troubleshoot/troubleshoot-apiml

It is a sign that a permission error is stopping Zowe servers from completing the action of binding to a TCP Port for

listening for client connections. This can manifest in the servers being inaccessible.

Network permissions control varies by OS, to resolve this we don't have a tip for users of containers, but for z/os, IBM

has a guide on access control, for more details check Port Statement

Also, there is a very important part troubleshooting step just for Zowe. When you are setting a PORT statement, you can

assign rules by jobname. When FACILITY resource BPX.JOBNAME is granted for the zowe STC user (recommended!) then

each server of zowe will have a different jobname. It will not be "ZWESLSTC" or "ZWESLSTC" as it would be when that

resource is not granted. They'll instead be other names that start with "ZWE".

Note: So, for a troubleshooting tip on the server error EACCESS on z/os, note that not only should an administrator

check their PORT statements, they should probably set their jobname in the port statements to ZWE since it will catch all

zowe components regardless of whether or not BPX.JOBNAME is granted.

Application plug-in not in Zowe Desktop

Symptom:

An application plug-in is not appearing in the Zowe Desktop.

Solution:

To check whether the plug-in loaded successfully, enter the following URL in a browser to display all successfully loaded

Zowe plug-ins:

https://my.mainframe.com:7556/plugins?type=application

You can also search the node server logs for the plug-in identifier, for example org.zowe.sample.app . If the plug-in

loaded successfully, you will find the following message:

If the plug-in did not load successfully, you will find the following message:

If the identifier is not in the logs, make sure the plug-in's locator file is in the /zlux-app-

server/deploy/instance/ZLUX/plugins/ directory. The plug-in locator is a .json file, usually with same name as the

identifier, for example org.zowe.sampleapp.json . Open the file and make sure that the path that is defined with the

pluginLocation attribute is correct. If the path is relative, make sure it is relative to the zlux-app-server/bin directory.

For more information on loading plug-ins to the Desktop, see Adding Your App to the Desktop.

Error: You must specify MVD_DESKTOP_DIR in your

environment

Symptom:

A plug-in that is built in your local environment using npm run start or npm run build failed with an error message

about a missing MVD_DESKTOP_DIR environment variable.

Solution:

Add the Zowe Desktop directory path to the MVD_DESKTOP_DIR environment variable. To specify the path, run the

following commands in your Windows console or Linux bash shell:

https://www.ibm.com/docs/en/zos/2.4.0?topic=control-controlling-access-particular-ports
https://docs.zowe.org/stable/troubleshoot/app-framework/app-mustgather
https://github.com/zowe/workshop-user-browser-app/blob/master/README.md

Windows

Mac Os/Linux

Error: Exception thrown when reading SAF keyring

{ZWED0148E}

Symptom: The error message indicates that Zowe's local certificate authority (local CA) ZoweCert , the certificate

jwtsecret , or the Zowe certificate localhost does not exist in the Zowe keyring. ZWED0148E contains the following

messages.

Solution:

Zowe's local CA certificate has its default name ZoweCert , and the Zowe Desktop hardcodes this certificate in the

configuration scripts.

If you are using your own trusted CA certificate in the keyring and the name is different from the default one, this error

will occur. To resolve the issue, you must match the names in the Zowe configuration. For more information, see

Configuring certificates overview.

If you are using Zowe's local CA certificate but it still reports ZWED0148E, you may find the following message in the

same log.

In this case, you must make sure that the label names exactly match the names in TSO when looking up the keyring you

own. Any difference in spaces, capitalization, or other places will cause the error.

Warning: Problem making eureka request { Error: connect

ECONNREFUSED }

Symptom: The Zowe started task ZWESLSTC log contains error messages reporting problems connecting

Solution:

You can ignore these messages. These messages are timing-related where different Eureka servers come up, try to

connect to each other, and warn that the endpoint they are trying to perform a handshake with is not available. When all

of the Eurka services have started, these errors will stop being logged.

Warning: Zowe extensions access to ZSS security endpoints

fail

Symptom:

Zowe extensions fail when accessing the ZSS APIs such as the security-mgmt/classes/default-class/profiles

endpoint. The following error is written to the log.

Solution:

Access to the ZSS endpoints are protected. To access the ZSS endpoints, the user must have READ access on the

OMVSAPPL resource in the APPL class.

https://docs.zowe.org/stable/user-guide/configure-certificates

To fix this permit access, issue the following TSO command, where userID is the started task ID of the requesting

process. The vendor documentation describes which userID to use which might be ZWESVUSR .

Fail when launching MVS, USS, and JES Explorers

Symptoms:

An error occurs when launching specific Zowe Desktop application plug-ins:

MVS Explorer throws the following error:

Fetch for Datasets failed

USS Explorer throws the following error:

Fetch children failed for <USS directory>

JES Explorer fails to load and displays an infinite loop.

Solution:

One possible cause of these errors in when SAF is the authentication provider. Check to verify that z/OSMF is set as the

authentication provider:

components.gateway.apiml.security.auth.provider: zosmf

Version: v3.3.x LTS

Gathering information to troubleshoot Zowe

Application Framework

If you need to contact a support group for Zowe, they will likely need a variety of information from you to help you. This

page details a list of items you should gather to the best of your ability to provide to your support group. You may also

find this list useful for independent troubleshooting.

Basic information

Please review the list of information needed for general server support.

Javascript console output

When the web UI such as the Zowe Desktop or Apps inside it have an issue, the root problem may originate from either

server-side or browser-side behavior. In addition to the server logs, the browser logs should be gathered. They can be

accessed by opening a browser's web developer toolkit. Most browsers allow this via pressing F12.

Read more about it here.

https://docs.zowe.org/stable/troubleshoot/servers/must-gather
https://developers.google.com/web/tools/chrome-devtools/open

Version: v3.3.x LTS

Raising a Zowe Application Framework issue on

GitHub

When necessary, you can raise GitHub issues against the Zowe™ zlux core repository here. This issue tracker is for the

Desktop, the apps, and the app-server component. It is suggested that you use the template that best matches what

you want to talk about.

If you need to open an issue about configmgr, ZSS, or ZIS you should instead open a ticket at the zss repository here

If you have a general server install & configuration issue, you should instead open a ticket in the community repository

here

https://github.com/zowe/zlux/issues
https://github.com/zowe/zss/issues
https://github.com/zowe/community/issues

Version: v3.3.x LTS

Enabling tracing

If you need to provide support with tracing information about the App Framework or a particular part of it, or need to

debug a program you are developing that uses the App Framework, you can enable a variety of tracing within the Zowe

YAML configuration file.

If you are looking for basic troubleshooting and support, please see Gathering Information for Support or

Troubleshooting.

Basic debugging

Within the Zowe YAML file, the value components.app-server.debug can be set to true to turn on several debug

loggers.

This does not turn on every type of debugging but provides a basic set for debugging for the App Server.

Enabling components.app-server.debug is equivalent to setting:

Advanced debugging for App Server

The Zowe YAML file section components.app-server.logLevels controls the verbosity for every logger within the server.

This includes core loggers, prefixed with _zsf , as well as plug-in loggers.

A list of core loggers and their purpose is defined within the App Server schema Loggers, plug-in loggers, and log levels

(such as 5 for highest debugging, or 2 for default) are defined in detail in the Logging document.

Attributes within components.app-server.logLevels can be exact names of loggers, or can be pattern matching of

multiple loggers.

For example, to enable minimum debug verbosity of the auth logger of the server core ("_zsf.auth"), and to enable

maximum verbosity logging of all plug-ins made by company foo ("com.foo"), you could set the YAML configuration as:

Advanced debugging for ZSS

The Zowe YAML file section components.zss.logLevels controls the verbosity for every logger within the server.

This includes core loggers, prefixed with _zss .

A list of core loggers and their purpose is defined within the ZSS schema.

Unlike the App Server, the components.zss.logLevels section cannot take pattern matching for attribute names. The

attribute names must exactly match the name of a logger.

https://docs.zowe.org/stable/troubleshoot/servers/must-gather
https://docs.zowe.org/stable/troubleshoot/servers/must-gather
https://github.com/zowe/zlux-app-server/blob/c22105381e129bd999c47e838b424679eba26aa6/schemas/app-server-config.json#L401
https://docs.zowe.org/stable/extend/extend-desktop/mvd-logutility
https://github.com/zowe/zss/blob/c85e374f3d7a4a9b93d6f8337d474f384135744b/schemas/zss-config.json#L235

Version: v3.3.x LTS

App-server Return Codes

If the app-server abnormally ends with a return code, this may originate from the app-server itself or from the programs

involved in starting the server. Return codes from the startup process are documented here, while the app-server

specific codes are listed below.

Return

code
Explanation

2 Generic cause, check logs for more information.

3

Insufficient authentication configuration. The server found no authentication plugins, or all of the plugins

found failed to load, or no plugins were found for the specific default auth type requested, or the entire

auth configuration was missing. More specific error messages will be found in the logs.

4
The server encountered an error when reading the PFX file requested in the HTTPS configuration.

ZWED0070W in the logs will explain the error in more detail.

5
The server could not establish networking for one of several possible reasons, and a ZWED error

message in the logs will explain the error in more detail.

7
The configuration requested loading a z/OS keyring when not running on z/OS. The error ZWED0145E is

also logged.

https://docs.zowe.org/stable/troubleshoot/servers/return-codes

Version: v3.3.x LTS

App-server Error Message Codes

The following error message codes may appear on the app-server log. Use the following message code references and

the corresponding reasons and actions to help troubleshoot issues.

App-server informational messages

ZWED0020I

Registering at discoveryUrl

Reason:

The app-server is registering its existence to the API ML discovery server, because components.app-

server.node.mediationLayer.enabled=true is set in the zowe configuration.

Action:

No action required.

ZWED0021I

Eureka Client Registered from ipAddress. Available at discoveryUrl.

Reason:

The registration attempt from ZWED0020I has succeeded. The server is known to the API ML discovery server from the

address ipAddress.

Action:

No action required.

ZWED0022I

Fork worker workerId

Reason:

A new app-server worker process is starting. Workers are redundant execution contexts of the server and increase

throughput and latency of requests when the server has a lot of concurrent client requests. Workers are started and

stopped according to current server load and the minimum and maximum worker limits defined in environment variables

ZLUX_MIN_WORKERS and ZLUX_MAX_WORKERS.

Action:

No action required.

ZWED0023I

Restart worker workerId

Reason:

An existing app-server worker process has exited with a status code that indicates it should be restarted rather than

permenantly stopped.

Action:

Review the preceeding log messages as worker restart may be due to a caught error.

ZWED0024I

Keys=workerIds

Reason:

The server lists the worker IDs right before all workers are about to be reloaded.

Action:

No action required.

ZWED0025I

Killing worker pid=processId

Reason:

The server just issued the SIGTERM unix signal to the worker with the process ID listed. This is an expected action when

reloading all workers of the server.

Action:

No action required.

ZWED0026I

Fork quantity workers.

Reason:

The server is starting up quantity new workers. Workers are redundant execution contexts of the server and increase

throughput and latency of requests when the server has a lot of concurrent client requests. This message appears at

startup and the quantity is determined by the environment variables ZLUX_MIN_WORKERS and ZLUX_MAX_WORKERS.

Action:

No action required.

ZWED0027I

Close worker workerId

Reason:

The server is removing an existing worker due to lack of recent client activity. Workers are added and removed according

to average load of the server. Workers are redundant execution contexts of the server and increase throughput and

latency of requests when the server has a lot of concurrent client requests. Workers may be removed down to the

minimum count as defined by the environment variable ZLUX_MIN_WORKERS.

Action:

No action required.

ZWED0028I

Master processId is running.

Reason:

The server has started up and is printing its unix process ID in case the user needs to know for analysis or

troubleshooting.

Action:

No action required.

ZWED0029I

Worker workerId pid processId

Reason:

A worker has started and is listing its ID and unix process ID in case the user needs to know for analysis or

troubleshooting.

Action:

No action required.

ZWED0031I

Server is ready at ipAddress, Plugins successfully loaded: percentage% (successful/total)

Reason:

The server is ready to accept client requests. It can be found at the ipAddress listed, and you can tell if it has loaded all

plugins successfully by the percentage listed.

Action:

If the percentage is less than expected, review the log for messages with IDs ZWED0159W or ZWED0027W. Those

messages will tell you which plugins failed, and you can search for their plugin ID within the log to find out the reason

they failed to load.

ZWED0033I

The http port given to the APIML is: tcpPort The https port given to the APIML is: tcpPort The zlux-apiml config are:

jsonConfig

Reason:

The server lists the properties that will be used to connect to the APIML Discovery server to help with troubleshooting.

Action:

No action required.

ZWED0036I

Plugin pluginId will serve static files from filePath

Reason:

The plugin pluginId was loaded which has a webContent section defined in its pluginDefinition.json file. The server will

serve the read-only content from the filePath.

Action:

No action required.

ZWED0037I

pluginId: found proxied service serviceName

Reason:

When the server was loading the plugin pluginId, it found that the plugin contains a service named serviceName of type

"service".

Action:

No action required.

ZWED0038I

pluginId: importing service sourceServiceName from sourcePluginId as serviceName

Reason:

When the server was loading the plugin pluginId, it found that the plugin contains a service named serviceName of type

"import". It then resolved the import to the service sourceServiceName from plugin sourcePluginId.

Action:

No action required.

ZWED0039I

pluginId: found router serviceName

Reason:

When the server was loading the plugin pluginId, it found that the plugin contains a service named serviceName of type

"router".

Action:

No action required.

ZWED0040I

pluginId: found legacy node service serviceName

Reason:

When the server was loading the plugin pluginId, it found that the plugin contains a service named serviceName of type

"nodeService".

Action:

This type of service is deprecated and may not work on a future version of Zowe, so you should consider getting an

upgraded version of the plugin that instead uses a service of an undeprecated type.

ZWED0041I

pluginId: found external service serviceName

Reason:

When the server was loading the plugin pluginId, it found that the plugin contains a service named serviceName of type

"external".

Action:

No action required.

ZWED0042I

pluginId: found serviceType service serviceName

Reason:

When the server was loading the plugin pluginId, it found that the plugin contains a service named serviceName of type

"serviceType".

Action:

No action required.

ZWED0043I

Plugin pluginId is not requested skipping without error

Reason:

When the server was loading the "nodeAuthentication" type plugin pluginId, it determined that the plugin only handles

security actions for a category that was not requested by the server configuration or any plugins. The plugin was

skipped because it was not required.

Action:

No action required unless you need the plugin to be used. If you need the plugin, you can set an authentication category

it implements as the default by configuration property components.app-

server.dataserviceAuthentication.defaultAuthentication , or within a plugin's security configuration.

ZWED0044I

Processing plugin reference filePath...

Reason:

The server is checking if the plugin definition file filePath exists and will attempt to load it.

Action:

No action required.

ZWED0045I

Reading plugins dir pluginsDirectory

Reason:

The server is scanning the directory pluginsDirectory as specified by the server configuration property components.app-

server.pluginsDir so that it can locate each plugin in the instance.

Action:

No action required.

ZWED0046I

Adding dynamic plugin pluginIdentifier

Reason:

The server has added the plugin with pluginIdentifier to its bootstrapped list of plugins. It also emits a pluginAdded

event.

Action:

No action required. If you need it, you may check the list of plugins on the Desktop to see if the plugin was added

successfully.

ZWED0047I

Reason:

A child process from path has received data of data - usually done interally by ProcessManager.

Action:

No action required.

ZWED0048I

[Path= path] exited, code: code

Reason:

A process from path has exited with a return code.

Action:

No action required.

ZWED0049I

Stopping managers

Reason:

Begins ending all child processes.

Action:

No action required.

ZWED0050I

Server shutting down, received signal=signal

Reason:

Tells server to shutdown after receiving signal by ending all child processes and then performing cleanup.

Action:

No action required.

ZWED0052I

Deleting plugin due to request, id pluginIdentifier, path path

Reason:

Notifies that the server is removing a plugin with pluginIdentifier located in path.

Action:

No action required. Optionally, you could verify that the plugin was deleted using following options:

doing a GET call to the list of the plugins, OR

viewing the status code of the REST request if plugin was deleted by the network request.

ZWED0053I

Setting up type proxy (pluginIdentifier:serviceName) to destination=destination

Reason:

Making an external proxy of type (HTTP or HTTPS) for pluginIdentifier:serviceName at the destination.

Action:

No action required.

ZWED0054I

Installing root service at url

Reason:

Attempting to install new root service at url.

Action:

No action required.

ZWED0055I

Installing root service proxy at url

Reason:

Attempting to install new root service proxy at url.

Action:

No action required.

ZWED0056I

pluginIdentifier: installing websocket service

Reason:

Attempting to install new websocket service for pluginIdentifier.

Action:

No action required.

ZWED0059I

Found connection info for pluginIdentifier:service=info

Reason:

Connection info for pluginIdentifier:service was found as info.

Action:

No action required.

ZWED0062I

pluginIdentifier: installing router at url

Reason:

For pluginIdentifier, the server is installing new router at url.

Action:

No action required.

ZWED0064I

pluginIdentifier: installing import sourcePlugin:name at url

Reason:

For pluginIdentifier, the server is instaling import from sourcePlugin with name at url.

Action:

No action required.

ZWED0066I

pluginIdentifier: serving static files at url

Reason:

For pluginIdentifier, the server is serving static files and assets at url.

Action:

No action required.

ZWED0067I

pluginIdentifier: serving library files at url

Reason:

For pluginIdentifier, the server is serving libary files at url.

Action:

No action required.

ZWED0070I

User=user (pluginId): Session authCapability successful. Plugin response: httpResponse

Reason:

An authentication plugin ran successfully and received a valid HTTP response.

Action:

No action required.

ZWED0072I

Using Certificate: stringArray

Reason:

The app server has successfully loaded a certificate and added it to the certificates array.

Action:

No action required.

ZWED0086I

tomcatPID closed, code=returnCode

Reason:

A running tomcat process with PID tomcatPID was cloesd.

Action:

Refer to return code.

ZWED0087I

tomcatPID exited, code=returnCode

Reason:

A running tomcat process with PID tomcatPID was exited.

Action:

Refer to return code.

ZWED0090I

tomcatPID closed, code=returnCode

Reason:

A running tomcat process with PID tomcatPID was cloesd.

Action:

Refer to return code.

ZWED0091I

tomcatPID exited, code=returnCode

Reason:

A running tomcat process with PID tomcatPID was exited.

Action:

Refer to return code.

ZWED0092I

Tomcat Manager ID=manager id stopping

Reason:

It specifies that Apache Tomcat Host Manager is stopping manager id.

Action:

No action required.

ZWED0093I

Tomcat Manager ID=manager id cleanup successful

Reason:

It specifies that Apache Tomcat Host Manager successfully cleaned up the manager id.

Action:

No action required.

ZWED0094I

Extracted war to destination path

Reason:

It specifies that it extracted the WAR directory successfully to the destination path.

Action:

No action required.

ZWED0095I

Making junction from extracted war to appbase

Reason:

A junction link is a sort of subset or a variation of a symbolic link. It creates a junction link between extracted war

directory to appbase directory.

Action:

No action required.

ZWED0096I

Making symlink from extracted war to appbase

Reason:

It creates a symbolic link between extracted war directory to appbase directory.

Action:

No action required.

ZWED0109I

Registering App (ID=plugin identifier) with App Server

Reason: The registration attempt from ZWED0109I has succeeded. Before the server starts, it registers all the plugin

identifier with the App server and installs them.

Action:

No action required.

ZWED0110I

App plugin identifier installed to appdir and registered with App Server

Reason:

App plugin identifier installed to appdir and registered with App Server successfully.

Action:

No action required.

ZWED0111I

Authentication plugin plugin identifier added to category authentication category

Reason:

Auth plugin plugin identifier is being registered as a part of authentication category.

Action:

No action required.

ZWED0112I

Auth enabled=false. Auth passthrough.

Reason:

This message alerts you whenever an authentication handler is requested but the dataservice has authentication

disabled via configuration. This is not the default behavior of Zowe but a user may have configured it for a dataservice

or a plugin may have shipped with this configuration.

Action:

Review dataservice configuration to determine if this is intentional and desired. Some dataservices do not require

authentication, while others should have it.

ZWED0114I

Adding plugin remotely

Reason:

A new plugin is detected and is being added.

Action:

No action required.

ZWED0115I

Skip child processes spawning on worker workerId childProcessPath

Reason: The process listed as childProcessPath was not spawned under the specified worker because it was listed as

being a process that should only be started once. Some child processes should be started per-worker for redundancy,

while others that need exclusive access to a resource such as a network port are specified with the property

childProcess.once, and are skipped on all but one worker. The other workers print this message to indicate this behavior.

Action:

No action required.

ZWED0116I

The LOCATIONS are serverModuleLocation and clientModuleLocation

Reason:

The server has set the location serverModuleLocation and clientModuleLocation.

Action:

No action required.

ZWED0117I

The fileLocation is lib

Reason:

Location of files will be in lib directory.

Action:

No action required.

ZWED0118I

The NODE_PATH is NODE_PATH from environment variable.

Reason: The server recognizes the location of Node as NODE_PATH from environment variable.

Action:

No action required.

ZWED0119I

Plugin plugin identifier will serve library data from directory dir location

Reason:

For plugins with type 'library', plugin plugin identifier has been registered and will be serving library data from dir

location

Action:

No action required.

ZWED0120I

Auth plugin plugin identifier: loading auth handler module app server

Reason: An auth category was requested as the default in the server configuration, or requested by a particular plugin,

and because the auth plugin pluginId handles this category, it is being loaded by the app-server.

Action:

No action required.

ZWED0124I

Plugin plugin identifier at path=plugin location loaded.

Reason: All the plugin identifier will be loaded at plugins directory at path. Plugins will be available in plugin location.

Action:

No action required.

ZWED0125I

Plugin plugin identifier not loaded

Reason: A plugin object was not returned in the makePlugin() call of the app-server, and therefore the app-server did

not load this plugin. The plugin will not be available in the server.

Action:

Check the log for references to pluginId to see other messages that indicate the cause

ZWED0129I

(HTTP or HTTPS) Listening on ip address:port

Reason: type (HTTP or HTTPS) Listening on ip address:port.

Action:

No action required.

ZWED0130I

(HTTP or HTTPS) About to start listening on app-server port

Reason: About to start listening on app-server port.

Action:

No action required.

ZWED0154I

Following link: dependency: dependency importer

Reason:

Following the link formed by the dependency and the dependency importer in the graph.

Action:

No action required.

ZWED0158I

*** pluginsSorted:

Reason:

The graph with the sorted plugins.

Action:

No action required.

ZWED0159E

*** rejects:

Reason:

Removing the plugins with the broken dependencies from the graph.

Action:

No action required.

ZWED0160I

Dep.valid:

Reason:

Checking if the dependency is valid.

Action:

No action required.

ZWED0205I

User=user (pluginId): User logout

Reason:

This message prints when the user logs out of the Zowe Desktop. Logout is being handled by the pluginId plugin.

Action:

If logout was intentional, message can be safely ignored. If logout was unintentional, keep in mind the Desktop logs out

after inactivity. Incorrect logout behavior can be troubleshooted with the authentication plugin.

ZWED0211I

The number of processors is: count

Reason:

Lists the count of CPU cores on the system hosting the App server.

Action:

No action required.

ZWED0212I

Environmental variable ZLUX_MIN_WORKERS was not a valid number therefore count will be used as the minimum

workers

Reason:

ZLUX_MIN_WORKERS environment variable is not valid, so the minimum number of workers as part of the cluster will be

count

Action:

By default, the App server runs in a cluster. You can specify minimum number of cluster workers.

ZWED0213I

Environmental variable ZLUX_MAX_WORKERS was not a valid number therefore count will be used as the maximum

workers.

Reason:

ZLUX_MAX_WORKERS environment variable is not valid, so the maximum number of workers as part of the cluster will be

count.

Action:

By default, the App server runs in a cluster. You can specify maximum number of cluster workers.

ZWED0214I

Read directory: found plugin id = identifier, type = type

Reason:

Reading in directory, found a plugin with identifier of type

Action:

No action required.

ZWED0287I

JarMgr with id=id invoked to startup with config=object

Reason:

JarManager id has been started with the configuration object

Action:

No action required.

ZWED0290I

Plugin (pluginId) loaded. Version: pluginVersion. Successful: overallSuccess% (pluginsLoaded/pluginsTotal) Attempted:

pluginsAttempted% (attemptedCount/pluginsTotal)

Reason:

Plugin with pluginId loaded, with version pluginVersion. The server attempted to load a total of pluginsTotal with

pluginsLoaded plugins already successfully loaded.

Action:

No action Required.

ZWED0292I

Plugin identifier loaded. Version: pluginVersion.

Reason:

Plugin identifier loaded successfully and the plugin version for the same is pluginVersion.

Action:

No action Required.

ZWED0294I

Successfully loaded recognizers length recognizers for appId into config

Reason:

Successfully loaded recognizers length for appId into config at path workspace/app-

server/ZLUX/pluginStorage/org.zowe.zlux.ng2desktop/.

Action:

No action Required.

ZWED0295I

Successfully loaded actions length actions for appId into config

Reason:

Successfully loaded actions length for appId into config at path workspace/app-

server/ZLUX/pluginStorage/org.zowe.zlux.ng2desktop/.

Action:

No action required.

ZWED0299I

Loading remote iframe app plugin_identifier located at remoteUrl.

Reason:

Loading remote iframe app plugin_identifier which is located at remoteUrl.

Action:

No action Required.

ZWED0300I

APIML Storage configured

Reason:

caching service/APML storage is configured

Action:

No action Required.

ZWED0301I

Found pre-existing recognizers/pre-existing actions in config for appID.

Reason:

Get pre-existing recognizers/pre-existing actions in config, if any for appID.

Action:

No action Required.

ZWED0302I

HA mode is enabled/disabled.

Reason:

High Availability mode is enabled/disabled.

Action:

No action Required.

App-server warning messages

ZWED0004W

Tomcat for ID=id not starting, no services succeeded loading

Reason:

A tomcat instance required for loading a set of java dataservices could not start, so none of the associated dataservices

will be available either.

Action:

Review prior logs to determine the reason the tomcat server is not starting, and address the problem before restarting

Zowe in order to access the missing dataservices.

ZWED0006W

RBAC is disabled in the configuration. All authenticated users will have access to all services. Enable RBAC in the

configuration to control users' access to individual services.

Reason:

RBAC can be used to permit and reject access to each URL of the app-server individually according to security rules such

as those from SAF resources. Enabling RBAC is beneficial but requires configuration first so this message is often seen.

Action:

If you wish to learn more about RBAC and enable it, read Application Framework Advanced Configuration

ZWED0007W

Dataservice authentication definition is not present in server configuration file, or malformed. Correct the configuration

file before restarting the server.

Reason:

The components.app-server.dataserviceAuthentication configuration section is missing or invalid, so the server

cannot continue until it is fixed. Authentication plugins for dataservices are described here

Action:

Correct your zowe configuration for this section according to the app-server schema

https://docs.zowe.org/stable/user-guide/mvd-configuration#controlling-access-to-apps
https://docs.zowe.org/stable/extend/extend-desktop/mvd-auth-plugins/
https://github.com/zowe/zlux-app-server/blob/v2.x/master/schemas/app-server-config.json

ZWED0008W

Error loading auth plugin pluginIdentifier: error

Reason:

The plugin could not be loaded due to an error. This plugin may be required for the server to continue, but if it is non-

essential then the server will continue to run without the ability to perform authentication against that particular plugin.

Action:

Review the error to determine the way to fix the plugin before restarting Zowe.

ZWED0013W

Initializing was not complete for worker workerId

Reason:

A cluster mode worker exited before it fully initialized. Another worker will be started soon to attempt again.

Action:

If this continues to happen, you should contact support.

ZWED0014W

Error adding plugin: error

Reason:

A dynamic plugin, or a plugin added post-startup was unable to be added to the server. The server continues to run, but

this plugin was not added.

Action:

Check the error and lines above in the log to determine the reason for the failure.

ZWED0015W

Error reloading workers: error

Reason:

The server was attempting to reload all workers, probably to complete a configuration change. An error occurred instead

so some of the workers may not have been reloaded and could contain the old configuration.

Action:

If you were doing a configuration change, you should try again or restart the server if the error persists. You can check

the error to see the reason for the issue.

ZWED0016W

Error setting override: error

Reason:

The server attempted to load a new configuration, but failed when writing the configuration update to a file.

Action:

Check the error to see the possible cause for the failure. Retry this operation but if the issue persists you should restart

the server.

ZWED0017W

Duplicate plugin identifier pluginId found.

Reason:

A plugin was trying to be added to the server but it wasn't possible because another plugin with the same ID was

already running within the server.

Action:

Plugin upgrades cannot be done through the add plugin operation. Instead, the server should be stopped to perform this

upgrade.

ZWED0018W

Could not initialize Java manager. Java services from Apps will not be able to load stackTrace

Reason:

The Java manager is used to run Java services bundled into plugins. It could not start, so the server cannot load any Java

services. Plugins that have Java services may fail to load, but the server will still run with the remaining plugins.

Action:

Check the stackTrace output to determine the reason the Java manager could not run.

ZWED0019W

Exception when setting log level for ID=logId. E: stackTrace

Reason:

Log levels listed in the configuration file are set during startup. For some reason, the level for logId could not be set, but

the server will continue to run with that logger set to default verbosity.

Action:

Check the stackTrace to determine the reason why logId could not be set. Potentially the log id was an invalid name, or

the log level was an invalid number.

ZWED0020W

Could not spawn childProcess: errorMessage

Reason:

The child process that was requested to run when the server started up could not run for some reason. childProcess lists

the parameters requested to start the process.

Action:

Check the errorMessage to determine the reason of failure, and also verify that the information in childProcess is valid.

ZWED0021W

Missing one or more parameters required to run. The server requires either HTTP or HTTPS. HTTP Port given: httpPort.

HTTPS Port given: httpsPort HTTPS requires either a PFX file or Key & Certificate files. Given PFX: pfx Given Key: key

Given Certificate: certificate config was: configuration All but host server and config file parameters should be defined

within the config file in JSON format.

Reason:

The server could not start because the configuration was not valid. When the server's HTTPS section is specified,

httpsPort must be a valid TCP port number and you must have a key and certificate. If the HTTPS section is not specified,

the HTTP section must be specified and httpPort must be a valid TCP port number.

Action:

Review the configuration to see if there are corrections to be made before restarting the server.

ZWED0027W

Plugin (pluginId) loading failed. Version: versionNumber. Message: "errorMessage" Successful: percentSuccess%

(pluginsLoaded/pluginsTotal) Attempted: percentAttempted% (pluginsAttempted/pluginsTotal)

Reason:

An error prevented the plugin pluginId from loading. Other plugins will still be attempted to be loaded, until

percentAttempted reaches 100%. The server will run if all auth plugins needed have successfully loaded.

Action:

Review errorMessage to see if there is something you can do to fix the error. You may need to contact the plugin

developer to find a solution. If you do not need this plugin, it is OK to continue.

ZWED0028W

Encountered parse exception while reading filename

Reason:

The server cannot read the JSON file filename. This might be a configuration file or a plugin file. In either case, the server

may not be able to run or may run with less plugins than desired.

Action:

Review the file listed in filename. Check if it is in the right encoding for your platform. Tagging the file according to its

encoding is recommended for z/OS. Also check if the file is valid JSON. The file may have a missing or extra comma, or

missing quotes or brackets.

ZWED0029W

Authentication plugin was found which was not requested in the server configuration file's dataserviceAuthentication

object. Skipping load of this plugin

Reason:

The server will attempt to load every plugin given to it in the plugins directory. Authentication plugins are only needed if

a plugin requests them or it implements the default authentication category. Because the server did not find a user of

this plugin, it was not loaded.

Action:

No action is needed unless you believe that this plugin needed to be loaded. If so, check for plugins that require it to

determine if there is missing or incorrect auth configuration.

ZWED0030W

location points to an invalid plugin definition, skipping

Reason:

The file specified at location is not valid according to the pluginDefinition schema, so it cannot be loaded. The server will

still start without the plugin if possible.

Action:

Correct the pluginDefinition.json file of the plugin to load the plugin on next server restart, or remove the plugin if not

needed.

ZWED0032W

Failed to load filename

Reason:

The plugin definition located at filename could not be read, so the plugin that referred to this cannot be loaded. The

server may still run without the plugin if possible.

Action:

Check if the file exists and is readable to the user that is running the server. Also check that the file is in the right

encoding for the OS the app-server is running on. On z/OS, it is recommended to have the file encoding tagged.

https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/plugindefinition-schema.json

ZWED0033W

Could not initialize plugin pluginId: error

Reason:

The plugin pluginId could not be loaded. This may be due to unsatisfied imports, where an import requested a version of

something that was not available, or an entire plugin was not available. The server will still attempt to load if this plugin

was not needed.

Action:

Check the error message to determine the cause of error for correction.

ZWED0034W

Skipping install of plugin due to existing plugin with same id=identifier

Reason:

The plugin could not be loaded due to a plugin that is already loaded containing the same identifier ID. Plugin IDs are

unique, so the first plugin with that ID that is seen is the one that is loaded.

Action:

Check to see if you have 2 extensions that contain plugins with the same ID. Alternatively, an extension may have

updated to have its name change without its ID changing, causing a duplicate to appear. You may need to clean up your

extensions or the contents of the pluginsDir directory.

ZWED0035W

Error thrown when installing plugin=identifier: error

Reason:

The plugin with id identifier could not be added to the server because of an error that occurred. The server will still

attempt to run without the plugin if possible.

Action:

Check the error message to see the reason for the error, and correct it before restarting the server in order to try loading

the plugin again.

ZWED0036W

Uncaught exception found. Error: stackTrace

Reason:

The server encountered an unexpected error. If cluster mode is running, this will result in the worker crashing but the

cluster starting a new worker to replace it. The client that initiated the request will need to retry the operation though

other clients should not experience disruption.

If cluster mode is not running, the process will end but the launcher will restart it. In this case, state may be lost unless

the caching service was also being used.

Action:

The stackTrace should be sent to developers so that the issue can be fixed.

ZWED0037W

Ending server process due to uncaught exception.

Reason:

The server is stopping after encountering ZWED00036W.

Action:

The information within ZWED0036W should be sent to developers so that the issue can be fixed.

ZWED0038W

Reason:

A child process with path childProcessConfig.path encountered an error with receiving data.

Action:

Action depends on context of what data is. May be useful in debugging an issue with internal ProcessManager.

ZWED0039W

Exception at server cleanup function: stack

Reason:

An exception occurred when ending process, during the cleanup phase.

Action:

No action is needed, but stack can be sent to developers if server processes are failing to end.

ZWED0040W

Callservice: Service call to %s:%s%s failed.

Reason:

An HTTP request to host with port at path failed.

Action:

Check the subsequent error message to see why it failed or Network log, if request originated from the browser.

ZWED0041W

[Proxy URL: urlPrefix] Exception caught. Message=message

Reason:

For urlPrefix proxy, an exception was caught with content message

Action:

No action needed usually, but message may be needed for debugging

ZWED0042W

Stack trace follows stack

Reason:

For the exception from ZWED0041W, a stack trace is printed

Action:

No action needed usually, but stack may be needed for debugging

ZWED0043W

[Proxy URL: urlPrefix] proxyWS error: error

Reason:

Proxy worker encountered an error

Action:

No action needed usually except, debugging of the error.

ZWED0044W

[Proxy URL: urlPrefix] WS error: error

Reason:

Worker encountered an error

Action:

No action needed usually except, debugging of the error.

ZWED0045W

Failed to reach the auth services host for address host:port

Reason:

Client encountered error when trying to connect to an agent host:port

Action:

This usually means your agent (for example: ZSS) is unreachable or your configuration is pointing to an incorrect agent

ZWED0046W

The auth services host system was not specified at startup, and defaulted to 127.0.0.1. Verify that the auth services

server is running, or specify at startup the remote host and port to connect to. See documentation for details.

Reason:

Client encountered an error when trying to connect to the agent from ZWED0045W

Action:

See ZWED0045W

ZWED0048W

Invalid Swagger from file for service (plugin identifier:service name)

Reason:

N/A

Action:

Check validity of Swagger file

ZWED0049W"

error message stack

Reason:

Prints the error message and stack from ZWED0048W

Action:

See ZWED0048W

ZWED0051W

Failed to parse translation file path. File skipped

Reason:

Failed to parse the file path as a valid translation file, most likely because it's not valid JSON

Action:

Check if the translation file is valid JSON and matches the structure of core translation files (i.e. Sample Apps)

ZWED0052W

Error when reading file=path. Error=message

Reason:

Failed to read certificates or keys path with a returned message

Action:

Review content of message and correct

ZWED0053W

Event handler failed: error

Reason:

An asynchronous event listener handler failed

Action:

This isn't part of normal operation, if it causes issue, error and any relevant context should be sent to developers

ZWED0054W

Skipping invalid listener address=hostname

Reason:

hostname was deemed invalid when attempting a DNS lookup to find IP address

Action:

Compare with your configuration to see where the invalid hostname is being picked up

ZWED0055W

Skipping invalid listener address=hostname

Reason:

hostname is not a valid string

Action:

Compare with your configuration to see where the invalid hostname is being referenced

ZWED0056W

Couldn't process address as IP

Reason:

The address was not pointing a valid IP address by the ipaddr utility

Action:

Compare with your configuration to see where the invalid address is being referenced

ZWED0057W

Loopback calls: localhost equivalent address not found in the list listenerAddresses. Using first address address; Verify

firewall will allow this.

Reason:

Unable to find a localhost equivalent from the listenerAddresses list so the server considers the first address in the loop

by default.

Action:

Verify if this is the intended configuration (edit/define components.app-server.node.https.ipAddresses) or check Zowe

documentation.

ZWED0058W

Log location for logger 'identifier:serviceDefinitionName' is undefined

Reason:

Log location isn't being specified for this dataservice.

Action:

Check dataservice plugin definition to see if log location is being specified.

ZWED0059W

Failed to add the plugin: errorMessage

Reason:

Using the /plugins API to add a plugin, has failed

Action:

Review errorMessage for explanation

ZWED0060W

errorMessage

Reason:

Invalid JSON

Action:

Review errorMessage

ZWED0061W

Callservice: Service call failed.

Reason:

A network request to this service failed.

Action:

Check Network log and review the error.

ZWED0062W

[Service URL: url] Exception caught. Message=errorMessage

Reason:

An error occurred calling url with reason errorMessage

Action:

Review correctness of url and review errorMessage

ZWED0063W

Stack trace follows stackTrace

Reason:

This exception originates from the web socket and the stack trace message handles the generated exception. The stack

trace for an exception helps in understanding the error and what went wrong with the code.

Action:

No action needed unless user is experiencing an interruption in the server service, then send the stack to developers.

ZWED0064W

plugin.identifier: Invalid method method

Reason:

It will throw the warning if method is invalid (different from these methods: get|post|put|delete|ws)

Action:

Review the warning message and use correct method.

ZWED0065W

Library plugin plugin.identifier is missing libraryVersion attribute for hosting files. Skipping file hosting.

Reason:

Library plugin's plugin definition is missing the library version attribute.

Action:

Add the correct library version in the plugin definition.

ZWED0066W

pluginID: getCapabilities() is not a function

Reason:

The handler for plugin pluginID does not have a getCapabilities() method

Action:

No action required. If your desired authentication plugin isn't successfully authenticating a login, please send the log and

any relevant info to the developers.

ZWED0068W

Failed to set proxy authorizations. Error=errorMessage

Reason:

Failed to add proxy authorization with reason errorMessage.

Action:

No action required. If your desired authentication plugin isn't successfully authenticating a login, please send the log and

any relevant info to the developers.

ZWED0069W

Returning null for cipher array because input had non-string:

Reason:

Returns null for cipher array if an array element is not a string type.

Action:

Please verify, if any custom cyphers present, that all cyphers are of type string.

ZWED0070W

Error when reading PFX. The server cannot continue. Error=errorMessage

Reason:

If we get an error while reading config.https.pfx file then the server cannot continue and throws errorMessage.

Action:

No action is needed, but the errorMessage may be needed to debug

ZWED0071W

Unexpected error on server ipAddress:port. E=errorMessage. Stack trace follows. stack

Reason:

When we get an unexpected (anything except EACCES, EADDRINUSE, ENOTFOUND, EADDRNOTAVAIL) error in the web

server for ipAddress:port.

Action:

No action needed unless user is experiencing an interruption in server, then send error message and stack to developers

ZWED0072W

Could not stop manager due to error errorMessage

Reason:

If the server manager is unable to stop due to any reason it will throw an exception with an errorMessage.

Action:

If the Java manager (handles Jar and War) is unable to stop all servers, send errorMessage to developers

ZWED0073W

No server returned for group=group

Reason:

If No server was found in this War group then it will throw this warning message.

Action:

No action is required

ZWED0074W

Unknown default behavior=defaultBehavior

Reason:

The default grouping behaviour in the config for this War is not of type 'microservice' or 'appserver'

Action:

No action is needed, but the warning may be needed to debug

ZWED0075W

Services in plugin=plugin war grouping skipped. Plugin missing or already grouped

Reason:

Server was not created for plugin War grouping, because it was already made or plugin is missing.

Action:

No action is needed

ZWED0076W

Skipping invalid plugin group=plugins

Reason:

If plugins is not an array and the size is less than zero, then it will log a warning message.

Action:

Make sure plugins should be an array of size greater than zero.

ZWED0077W

Could not extract war for service=key-value, error=errorMessage

Reason:

If the service with the key-value pair is unable to extract the war file then it throws the errorMessage

Action:

Check if the war file exists and configured correctly.

ZWED0078W

Could not access files to determine status for service=key-value, error=errorMessage

Reason:

If we are unable to get the status of war extracted or not, then it throws errorMessage in catch block.

Action:

Check if the war file exists.

ZWED0079W

Cannot add servlet for service=key-value, error=errorMessage

Reason:

If unable to add servlet for service key-value, then it logs a warning errorMessage.

Action:

No action is needed, but the warning may be needed to debug this War

ZWED0080W

Cannot add servlet for service=key-value

Reason:

When we are not able to get the directory to add servlet for service key-value.

Action:

Check if your directory exists and is valid.

ZWED0081W

Could not start Tomcat, error=errorMessage

Reason:

Tomcat manager is unable to start Tomcat with the Java option, due to an incorrect configuration with components.app-

server.node.https.port , components.app-server.node.https.key , or components.app-

server.node.https.certificate .

Action:

Verify configuration with components.app-server.node.https.port , components.app-server.node.https.key , or

components.app-server.node.https.certificate is valid or not.

ZWED0082W

Tomcat PID=pid: stderr=error

Reason:

A Tomcat process with Tomcat pid encountered an error (stderr).

Action:

Action depends on what error is and may be useful to debug.

ZWED0083W

Tomcat could not start. Closing. code=code

Reason:

If the Tomcat manager is unable to start itself, then it closes with code.

Action:

Review the message and if app server service is interrupted, send the message along with the log to support for

troubleshooting.

ZWED0084W

Tomcat could not start. Exiting. code=code

Reason:

If the Tomcat manager is unable to start itself, then it exits with code.

Action:

Review the message and if app server service is interrupted, send the message along with the log to support for

troubleshooting.

ZWED0085W

Tomcat PID=pid Error when stopping, error=errorMessage

Reason:

If Tomcat manager is unable to stop the Tomcat process on Windows, then it logs errorMessage.

Action:

Review the errorMessage and see if there is something you can do to fix the error

ZWED0086W

Could not stop Tomcat, error=errorMessage

Reason:

If Tomcat manager is unable to stop the Tomcat process on Unix, then it logs errorMessage.

Action:

Review the errorMessage and if app server service is interrupted, send the message along with the log to support for

troubleshooting.

ZWED0087W

Tomcat PID=pid: stderr=error

Reason:

While stopping Tomcat, Tomcat process with Tomcat pid encountered an error (stderr).

Action:

Review the error and if app server service is interrupted, send the message along with the log to support for

troubleshooting..

ZWED0146W

Could not stat destination or temp folder path. Error=ErrorMsg

Reason:

Server was unable to use 'stat' command on folder path and threw ErrorMsg.

Action:

No action is needed usually, however, need to debug the ErrorMsg.

ZWED0148W

App extracted but not registered to App Server due to write fail. Error=errorMessage

Reason:

App extracted successfully but not registered to App Server due to write fail. Error=errorMessage.

Action:

Go through the errorMessage and undestand what to debug.

ZWED0149W

Could not find pluginDefinition.json file in App (dir=AppDir). Error=ErrorMsg

Reason:

Throws ErrorMsg when its not able to find the pluginDefinition.json file in AppDir location.

Action:

Check if pluginDefinition.json exists in AppDir.

ZWED0150W

identifier library path location does not exist.

Reason:

Server throws warning when library plugin identifier does not exist at path location.

Action:

Check if the library plugin exists in the path location.

ZWED0151W

unhandledRejection error

Reason:

When process experiences an unhandledRejection.

Action:

No action is needed usually, however, need to debug the ErrorMsg.

ZWED0152W

Error at call sessionStore. APIMethodname: Error Object

Reason:

There is a problem calling a sessionStore APIMethodname.

Action:

No action is needed usually, however, need to debug the ErrorMsg.

ZWED0153W

WARNING: CLI Argument missing name or has unsupported type=type

Reason:

The server throws a warning when the CLI argument is missing a name, or has an unsupported type (supported types: 1

- flag, 2 - value, 3 - json).

Action:

Check any missing argument or unsupported argument.

ZWED0154W

WARNING: Unrecognized command: args

Reason:

Throws warning when args is unrecognized.

Action:

Check the command once again or check if the specified command is interpreted as intended.

ZWED0155W

ErrorMsg

Reason:

Server throws 500 code with ErrorMsg.

Action:

Go through the ErrorMsg for context on what to debug.

ZWED0156W

1 function initLoggerMessages - ERROR - Error

Reason:

Attempt to get log message for a language a user may have specified, has failed with Error.

Action:

Go through the Error for details on what to debug.

ZWED0157W

2 function initLoggerMessages - ERROR - Error.

Reason:

Attempt to get log message for English has failed with Error.

Action:

Go through the Error for details on what to debug.

ZWED0158W

ErrorMsg

Reason:

Server throws 500 code with ErrorMsg.

Action:

Go through the ErrorMsg for details on what to debug.

ZWED0159W

Plugin (PluginIdentifier) loading failed. Message: "errorMessage" Successful: pluginsLoaded%

(pluginsLoaded/eventCount) Attempted: pluginCount% (pluginCount/eventCount)

Reason:

Plugin with pluginId loaded failed with errorMessage. The server attempted to load a total of pluginCount with

pluginsLoaded plugins already successfully loaded.

Action:

Review errorMessage to see if there is something you can do to fix the error. You may need to contact the plugin

developer to find a solution. If you do not need this plugin, it is OK to continue.

ZWED0166W

Error updating the storage: Error

Reason:

Throws warning Error when it faced error while updating the storage.

Action:

Contact support if Error is not clear.

ZWED0167W

Error adding to the storage: errorMessage

Reason:

Throws errorMessage while adding to the storage.

Action:

If app server service is interrupted, go through the errorMessage for details on what to debug or contact support if

errorMessage is not clear.

ZWED0168W

Unable to retrieve storage value from cluster Error

Reason:

Throws warning Error when it is unable to retrieve storage value from cluster.

Action:

By default, the timeout for cluster method calls is 1000ms which should cause no issues. If service is interrupted, contact

support and provide Error.

ZWED0169W

Error deleting the storage with id: deleteStorageByKey Error

Reason:

when server tries deleting storage by key deleteStorageByKey.

Action:

Contact support if Error is not clear.

ZWED0170W

Plugin (PluginIdentifier) loading failed. Version: PluginVersion. Message: "Error"

Reason:

Plugin PluginIdentifier with version PluginVersion has failed to load with an Error.

Action:

Review Error to see if there is something you can do to fix the error. You may need to contact the plugin developer to

find a solution. If you do not need this plugin, it is OK to continue.

ZWED0171W

Rejected undefined referrer for url=originalUrl, ip=ip

Reason:

Throws 403 Forbidden when App server fails to honor a network request due to failed referrer check.

Action:

Double check the address. A possible reason for a 403 error is a misstyped originalUrl or ip or because loopback routing

is not configured in the App server.

ZWED0172W

Rejected bad referrer=referrerHeaderValue for url=accessedUrl, ip=clientIp

Reason:

The client from clientIp tried to access accessedUrl but due to having a referrer header value that didn't seem to

originate from this server, a security violation was caused and the attempt to access the URL was rejected.

Action:

Review the values to determine if this was a valid attempt to access the server or not. If this access seems suspicious,

then the server was correct in rejecting the access. However, if the access attempt seemed legitimate, then this points

to the referrer configuration needing revision. You can customize which referrer header values are permitted using the

environment variable ZWE_REFERRER_HOSTS and it should be set to match the external hostnames of the system the

app-server is running on.

ZWED0173W

Unable to decode P12 certificate (different password than keystore?). Attempting to use empty string as password.

Decode error: error.

Reason:

The server tried to load the p12 file provided for the server certificate or certificate authorities, but encountered error.

The server may not be accessible as a result of invalid TLS configuration.

Action:

Check the value of zowe.certificate.keystore.password and zowe.certificate.truststore.password, or the environment

variable KEYSTORE_PASSWORD to see if they are valid for the p12 file provided, and adjust the configuration if needed.

ZWED0174W

componentName could not verify (operatingSystem) as a supported platform to install (pluginId). Proceeding anyway...

Reason:

The plugin pluginId has a dependency which can only run on certain operating systems, and operatingSystem is not on

the list, but because the operating system is not explicitly forbidden, the server will attempt to load the plugin anyway.

This may fail, but the server may continue to run without the plugin if possible.

Action:

Review the plugin dependencies as seen in the plugin's pluginDefinition.json file to see if your Zowe configuration or the

plugin can be changed in order to match the requirements. Consult the plugin developer if you believe the plugin was

able to run fine on the operating system, so they can explicitly add support in the future.

ZWED0175W

componentName could not verify (systemArchitecture) as a supported architecture to install (pluginId). Proceeding

anyway...

Reason:

The plugin pluginId has a dependency which can only run on certain system architectures, and systemArchitecture is not

on the list, but because the system architecture is not explicitly forbidden, the server will attempt to load the plugin

anyway. This may fail, but the server may continue to run without the plugin if possible.

Action:

Review the plugin dependencies as seen in the plugin's pluginDefinition.json file to see if your Zowe configuration or the

plugin can be changed in order to match the requirements. Consult the plugin developer if you believe the plugin was

able to run fine on the system architecture, so they can explicitly add support in the future.

ZWED0177W

Unable to load actionOrRecognizer for 'pluginId' into config

Reason:

The plugin pluginId has an action or recognizer within its package and the plugin install process was trying to copy that

into the workspace so it can be used, but encountered an error that prevented this.

Action:

Contact support if the reason cannot be determined.

ZWED0178W

Skipping authentication plugin pluginId because it's not HA compatible

Reason:

The server is setup for running in high availability (HA) mode which requires that plugins that have state, in particular

authentication plugins, must be HA-compatible or else errors will occur. Therefore, the server skips over loading of this

plugin nbecause its pluginDefinition.json did not state it was HA compatible.

Action:

Either the plugin must be updated to support and state its support for HA, or it must be removed, or HA mode disabled.

To make a plugin support HA, the conformance program should be reviewed. When HA mode is supported, the plugin can

be marked as compatible by setting capabilities.haCompatible=true within its initialization.

ZWED0179W

Unable to retrieve the list of certificate authorities from the keyring=keyringName owner=username Error: error

Reason:

The server could not automatically determine the certificate authorities (CA) from the z/OS keyring listed. This may

cause the server to be unable to verify certificate chains from other servers or clients causing other errors later.

Action:

Review the error to resolve it and contact support if needed. It's also possible as a workaround to explicitly state the CAs

within the keyring that you would like to load, rather than relying upon the server's attempt to automatically find all CAs

within the keyring.

App-server error messages

ZWED0001E

Error: error

Reason:

The server is running in cluster mode and the cluster manager has encountered an unexpected error.

Action:

Review the error to resolve it, and contact support if needed.

ZWED0002E

Could not stop language manager for types=languageNames

Reason:

A plugin had a service that needed a language manager to run. During shutdown, the language manager could not be

stopped.

Action:

The language manager may continue to run after the app-server shuts down. Review the logs to determine the location

of the language manager and try to stop the manager manually.

ZWED0003E

The screen displays the following error message:

Loopback configuration not valid, loopbackConfiguration Loopback calls will fail!

Reason:

The administrative network configuration does not make a loopback network address available to the app-server. The

app-server requires a loopback network address to communicate with itself, but the address is unavailable.

Action:

There are two ways to solve this problem: Option 1 Enable the administrative network configuration to make a loopback

network address available to the app-server. For example, enable the administrative network configuration to provide

127.x.x.x to the app-server, where 127.x.x.x is the IP that denotes the loopback network address. The IP address must

be 127.x.x.x

Option 2 In the YAML configuration file, set a value for the components.app-server.node.loopbackAddress property that

denotes the IP that you want to use.

NOTE

If the network administrator associates a loopback network address with the app servers, then do not mention the

loopback network address in the YAML configuration file. Verify whether your network’s configuration in the YAML

configuration file is correct. If the alarm still displays, contact your network administrator.

ZWED0004E

Could not listen on address ip:port. It is already in use by another process.

Reason:

The server tried to start using the ip and port values shown which were from the zowe configuration. When trying to

connect to this address, the server recieved an error telling it that the address was already in use.

Action:

Check the system's network port status to see what program could be using this address, and either stop that program

or change the zowe configuration to use a different address before restarting zowe.

ZWED0005E

Could not listen on address ip:port. Invalid IP for this system.

Reason:

When the app-server was binding to the address shown, it recieved the error EADDRNOTAVAIL or ENOTFOUND. In either

case, the app-server was not able to bind to the address and so it will not run until the problem is solved.

Action:

Review the address and check if it is valid or if there is some lack of permissions that might explain why these errors

were received by the server.

ZWED0006E

Usage: --inputApp | -i INPUTAPP --pluginsDir | -p PLUGINSDIR --zluxConfig | -c ZLUXCONFIGPATH [--verbose | -v]

Reason:

This message appearas when you attempt app installation but have not provided enough of the mandatory arguments

for the program to run. It is printing out what options are valid so that you can retry with different options.

Action:

Retry the operation after modifying the input arguments to be valid against the list shown. Or, if you are trying to do app

installation, you should use zwe components install instead whenever possible.

ZWED0007E

serviceName invalid version version

Reason:

The service mentioned was trying to be loaded by the server but failed validation due to the version number not being a

a valid semver string. This service and therefore plugin will be skipped during loading.

Action:

Contact the developers so that they can revise the pluginDefinition.json of the plugin where the service is located to be

semver-compatible. Details on semver version can be found at semver.org

ZWED0008E

localServiceName: invalid version range serviceName: versionRange

Reason:

When the serviceName was trying to be imported into a plugin as localServiceName, the version range of acceptable

versions for the service to be imported was not valid. Due to this, the import cannot be resolved and the plugin will be

skipped in loading.

Action:

Contact the developers of the plugin this error occurred in as the pluginDefinition.json needs to be revised to have the

version range given for this import service be a valid semver range string.

ZWED0009E

localServiceName: invalid version range versionRange

Reason:

When the a service was trying to be imported into a plugin as localServiceName, the version range of acceptable

versions for the service to be imported was not valid. Due to this, the import cannot be resolved and the plugin will be

skipped in loading.

Action:

Contact the developers of the plugin this error occurred in as the pluginDefinition.json needs to be revised to have the

version range given for this import service be a valid semver range string.

ZWED0010E

No file name for data service

Reason:

When the server was trying to load a service for a plugn, it couldn't identify the filename where the service is located

within the plugin, so the service and therefore plugin have been skipped during loading.

Action:

Contact the plugin developer to fix that the service within the pluginDefinition.json is missing the "fileName" or

"filename" property which must describe the path to the dataservice entry file, relative to the plugin's lib directory.

ZWED0011E

Plugin pluginId has web content but no web directory under location

Reason:

The plugin definition of pluginId stated that the plugin has web content to serve such as HTML files, but the required

'web' folder was missing, so the plugin cannot be loaded.

Action:

Check that the web folder within this plugin exists or not. If it does exist, then the server may not have had permission

to read it. Otherwise, if it doesn't exist, try to reinstall the plugin in case it is corrupt. Or, contact the developers to fix

the lack of web directory.

ZWED0012E

pluginId::serviceName Required local service missing: localService

Reason:

The service serviceName could not be loaded because of an unsatisfied version requirement upon another service. This

causes the plugin pluginId to be skipped during loading.

Action:

Review the plugin's definition to see why the version match could not be made. Either a required plugin is missing, or

the pluginDefinition.json will need to be revised by the developer of the plugin to fix the version check failure.

ZWED0013E

pluginId::serviceName Could not find a version to satisfy local dependency serviceName@requiredVersion

Reason:

The service serviceName could not be loaded because of an unsatisfied version requirement upon another service. This

causes the plugin pluginId to be skipped during loading.

Action:

Review the plugin's definition to see why the version match could not be made. Either a required plugin is missing, or

the pluginDefinition.json will need to be revised by the developer of the plugin to fix the version check failure.

ZWED0014E

Plugin pluginId invalid

Reason:

The plugin could not be loaded because the plugin definition was not valid in some way. There are fields that every

plugin must define, such as type. Then, depending on type, there are more fields a plugin can and cannot have. When

the server went to load the plugin, it found that the definition was not correct versus the requirements, so the loading of

this plugin was skipped.

Action:

Contact the developers of this plugin so that they can fix the plugin to adhere to the plugin schema

ZWED0015E

No plugin directory found at pluginLocation

Reason:

The server finds plugins by reading JSON files within the "plugins" folder of its workspace directory. When it checked the

JSON of this particular plugin, the JSON stated the plugin could be found at a folder pluginLocation which either does not

exist or could not be read by the server.

https://github.com/zowe/zlux-app-server/blob/v2.x/master/schemas/plugindefinition-schema.json

Action:

Check that the location shown exists. If it does exist, then there is some permission problem preventing the server from

reading it. If it does not exist, determine whether this plugin is desired but has the wrong location, or if this plugin is not

desired and should be removed. Contact support so they can assist in fixing the plugin location problem.

ZWED0016E

No pluginDefinition.json found at pluginLocation

Reason:

The server finds plugins by reading JSON files within the "plugins" folder of its workspace directory. When it checked the

JSON of this particular plugin, it stated the plugin was located in a folder which the server determined did not contain the

pluginDefinition.json file that every plugin requires. Due to this missing file, the loading of this plugin was skipped.

Action:

Check that a pluginDefinition.json exists at the location specified. If it does, then the server is missing permissions

necessary to read the file. If the file does not exist, review if there is a problem with the plugin itself that should be

resolved by contacting the plugin developers. If the plugin exists with a pluginDefinition.json file at a different location

than the error suggests, contact Zowe support to resolve the location problem.

ZWED0017E

Identifier doesn't match one found in pluginDefinition: pluginIdentifier

Reason:

The identifier found in the plugin reference doesn't match the one specified in the pluginDefinition.json

Action:

Check if identifier found is the same one as intended (typo perhaps?). If not, delete the plugin identifier JSON (found in

instance/workspace/app-server/plugins) and restart Zowe. If issue isn't resolved, increase app server debugging and

send logs to the app developer

ZWED0018E

No plugin type found, skipping

Reason:

The plugin definition for the plugin has no 'pluginType' property set

Action:

Contact app developers if you need plugin to be loaded and working

ZWED0019E

Plugin already registered

Reason:

A plugin with this identifier has already been registered to the map of plugins

Action:

Check if you have multiple components sharing the same, or different versions, of the same plugin. This is not allowed

ZWED0020E

"pluginIdentifier: pluginType type is unknown

Reason:

The plugin pluginIdentifier has in its plugin definition an invalid plugin type

Action:

Accepted plugin types found in the schema (https://github.com/zowe/zlux-app-

server/blob/v2.x/staging/schemas/plugindefinition-schema.json#L47)

ZWED0021E

pluginPath is missing

Reason:

App server tried to process the plugin reference from path pluginPath

Action:

Check if pluginPath is a real path or the App server (started task user of Zowe) has the permission to read it

ZWED0022E

Module not found moduleName

Reason:

App server, during a cluster/worker method call, tried to require a module moduleName it couldn't find

Action:

Contact the plugin developer if plugin returns this error.

ZWED0023E

Method not implemented methodName

Reason:

App server, during a cluster/worker method call, tried to act on a method that isn't valid.

https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/plugindefinition-schema.json#L47
https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/plugindefinition-schema.json#L47

Action:

Contact the plugin developer if plugin returns this error.

ZWED0024E

Object not exported exportName

Reason:

App server, during a cluster/worker method call, tried and failed to export a module object.

Action:

Contact the plugin developer if plugin returns this error.

ZWED0025E

.authenticate() missing

Reason:

Authentication plugin (which plugin includes looking at nearby log messages) is missing the .authenticate() method.

Action:

Contact the plugin developer if plugin is essential for authenticaiton.

ZWED0026E

Circular dependency: pluginIdentifier

Reason:

The App server encountered a circular dependency for plugin pluginIdentifier (meaning it contains a dependency that

imports itself).

Action:

Contact the plugin developer for troubleshooting help. This is a packaging issue.

ZWED0027E

Circular dependency: pluginIdentifier

Reason:

The App server encountered a circular dependency for plugin pluginIdentifier (meaning it contains a dependency that

imports itself).

Action:

Contact the plugin developer for troubleshooting help. This is a packaging issue.

ZWED0028E

Config invalid

Reason:

The App server attempted to validate and process the server configuration and there was an issue.

Action:

Please consult the App server schema components.app-server.node section (https://github.com/zowe/zlux-app-

server/blob/v2.x/staging/schemas/app-server-config.json#L9). You may also instead have a syntax issue. For a free,

offline YAML validator, check out RedHat's VSCode YAML Extension

ZWED0038E

JavaManager given port range beyond limits

Reason:

The Java manager was given a port outside the valid port range (0 < 65535).

Action:

Please check your configuration to see if any ports are out of bounds.

ZWED0039E

JavaManager not given any ports with which to run servers.

Reason:

Configuration does not contain ports for Java manager to try to run the servers.

Action:

Please check your configuration to see if any ports are missing.

ZWED0040E

Unknown java war grouping default=grouping

Reason:

For this war, an unknown grouping default grouping was encountered (types: 'microservice' or 'appserver' allowed).

Action:

Contact the plugin developer for troubleshooting.

ZWED0041E

Could not find port to use for configuration, at config position=portIndex.

https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/app-server-config.json#L9
https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/app-server-config.json#L9

Reason:

The server was trying to determine a network port to use for a Java dataservice, but no available ports could be found,

so the server cannot load that service.

Action:

Check your Zowe configuration to see if you have enough or any ports specified for the app-server to use when

assigning ports to Java dataservices.

ZWED0042E

Could not find runtime to satisfy group: javaRuntime

Reason:

When trying to run a group of Java dataservices under a common java runtime, the javaRuntime couldn't be found, so

the dataservices cannot be run.

Action:

Check the configuration for this group of Java services to see if javaRuntime is a good value, and resolve the Java issue

before restarting the server.

ZWED0043E

Unknown java app server type=javaRuntimeTime specified in config. Cannot continue with java loading.

Reason:

The app-server can only handle Java dataservices if they run under certain types of Java server runtimes. The type

chosen was not one of the types supported, so the server cannot continue with the loading.

Action:

Check if the version of the plugin you are using is compatible with the version of Zowe you are using. Check if you can

change the "type" of java server to one that the app-server does work with, such as "tomcat".

ZWED0044E

Java runtimes not specified, and no JAVA_HOME set

Reason:

The app-server cannot run the java dataservices because it doesn't know how to start any Java with the configuration

specified.

Action:

Either define the environment variable JAVA_HOME to point to a valid Java runtime home, or specify a Java runtime within

the app-server configuration as components.app-server.languages.java.runtimes . For more information, see the

server schema https://github.com/zowe/zlux-app-server/blob/v2.x/master/schemas/app-server-config.json

https://github.com/zowe/zlux-app-server/blob/v2.x/master/schemas/app-server-config.json

ZWED0045E

Java app server not defined in config

Reason:

A dataservice was configured to run from a WAR file but the configuration section components.app-

server.languages.java.war.javaAppServer was missing, so the app-server could not run the dataservice.

Action:

Define the missing configuration section according to the app-server schema https://github.com/zowe/zlux-app-

server/blob/v2.x/master/schemas/app-server-config.json or remove it and the plugin that required it.

ZWED0046E

JavaManager not given either war or jar configuration options, nothing to do

Reason:

A java dataservice was requested but the components.app-server.languages.java configuration section of Zowe was

missing either a war or jar subsection. Since one of the two is needed, the server could not continue with loading the

java dataservices.

Action:

Review the app-server schema https://github.com/zowe/zlux-app-server/blob/v2.x/master/schemas/app-server-

config.json and your Zowe configuration file to identify and correct the missing properties within components.app-

server .

ZWED0047E

Proxy (pluginid:servicename) setup failed. Host & Port for proxy destination are required but were missing. For

information on how to configure a proxy service, see the Zowe wiki on dataservices

(https://github.com/zowe/zlux/wiki/ZLUX-Dataservices)

Reason:

A proxy was requested by the service pluginid:servicename but the service configuration or pluginDefinition did not

specify what the proxy destination was, so the server is skipping the loading of that plugin.

Action:

Review the plugin's configuration or contact the developer of that plugin to correct the proxy configuration.

ZWED0049E

Can't specify error metadata

Reason:

https://github.com/zowe/zlux-app-server/blob/v2.x/master/schemas/app-server-config.json
https://github.com/zowe/zlux-app-server/blob/v2.x/master/schemas/app-server-config.json
https://github.com/zowe/zlux-app-server/blob/v2.x/master/schemas/app-server-config.json
https://github.com/zowe/zlux-app-server/blob/v2.x/master/schemas/app-server-config.json
https://github.com/zowe/zlux/wiki/ZLUX-Dataservices

When a dataservice called the utility function makeErrorObject, it did not supply context of the _objectType and

_metaDataVersion , which are required and caused the function to throw its own error about the lack of information.

Action:

Contact the developer of the plugin which caused this error.

ZWED0050E

Root service serviceName not found

Reason:

A dataservice tried to call a "root", or non-plugin service of the app-server or app-server's agent, and this root service

serviceName was not found on the server, so the request failed.

Action:

Verify that your version of Zowe works with the plugins that you have installed, and contact the developer of the plugin

which tried to call this missing root service.

ZWED0051E

Could not resolve service URL. Plugin=pluginId, service=serviceName

Reason:

A dataservice serviceName handled by a language manager could not be used because the URL in which to access this

dataservice from its language manager could not be determined.

Action:

Check the logs to see if there was trouble installing the service or plugin, and contact the developers of pluginId for more

support.

ZWED0052E

Could not load service pluginId:serviceName due to unknown type=serviceType

Reason:

The service from the plugin shown could not be loaded because the plugin declared the service to be of some type that

the app-server does not handle.

Action:

Check to see if the version of Zowe you are using works with the version of the plugin you are using. Plugins must have

dataservices only of types seen within the pluginDefinition schema https://github.com/zowe/zlux-app-

server/blob/v2.x/staging/schemas/plugindefinition-schema.json

ZWED0053E

https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/plugindefinition-schema.json
https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/plugindefinition-schema.json

Import sourcePluginId:sourceServiceName can't be satisfied

Reason:

A plugin trying to load a dataservice from sourcePluginId:sourceServiceName couldn't load that service, therefore the

requesting plugin will fail to load.

Action:

Confirm that the source plugin and service exist. Check the logs to see if there was something that caused the source

service to fail loading. Contact the developers of either source or target plugin for more assistance if the cause is not

clear.

ZWED0111E

SEVERE: Exception occurred trying to generate object from input: error

Reason:

The server could not parse its input configuration due to the error shown, so the server cannot start.

Action:

Review the error to determine the cause, or contact support if the cause is unclear.

ZWED0112E

The server found no plugin implementing the specified default authentication type of type.

Reason:

The value of components.app-server.dataserviceAuthentication.defaultAuthentication within the server

configuration specified a type of authentication that some authentication plugin must implement in order for the server

to run. Because no plugin that successfully loaded declared that it implemented this type, the server found no

implementation and could not continue.

Action:

Review if any plugin you have implements the given type. If the type is incorrect, revise the configuration to choose a

type that does exist in your system. If the type is correct, check if you are missing a required plugin.

ZWED0113E

The server found no authentication types. Verify that the server configuration file defines server authentication.

Reason:

The server was unable to find any authentication plugins where at least one is required to run.

Action:

Review the list of plugins that are being used and see if any authentication plugins you needed have failed to load, and

review their error messages.

ZWED0114E

The server found no plugin implementing the specified default authentication type of type.

Reason:

The value of components.app-server.dataserviceAuthentication.defaultAuthentication within the server

configuration specified a type of authentication that some authentication plugin must implement in order for the server

to run. Because no plugin that successfully loaded declared that it implemented this type, the server found no

implementation and could not continue.

Action:

Review if any plugin you have implements the given type. If the type is incorrect, revise the configuration to choose a

type that does exist in your system. If the type is correct, check if you are missing a required plugin.

ZWED0115E

Unable to retrieve storage object from cluster. This is probably due to a timeout. You may change the default of

'storageTimeout' ms by setting 'node.cluster.storageTimeout' within the config.

Reason:

The app-server was running in cluster mode and a service attempted to get content from the cluster storage but this

failed. Because storage could not be read, its possible the service that requested the storage will have further errors.

Action:

If there was a network disruption or performance issue, a timeout could have occurred. Review the rest of the logs to see

if there are other messages to explain the failure. You can attempt to avoid timeout-related failures by editing the

configuration parameter components.app-server.node.cluster.storageTimeout .

ZWED0145E

Cannot load SAF keyring content outside of z/OS

Reason:

The Zowe configuration of zowe.certificate or components.app-server.node.https specifies SAF keyrings as locations

to find keystore and truststore data. SAF keyrings only exist on z/OS, and the server detected it was not running on z/OS

so it cannot continue.

Action:

Modify the configuration to use a different keystore type, or migrate the server to z/OS.

ZWED0146E

SAF keyring data had no attribute "attribute". Attributes=attributeKeys

Reason:

Within the list of attributeKeys, attribute could not be found.

Action:

Check the keystore configuration of the server such as in zowe.certificate or components.app-server.node.https to

see if it is valid for Zowe. The SAF keyring Zowe was configured to use may be missing a key and certificate pair, or

certificate authorities keychain. For more suggestions on configuring keyrings for Zowe, review the install guide

ZWED0147E

SAF keyring data was not found for "keyName"

Reason:

The server tried to read the SAF keyring specified within the Zowe configuration, but ran into an error where the server

received no data instead.

Action:

Review the logs to see if a reason for the error is shown. Verify that the Zowe configuration points to a valid keyring that

the Zowe server user has permissions to read.

ZWED0148E

Exception thrown when reading SAF keyring, e=error

Reason:

The SAF keyring which the app-server was configured to use could not be read due to an error. The server likely will not

start or will be unable to do any network activity until this error is resolved.

Action:

Review the error message to determine the cause. Often, the error messages will originate from a system service where

the documentation can be found here https://www.ibm.com/docs/en/zos/2.5.0?topic=library-return-reason-codes

ZWED0149E

SAF keyring reference missing userId "user", keyringName "name", or label "label"

Reason:

The server configuration specified that the app-server should load keystore and truststore content from a SAF keyring,

but the syntax in the configuration was incorrect, because user, name, or label were not usable by the server.

Action:

Check the zowe.certificate or components.app-server.node.https sections of Zowe configuration to see if there are

entries that start with safkeyring:// and verify that they are in the format of safkeyring://USERNAME:RINGNAME&LABEL .

Older versions of zowe will require that there be 4 slashes, such as safkeyring://// . The &LABEL suffix is only needed

for specifying certificate authorities and should be omitted in other sections, for example it is only needed within

https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios#scenario-4-use-a-zos-keyring-based-keystore-and-connect-to-an-existing-certificate
https://www.ibm.com/docs/en/zos/2.5.0?topic=library-return-reason-codes

zowe.certificate.pem.certificateAuthorities or components.app-server.node.https.certificateAuthorities . For

more suggestions on configuring keyrings for Zowe, review the install guide

ZWED0150E

Cannot load SAF keyring due to missing keyring_js library

Reason:

The Zowe configuration specified that the app-server should load keystore and truststore information from a SAF

keyring, which requires the nodejs library keyring_js. This library is defined within the package.json of zlux-server-

framework and ships with Zowe installs, but could not be loaded for some reason and therefore the server could not load

keyrings and will either stop or have issues with network communication.

Action:

Use the command zwe support to verify if the Zowe install has all files expected, as this message indicates the

keyring_js library is missing and reinstalling Zowe may be required.

ZWED0151E

Env var variableName not found

Reason:

The server was loading plugins. It determines the location of each plugin via a plugin pointer file. The plugin referenced

in the logs, it's location is dynamically determined by an environment variable variableName. Because the variable did

not resolve to a value, the plugin could not be found and could not be loaded.

Action:

Review the documentation for the plugin that failed to load, check what the value of the variable should be, and contact

support for that plugin if needed.

ZWED0152E

Unable to locate server config instance location and INSTANCE_DIR environment variable does not exist.

Reason:

While installing a plugin, the server could not determine the location of the configuration dataservice's "instance" folder.

Due to this, the plugin could not be completely installed.

Action:

Correct the error before reinstalling the plugin. This error could happen due to an incorrect value for components.app-

server.instanceDir and normally defaults to {{ zowe.workspaceDirectory }}/app-server .

ZWED0153E

(operatingSystemName) is not a supported platform for componentName. Skipping (pluginid)... Supported:

requiredOperatingSystem

https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios#scenario-4-use-a-zos-keyring-based-keystore-and-connect-to-an-existing-certificate

Reason:

The Zowe host operating system operatingSystemName is not supported by the component componentName.

Supported platforms are defined in the component's pluginDefinition.json.

Action:

Refer to componentName pluginDefinition.json for supported platforms. The installation of Zowe may also be moved to a

supported platform. Lastly, contact the author of the component, or a system administrator.

ZWED0154E

(architectureName) is not a supported architecture for componentName. Skipping (pluginid)... Supported:

requiredArchitecture

Reason:

The Zowe host architecture is not supported by componentName. Supported architectures are defined in the

component's pluginDefintion.json.

Action:

Refer to componentName pluginDefinition.json for supported architectures. The installation of Zowe may also be moved

to a supported architecture. Lastly, contact the author of the component, or a system administrator.

ZWED0155E

(url) is not a supported endpoint for componentName. Skipping (pluginid)... Supported: urls

Reason:

The endpoint url does not match any required endpoints of componentName. Supported endpoints may be viewd in the

component's pluginDefinition.json.

Action:

Refer to componentName pluginDefinition.json for supported endpoints. Optionally, remove url from the required

endpoints in pluginDefinition.json. Lastly, contact the author of the component, or a system administrator.

ZWED0156E

Could not register default plugins into app-server.

Reason:

org.zowe.zlux.json is missing from app-server plugin directory. This error will cause the process to exit.

Action:

Verify integrity of Zowe installation, or contact system administrator. Please refer to

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/support/zwe-support for collecting Zowe

runtime information.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/support/zwe-support

ZWED0157E

Could not register default plugin pluginid into app-server.

Reason:

Could not register default plugin pluginid into app-server due to plugin upgrade failure.

Action:

Verify integrity of plugin files, or contact system administrator. Please refer to

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/support/zwe-support for collecting Zowe

runtime information.

ZWED0158E

Could not listen on address ipAddress:port. Insufficient permissions to perform port bind.

Reason:

Server could not bind to port due to an EACCES error. User lacks privilege to perform port bind. This error will cause the

process to exit.

Action:

Contact system administrator.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/support/zwe-support

Version: v3.3.x LTS

ZSS Error Message Codes

The following error message codes may appear on ZSS log. Use the following message code references and the

corresponding reasons and actions to help troubleshoot issues.

ZSS informational messages

ZWES1007I

webContent was not found in plugin definition for '%s'

Reason:

The webContent was not found in plugin definition for <plugin-ID> .

Action:

No action required.

ZWES1008I

libraryVersion was not found in plugin definition for '%s'

Reason:

The libraryVersion was not found in plugin definition for <plugin-ID> .

Action:

No action required.

ZWES1010I

Plugin ID and/or location was not found in '%s'

Reason:

The plugin ID and/or location was not found in <path> .

Action:

No action required.

ZWES1013I

ZSS Server has started. Version '%s' '%s'

Reason:

ZSS Server has started. Version is <zowe-version> <addressing-mode> .

<addressing-mode> is either 31-bit or 64-bit .

Action:

No action required.

ZWES1014I

ZIS status - '%s' (name='%.16s', cmsRC='%d', description='%s', clientVersion='%d')

Reason:

The message shows status of the connection to Privileged Server: ZIS status - <OK or Failure> (name= <Privileged

Server Name> , cmsRC= <RC> , description= <description> , clientVersion= <version>)

Action:

if Status is OK then no action required. If Status is Failure check the <description> of reported <RC> . In the cases

listed below check that the ZWESISTC started task is running. If not, start it with the TSO command /S ZWESISTC :

cmsRC= 12 , description= 'Global area address is NULL'

cmsRC= 30 , description= 'Server is not running'

cmsRC= 39 , description= 'Cross-memory server abended'

cmsRC= 47 , description= 'ZVT is NULL'

cmsRC= 64 , description= 'PC is unavailable'

ZWES1035I

ZSS Server settings: Address='%s', port='%d', protocol='%s'

Reason:

Server is starting using Address= <IP address> , port= <port> , protocol= http or https

Action:

No action required.

ZWES1038I

Server timeouts file '%s' either not found or invalid JSON. ZSS sessions will use the default length of one hour.

Reason:

The server timeouts file <path> either was not found or is invalid JSON. ZSS sessions uses the default length of one hour.

Action:

No action required.

ZWES1039I

Installing '%s' service...

Reason:

<Service> is about to install.

Action:

No action required.

ZWES1061I

TLS settings: keyring '%s', label '%s', password '%s', stash '%s'

Reason:

ZSS uses TLS settings: keyring <keyring> or <p12-file> , label <cert-label> , password "****" or (no password) ,

stash <stash-file> or (no stash) .

Action:

No action required.

ZWES1063I

Caching Service settings: gateway host '%s', port %d

Reason:

Caching Service settings are gateway host <Gateway-host> , port <Gateway-port> . HA mode is enabled.

Action:

No action required.

ZWES1064I

Caching Service not configured

Reason:

Caching Service not configured. HA mode is disabled.

Action:

No action required.

ZWES1100I

Product Registration is enabled.

Reason:

Product Registration is enabled.

Action:

No action required.

ZWES1101I

Product Registration is disabled.

Reason:

Product Registration is disabled.

Action:

No action required.

ZWES1102I

Product Registration successful.

Reason:

Product Registration successful.

Action:

No action required.

ZWES1600I

JWT will be configured using JWK URL '%s'

Reason:

JWT will be configured using JSON Web Key(JWK) at URL <url> .

Action:

No action required.

ZWES1601I

Server is ready to accept JWT with (or without) fallback to legacy tokens

Reason:

Server is ready to accept JWT with or without fallback to legacy tokens.

Action:

No action required.

ZSS error messages

ZWES1001E

Log level '%d' is incorrect.

Reason:

The logging level <log-level> is incorrect.

Action:

Verify the <log-level> is in range 0..5 .

ZWES1002E

Error in timeouts file: Could not parse config file as a JSON object.

Reason:

There is an error in timeouts file: could not parse config file as a JSON object.

Action:

Verify the timeouts file is a valid JSON.

ZWES1006E

Error while parsing plugin definition file '%s': '%s'.

Reason:

An error occurred while parsing <plugin-definition-file> : <error-details> .

Action:

If you are a plugin developer check <error-details> and fix the error by editing <plugin-definition-file> , otherwise,

report the error to the plugin vendor.

ZWES1011E

Error while parsing: '%s'

Reason:

There is an error while parsing: <json-statement> .

Action:

Review the <json-statement> and correct it.

ZWES1016E

Cannot validate file permission, path is not defined.

Reason:

Cannot validate the file permission, path is not defined.

ZWES1017E

Could not get file info on config path='%s': Ret='%d', res='%d'

Reason:

Could not get the file information on config path= <path> : Ret= <return-code> , res= <reason-code>

Action:

Contact support.

ZWES1020E

Skipping validation of file permissions: Disabled during compilation, using file '%s'.

Reason:

Skipping validation of file permissions: disabled during compilation, using the file <file> .

Action:

Contact support.

ZWES1021E

Cannot validate file permissions: Path is not defined.

Reason:

Cannot validate the file permissions: path is not defined.

ZWES1022E

Cannot validate file permissions: Path is for a directory and not a file.

Reason:

Cannot validate the file permissions. Given path is a directory path only without a file.

ZWES1034E

Server startup problem: Address '%s' not valid.

Reason:

IP address nor hostname is not valid.

Action:

Use valid IP address or hostname, e.g. 0.0.0.0 .

ZWES1036E

Server startup problem: Ret='%d', res='0x%x'

Reason:

Server has failed to start.

Action:

If the next message is ZWES1037E then refer ZWES1037E. Otherwise, examine the reason code with bpxmtext command,

e.g. use bpxmtext 744c7247 if you got res='0x744c7247'

ZWES1037E

This is usually because the server port '%d' is occupied. Is ZSS running twice?

Reason:

ZSS port number is already occupied.

Action:

Check if another ZSS instance is already running, or chose another free port number and restart Zowe.

ZWES1065E

Failed to configure https server, check agent https settings

Reason:

Failed to configure https server.

Action:

Check agent https settings.

ZWES1500E

Failed to generate PassTicket - userId='%s', applId='%s', %s

Reason:

Failed to generate the PassTicket for userId= <user-id> , applId= <application-name> , <error-text> .

Action:

https://www.ibm.com/docs/en/zos/2.4.0?topic=descriptions-bpxmtext-display-reason-code-text

Review your security product to determine that it meets all passTickets requirements.

ZSS warning messages

ZWES1000W

Privileged server name not provided, falling back to default.

Reason:

Privileged server name not defined in configuration file.

Action:

If your privileged server name is ZWESIS_STD then no action required. Otherwise set

components.zss.crossMemoryServerName property in configuration to the correct name.

ZWES1004W

Expected plugin ID '%s', instead received '%s'

Reason:

Expected plugin ID is <plugin-ID> , but it was received <wrong-plugin-ID> .

Action:

Verify the plugin JSON definition.

ZWES1005W

Plugin ID was not found in '%s'

Reason:

pluginId property wasn't found in <path-to-pluginDefinition.json> file. The plugin skipped.

Action:

If you are a plugin developer add the pluginId property to the <path-to-pluginDefinition.json> file. Otherwise,

contact the plugin vendor.

ZWES1009W

Plugin ID '%s' is NULL and cannot be loaded.

Reason:

The plugin with <plugin-ID> was not succesfully created and cannot be loaded.

Action:

Verify the plugin JSON definition.

ZWES1012W

Could not open pluginsDir '%s': Ret='%d', res='0x%x'

Reason:

Could not open <pluginsDir> : Ret= <return-code> , res= <reason-code>

Action:

Check that <pluginsDir> exists and allows reading. Examine the reason code with bpxmtext command for additional

information.

ZWES1060W

Failed to init TLS environment, rc=%d(%s)

Reason:

Failed to initialized TLS environment GSKit return code <rc> (<description>)

Action:

Ensure that the ZSS certificate is configured correctly. Check GSKit return code and description for additional

information.

ZWES1103W

Product Registration failed, RC = %d

Reason:

Failed to register ZSS.

Action:

Examine the return code at [https://www.ibm.com/docs/en/zos/2.2.0?topic=requeststatus-return-codes] and correct the

error.

ZWES1200W

Could not %s file '%s': Ret='%d', res='%d'

Reason:

Could not <action> file <file> , return code is <return-code> , resason code is <reason-code> .

<action> specifies for which file operation a problem was detected.

Action:

https://www.ibm.com/docs/en/zos/2.4.0?topic=descriptions-bpxmtext-display-reason-code-text
https://www.ibm.com/docs/en/zos/2.2.0?topic=requeststatus-return-codes

No action required.

ZWES1201W

Could not %s file '%s': Ret='%d', res='%d'

Reason:

Unixfile REST Service could not <action> file <filename> : Ret= <return-code> , res= <reason-code>

Action:

Action depends on return/reason code. For additional information examine the reason code with the bpxmtext

command.

ZWES1202W

Transfer type has not been set.

Reason:

The transfer type was not set.

Action:

No action required.

ZWES1103W

Could not get metadata for file '%s': Ret='%d', res='%d'

Reason:

Unixfile REST Service could not get metadata for file <filename> : Ret= <return-code> , res= <reason-code>

Action:

Action depends on return/reason code. For additional information examine the reason code with bpxmtext command.

ZWES1200W

Could not %s file '%s': Ret='%d', res='%d'

Reason:

Could not <action> file <file> , return code is <return-code> , resason code is <reason-code> .

<action> specifies for which file operation a problem was detected.

Action:

No action required.

https://www.ibm.com/docs/en/zos/2.4.0?topic=descriptions-bpxmtext-display-reason-code-text
https://www.ibm.com/docs/en/zos/2.4.0?topic=descriptions-bpxmtext-display-reason-code-text

ZWES1202W

Transfer type has not been set.

Reason:

The transfer type was not set.

Action:

No action required.

ZWES1400W

Non standard class provided for '%s' '%s', ending request...

Reason:

Non standard class was provided for <HTTP-setting> <HTTP-method> , the request was ended.

ZWES1401W

Profile not provided for profiles GET, ending request...

Reason:

The profile not provided for profiles GET, the request was ended.

ZWES1402W

Profile name required for '%s' '%s'

Reason:

The profile name is required for <HTTP-setting> <HTTP-method>

ZWES1403W

User ID required for user POST/PUT

Reason:

The user ID is required for user POST or PUT.

ZWES1404W

Body not provided for user POST/PUT, ending request...

Reason:

The body was not provided for user POST or PUT, the request was ended.

ZWES1406W

Unknown access type '%d' provided for user POST/PUT, ending request...

Reason:

Unknown access type <access-type> provided for user POST or PUT, the request was ended.

ZWES1407W

Access list can only be retrieved in bulk, ending request...

Reason:

The access list can only be retrieved in bulk, the request was ended.

ZWES1408W

Access list buffer with size '%u' not allocated, ending request...

Reason:

The access list buffer with size <size> was not allocated, the request was ended.

ZWES1409W

Access list size out of range '%u', ending request...

Reason:

The size of access list is out of range <number> , the request was ended.

ZWES1410W

Access list entry name required for access list DELETE

Reason:

The access list entry name is required for access list DELETE .

ZWES1411W

Class-mgmt query string is invalid, ending request...

Reason:

`Class-mgmt`` query string is invalid, the request was ended.

ZWES1412W

Group name required for '%s' '%s'

Reason:

The group name required for <HTTP-setting> <HTTP-method> .

ZWES1413W

Body not provided for group POST, ending request...

Reason:

The body was not provided for group POST , the request was ended.

ZWES1414W

Superior not provided for group POST, ending request...

Reason:

Superior not provided for group POST , the request was ended.

ZWES1415W

Bad superior group provided for group POST, ending request...

Reason:

Bad superior group was provided for group POST , the request was ended.

ZWES1416W

Access type not provided for user POST/PUT, ending request...

Reason:

The access type was not provided for user POST or PUT , the request was ended.

ZWES1417W

Unknown access type, use [USE, CREATE, CONNECT, JOIN]

Reason:

Unknown access type, use USE , CREATE , CONNECT or JOIN .

ZWES1418W

Access list will be re-allocated with capacity '%u'

Reason:

The access list will be re-allocated with capacity <size> .

Action:

No action required.

ZWES1419W

Group-mgmt query string is invalid, ending request...

Reason:

<Group-mgmt> query string is invalid and the requested was ended.

ZWES1602W

JWK is in unrecognized format

Reason:

JSON Web Key(JWK) is in unrecognized format.

Action:

Report an issue at [https://github.com/zowe/zlux/issues]

ZWES1603W

Failed to construct public key using JWK

Reason:

JSON Web Key(JWK) has invalid public key info.

Action:

Report an issue at [https://github.com/zowe/zlux/issues]

ZWES1604W

JWK: failed to init HTTP context, ensure that APIML and TLS settings are correct

Reason:

Failed to init HTTP context for requesting JSON Web Key(JWK).

Action:

Check the zowe keystore configuration and specification of it within the zowe server config.

ZWES1605W

Server will not accept JWT

Reason:

ZSS Server will not accept JWT.

https://github.com/zowe/zlux/issues
https://github.com/zowe/zlux/issues

Action:

No action required.

ZWES1606W

Failed to get JWK - %s, retry in %d seconds

Reason:

Failed to get JWK - <reason> , retry in <n> seconds. ZSS Server was unable to get JSON Web Key(JWK), it will try to repeat

the attempt in <n> seconds.

Action:

This message is repeated each <n> seconds. After a succesfull attempt, the message ZWES1601I is displayed and no

action is required.

If message ZWES1601I does not appear, but rather the message ZWES1606W Failed to get JWK. rc=failed to init

HTTP request (9), rsn=TLS error (17). Retry in 10 seconds , consider the following:

TLSv1.3 recommends encryption ChaCha20-Poly1305 . However, this encryption may be restricted by the ICSF

FIPS 140-2 policy. When ZSS requests ChaCha20-Poly1305 , such request will fail.

Modify the zowe.yaml to use TLSv1.2 to avoid the problem with ChaCha20-Poly1305 :

Version: v3.3.x LTS

ZIS Error Message Codes

The following codes can appear in either the ZIS SYSPRINT or JESMSGLG log, or both. Use the following message code

references and the corresponding reasons and actions to help troubleshoot issues.

ZIS cross-memory server messages

ZWES0001I

ZSS Cross-Memory Server starting, version is major.minor.patch+datestamp

Reason:

The cross-memory server with the specified version is starting.

Action:

No action required.

ZWES0002I

Input parameters at address:

hex_dump

Reason:

The message shows a hex dump of the parameters passed in the started task JCL.

Action:

No action required.

ZWES0003I

Server name not provided, default value 'name' will be used

Reason:

The user did not provide a server name.

Action:

The cross-memory server uses the indicated default value name. If needed, specify a server name either via the NAME

parameter in the JCL or via the ZWES.NAME parameter in the PARMLIB member; the JCL parameter takes precedence.

ZWES0004I

Server name is 'name'

Reason:

The message indicates this server's name.

Action:

No action required.

ZWES0005E

ZSS Cross-Memory server not created, RSN = reason_code

Reason:

The cross-memory server failed to create the cross-memory server's data structure.

Action:

The cross-memory server terminates. Contact support.

ZWES0006E

ZSS Cross-Memory server resource not allocated (resource_name)

Reason:

The cross-memory server failed to allocate storage for a resource.

Action:

The cross-memory server terminates. Contact support.

ZWES0007E

ZSS Cross-Memory server PARMLIB member suffix is incorrect - 'suffix'

Reason:

The cross-memory's PARMLIB member suffix is invalid.

Action:

The cross-memory server terminates. Ensure that the suffix consists of two characters that are allowed in a member

name.

ZWES0008E

ZSS Cross-Memory server configuration not read, member = 'member_name', RC = return_code_1 (return_code_2,

reason_code_2)

Reason:

The cross-memory server failed to read the specified PARMLIB member.

Action:

The cross-memory server terminates. Review the error codes and contact support if you cannot resolve the issue.

Possible return codes and the corresponding actions:

return_code_1 return_code_2 reason_code_2 Action

RC_ZISPARM_MEMBER_NOT_FOUND(2) N/A N/A
Ensure the

member exists

RC_ZISPARM_DDNAME_TOO_LONG(8) N/A N/A
Contact

support

RC_ZISPARM_MEMBER_NAME_TOO_LONG(9) N/A N/A
Contact

support

RC_ZISPARM_PARMLIB_ALLOC_FAILED(10)

Return code from

IEFPRMLB

REQUEST=ALLOCATE

Reason code from

IEFPRMLB

REQUEST=ALLOCATE

Review the

IEFPMLB return

and reason

codes

RC_ZISPARM_READ_BUFFER_ALLOC_FAILED(11) N/A N/A
Contact

support

RC_ZISPARM_PARMLIB_READ_FAILED(12)

Return code from

IEFPRMLB

REQUEST=READMEMBER

Reason code from

IEFPRMLB

REQUEST=READMEMBER

Review the

IEFPMLB return

and reason

codes

RC_ZISPARM_PARMLIB_FREE_FAILED(13)

Return code from

IEFPRMLB

REQUEST=FREE

Reason code from

IEFPRMLB

REQUEST=FREE

Review the

IEFPMLB return

and reason

codes

RC_ZISPARM_SLH_ALLOC_FAILED(16) Start line number End line number
Contact

support

RC_ZISPARM_CONTINUATION_TOO_LONG(19) Start line number End line number

Review the

lines and fix

continuation

ZWES0009E

ZSS Cross-Memory server configuration not found, member = 'member_name', RC = return_code

Reason:

The cross-memory server could not find the specified PARMLIB member.

Action:

The cross-memory server terminates. Ensure that the name is correct and the member is available.

ZWES0010E

ZSS Cross-Memory server configuration not loaded, RC = return_code, RSN = reason_code

Reason:

The cross-memory server failed to load the configuration.

Action:

The cross-memory server terminates. Contact support.

ZWES0011E

ZSS Cross-Memory server not started, RC = return_code

Reason:

The cross-memory server could not start.

Action:

The cross-memory server terminates. Review the messages preceding this message. If you cannot resolve the issue,

contact support.

ZWES0012I

ZSS Cross-Memory Server terminated

Reason:

The cross-memory server fully terminated.

Action:

No action required.

ZWES0013E

ZSS Cross-Memory Server terminated due to an error, status = status_code

Reason:

The cross-memory server terminated due to an error.

Action:

The cross-memory server terminates. Review the messages preceding this message. If you cannot resolve the issue,

contact support.

ZWES0014E

Fatal config error - details, RC = return_code

Reason:

A fatal error occurred during processing of the configuration.

Action:

The cross-memory server terminates. Review the messages preceding this message. If you cannot resolve the issue,

contact support.

ZWES0015E

LPA lpa_action failed for module module_name, RC = csvdylpa_return_code, RSN = csvdylpa_reason_code

Reason:

The cross-memory server failed to perform the specified link pack area (LPA) action for a plug-in module.

Action:

The cross-memory server terminates. Review the provided CSVDYLPA return and reason codes (see "z/OS MVS

Programming: Authorized Assembler Services Reference ALE-DYN") and contact support if you cannot resolve the issue.

ZWES0016I

Service 'plug-in_name':'service_name' version has been added

Reason:

The cross-memory server successfully added the specified service.

Action:

No action required.

ZWES0017W

Plug-in 'plug-in_name' failure - details

Reason:

One of the callbacks of a plug-in failed.

Action:

Depending on the stage, some of the plug-in functionality might be impacted. Contact support if you cannot resolve the

issue.

ZWES0018W

Plug-in 'plug-in_name' version plug-in_version doesn't match anchor version anchor_version, LPA module discarded

Reason:

The cross-memory server detected that a plug-in module was outdated; this usually happens when a plug-in gets

updated.

Action:

The cross-memory server discards the old module and loads the latest version to the link pack area (LPA).

ZWES0019W

Parameter 'parameter_name' has an invalid value

Reason:

The cross-memory server detected an invalid parameter.

Action:

The cross-memory server uses the default parameter. Fix the reported parameter and restart the cross-memory server.

ZWES0020E

ZSS Cross-Memory server PARMLIB member name not determined, RC = return_code

Reason:

The cross-memory server could not determine which PARMLIB member to use.

Action:

The cross-memory server terminates. Contact support.

ZWES0021E

ZSS Cross-Memory server module member name not determined, RC = csvquery_return_code

Reason:

The cross-memory server could not determine its module name.

Action:

The cross-memory server terminates. Review the provided CSVQUERY return code (see "z/OS MVS Programming:

Assembler Services Reference ABE-HSP") and contact support if you cannot resolve the issue.

ZWES0098I

debug_message

Reason:

This is a debug message.

Action:

No action required.

ZWES0099I

hex_dump

Reason:

This is a debug hex dump.

Action:

No action required.

ZIS Auxiliary Server messages

ZWES0050I

ZIS AUX Server starting, version is major.minor.patch+datestamp

Reason:

The cross-memory auxiliary server with the specified version is starting.

Action:

No action required.

ZWES0051I

ZIS AUX Server terminated

Reason:

The cross-memory auxiliary server fully terminated.

Action:

No action required.

ZWES0052I

Input parameters at address:

Reason:

The message shows a dump of the parameters passed to this address space.

Action:

No action required.

ZWES0053E

Not APF-authorized (testauth_status)

Reason:

One or more data sets in the STEPLIB concatenation is not APF-authorized.

Action:

The cross-memory auxiliary server terminates. Ensure that all the STEPLIB data sets are APF-authorized.

ZWES0054E

ZIS AUX Server started in wrong key key

Reason:

The cross-memory auxiliary server detected that it was running in the wrong key.

Action:

The cross-memory auxiliary server terminates. Ensure that you have added the correct PPT-entry (see the

documentation) for the ZIS AUX module.

ZWES0055E

ZIS AUX Server resource not allocated (resource_name)

Reason:

The cross-memory auxiliary server failed to allocate storage for a resource.

Action:

Depending on the location of the failure some functionality might be affected. Contact support.

ZWES0056E

RESMGR failed, RC = return_code, service RC = resmgr_return_code

Reason:

The cross-memory auxiliary server failed to install the task resource manager.

Action:

The cross-memory auxiliary server terminates. Review the RESMGR ADD service return code value in

resmgr_return_code (see "z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU"). If you cannot

https://docs.zowe.org/stable/user-guide/configure-xmem-server
https://docs.zowe.org/stable/user-guide/configure-xmem-server

resolve the issue, contact support.

ZWES0057E

PC not established, RC = return_code, RSN = reason_code

Reason:

The cross-memory auxiliary server failed to set up the communication Program Call (PC) routine.

Action:

The cross-memory auxiliary server terminates. Contact support.

ZWES0058E

Communication area failure - details

Reason:

The cross-memory auxiliary server could not establish the communication area.

Action:

The cross-memory auxiliary server terminates. Review the details. If you cannot resolve the issue, contact support.

ZWES0059E

Address space extract RC = return_code, RSN = reason_code

Reason:

The cross-memory auxiliary server could not extract its address space parameters.

Action:

Contact support.

ZWES0060E

Fatal config error - details, RC = return_code

Reason:

A fatal error occurred when processing the configuration.

Action:

The cross-memory auxiliary server terminates. Review the details. If you cannot resolve the issue, contact support.

ZWES0061E

ZIS AUX Server configuration not read, member = 'member_name', RC = return_code_1 (return_code_2, reason_code_2)

Reason:

The cross-memory auxiliary server failed to read the specified PARMLIB member.

Action:

The cross-memory auxiliary server terminates. Review the error codes and contact support if you cannot resolve the

issue.

Possible return codes and the corresponding actions:

return_code_1 return_code_2 reason_code_2 Action

RC_ZISPARM_MEMBER_NOT_FOUND(2) N/A N/A
Ensure the

member exists

RC_ZISPARM_DDNAME_TOO_LONG(8) N/A N/A
Contact

support

RC_ZISPARM_MEMBER_NAME_TOO_LONG(9) N/A N/A
Contact

support

RC_ZISPARM_PARMLIB_ALLOC_FAILED(10)

Return code from

IEFPRMLB

REQUEST=ALLOCATE

Reason code from

IEFPRMLB

REQUEST=ALLOCATE

Review the

IEFPMLB return

and reason

codes

RC_ZISPARM_READ_BUFFER_ALLOC_FAILED(11) N/A N/A
Contact

support

RC_ZISPARM_PARMLIB_READ_FAILED(12)

Return code from

IEFPRMLB

REQUEST=READMEMBER

Reason code from

IEFPRMLB

REQUEST=READMEMBER

Review the

IEFPMLB return

and reason

codes

RC_ZISPARM_PARMLIB_FREE_FAILED(13)

Return code from

IEFPRMLB

REQUEST=FREE

Reason code from

IEFPRMLB

REQUEST=FREE

Review the

IEFPMLB return

and reason

codes

RC_ZISPARM_SLH_ALLOC_FAILED(16) Start line number End line number
Contact

support

RC_ZISPARM_CONTINUATION_TOO_LONG(19) Start line number End line number

Review the

lines and fix

continuation

ZWES0062E

ZIS AUX Server configuration not found, member = 'member_name', RC = return_code

Reason:

The cross-memory auxiliary server could not find the specified PARMLIB member.

Action:

The cross-memory auxiliary server terminates. Ensure that the name is correct and the member is available.

ZWES0063E

User module failure - details

Reason:

One of the callbacks of the user module failed.

Action:

Depending on the stage, some of the user module functionality might be impacted. Contact support if you cannot

resolve the issue.

ZWES0064W

Unsafe function function_name failed, ABEND abend_code-reason_code (recovery RC = recovery_return_code)

Reason:

An abend occurred in one of the callbacks of the user module.

Action:

Depending on the stage, some of the user module functionality might be impacted. Contact support if you cannot

resolve the issue.

ZWES0065W

Caller not released, RC = return_code

Reason:

A synchronization error occurred when communicating with the parent address space of this auxiliary address space.

Action:

Communication between the parent and auxiliary address spaces might be impacted. Contact support.

ZWES0066E

AUX host server ABEND abend_code-reason_code (recovery RC = recovery_return_code)

Reason:

An abend occurred in one of the components of the cross-memory auxiliary server.

Action:

The cross-memory auxiliary server terminates. Contact support.

ZWES0067E

Main loop unexpectedly terminated

Reason:

The cross-memory auxiliary server detected an incorrect state in the main loop.

Action:

The cross-memory auxiliary server terminates. Contact support.

ZWES0068W

Command too long (length)

Reason:

The provided modify command is too long.

Action:

The cross-memory auxiliary server ignores the command.

ZWES0069W

Command not tokenized

Reason:

The cross-memory auxiliary server failed to tokenize the provided modify command.

Action:

The cross-memory auxiliary server ignores the command. Review the messages preceding this message and contact

support if you cannot resolve the issue.

ZWES0070I

Modify command 'command' received

Reason:

The cross-memory auxiliary server received a modify command.

Action:

The cross-memory auxiliary server proceeds to handle the command.

ZWES0071I

Termination command received

Reason:

An operator issued the termination command and the cross-memory auxiliary server successfully received it.

Action:

The cross-memory auxiliary server starts the termination sequence.

ZWES0072I

Modify command 'command' accepted

Reason:

The cross-memory auxiliary server accepted a modify command.

Action:

No action required.

ZWES0073I

Modify command 'command' not recognized

Reason:

The cross-memory sever did not recognize a modify command.

Action:

The cross-memory auxiliary server ignores the command.

ZWES0074W

Modify command 'command' rejected

Reason:

The cross-memory auxiliary server rejected the provided modify command because it was either incorrect or the server

was not ready to process it.

Action:

The cross-memory auxiliary server ignores the command.

ZWES0075W

'command' expects expected_arg_number args, provided_arg_number provided, command ignored

Reason:

The modify command command was used with an incorrect number of arguments.

Action:

The cross-memory auxiliary server ignores the command.

ZWES0076W

Log component 'component' not recognized, command ignored

Reason:

An operator passed an invalid log component in the LOG modify command.

Action:

The cross-memory auxiliary server ignores the command.

ZWES0077W

Log level 'level' not recognized, command ignored

Reason:

An operator passed an invalid log level in the LOG modify command.

Action:

The cross-memory auxiliary server ignores the command.

ZWES0078I

response_text

Reason:

This message contains the response of a DISPLAY modify command.

Action:

No action required.

ZWES0079I

Response message - 'response_text'

Reason:

This message contains the response of a modify command.

Action:

No action required.

ZWES0080I

Termination signal received (signal)

Reason:

The parent address space issued a termination signal and the cross-memory auxiliary server successfully received it.

Action:

The cross-memory auxiliary server starts the termination sequence.

ZWES0081E

Bad dub status bpx4qdb_status (bpx4qdb_return_code,bpx4qdb_reason_code), verify that the started task user has an

OMVS segment

Reason:

The cross-memory auxiliary server detected an invalid dub status.

Action:

The cross-memory auxiliary server terminates. Ensure that the user under which the cross-memory auxiliary server's

started task runs has an OMVS segment.

ZWES0082W

Legacy API has been detected, some functionality may be limited

Reason:

The cross-memory auxiliary server detected a legacy communication area.

Action:

Some functionality might not be available. Update the parent address space to use a more modern AUX API version.

Core cross-memory server messages

ZWES0100I

debug_message

Reason:

This is a debug message.

Action:

No action required.

ZWES0101I

hex_dump

Reason:

This is a debug hex dump.

Action:

No action required.

ZWES0102E

Initialization step 'step_name' failed, RC = return_code

Reason:

A cross-memory server's initialization step failed. The initialization process stops.

Action:

The cross-memory server terminates. Review the messages preceding this message. If you cannot resolve the issue,

contact support.

ZWES0103I

Initialization step 'step_name' successfully completed

Reason:

A cross-memory server's initialization step completed successfully.

Action:

No action required.

ZWES0104I

About to start console task

Reason:

The cross-memory server is starting the console listener task which handles operator commands.

Action:

No action required.

ZWES0105I

Core server initialization started

Reason:

The cross-memory server is starting initialization.

Action:

No action required.

ZWES0106E

Core server initialization failed, RC = return_code

Reason:

The initialization process failed.

Action:

The cross-memory server terminates. Review the messages preceding this message. If you cannot resolve the issue,

contact support.

ZWES0107I

Cold start initiated

Reason:

An operator started the server with the cold start option.

Action:

The cross-memory server discards its global resources and performs a clean start.

ZWES0108W

Global resources clean up RC = return_code

Reason:

The global resource clean-up process failed.

Action:

The cross-memory server continues running. Review return_code and contact support if needed.

Possible return codes:

return_code Action

RC_CMS_GLOBAL_AREA_NULL(12) Ignore if you have not run this ZIS after IPL

RC_CMS_ZVT_NULL(47) Ignore if you have not run any ZIS after IPL

RC_CMS_ZVTE_CHAIN_LOOP(66) Contact support

RC_CMS_ZVTE_CHAIN_NOT_LOCKED(67) Contact support

RC_CMS_ZVTE_CHAIN_NOT_RELEASED(68) Contact support

ZWES0109I

Core server ready

Reason:

The cross-memory server initialized and it is ready to accept program calls.

Action:

No action required.

ZWES0110E

Main loop unexpectedly terminated

Reason:

The cross-memory server detected an incorrect state in the main loop.

Action:

The cross-memory server terminates. Contact support.

ZWES0111I

Main loop terminated

Reason:

The main loop of this cross-memory server successfully terminated upon shutdown.

Action:

No action required.

ZWES0112E

Termination step 'step_name' failed, RC = return_code

Reason:

A cross-memory server's termination step failed.

Action:

The termination process continues. Review the messages preceding this message. If you cannot resolve the issue,

contact support.

ZWES0113I

Termination step 'step_name' successfully completed

Reason:

A cross-memory server's termination step completed successfully.

Action:

No action required.

ZWES0114I

Core server stopped

Reason:

The cross-memory server successfully stopped.

Action:

No action required.

ZWES0115E

Core server stopped with an error, status = status_code

Reason:

The cross-memory server stopped with a non-zero status.

Action:

Review the messages preceding this message. Contact support if you cannot resolve the issue.

ZWES0116E

Core server is abnormally terminating

Reason:

An abend occurred in this cross-memory server.

Action:

Review any messages and errors preceding this message and contact support if you cannot resolve the issue.

ZWES0117E

Not APF-authorized (testauth_status)

Reason:

One or more data sets in the STEPLIB concatenation is not APF-authorized.

Action:

The cross-memory server terminates. Ensure that all the STEPLIB data sets are APF-authorized.

ZWES0118E

Core server started in wrong key key

Reason:

The cross-memory server detected that it was running in the wrong key.

Action:

The cross-memory server terminates. Ensure that you have added the correct PPT-entry (see the documentation) for the

main ZIS module.

ZWES0200I

modify_commands

Reason:

This message lists the modify commands supported by this cross-memory server (not including the plug-ins).

Action:

No action required.

ZWES0201E

Service ID service_id is out of range

Reason:

The cross-memory server detected an invalid service ID.

Action:

The cross-memory server terminates. Contact support.

https://docs.zowe.org/stable/user-guide/configure-xmem-server

ZWES0202E

A duplicate server is running

Reason:

A cross-memory server with the same server name is already running.

Action:

The cross-memory server terminates. Specify a different server name in the cross-memory server's JCL or the PARMLIB

member.

ZWES0203E

Server not locked, ISGENQ RC = return_code, RSN = reason_code

Reason:

An internal synchronization error occurred.

Action:

The cross-memory server terminates. Contact support.

ZWES0204E

Global area address in NULL

Reason:

The global anchor of this cross-memory server is zero.

Action:

The cross-memory server terminates. Contact support.

ZWES0205E

Relocation failed for service_id (function_address not in [module_start_address, module_end_address])

Reason:

An error occurred during the relocation of one of the services in the server module.

Action:

The cross-memory server terminates. Contact support.

ZWES0206E

parameter_name (parameter_address) has invalid eyecatcher

Reason:

The print or dump service received a request with an invalid eyecatcher.

Action:

The service ignores the request. Correct the parameter list if your application initiated the request, otherwise contact

support.

ZWES0207E

resource_name (resource_size) not allocated

Reason:

The cross-memory server failed to allocate storage for a resource.

Action:

Depending on the location of the failure some functionality might be affected. Contact support.

ZWES0208E

Module not loaded into LPA, RC = csvdylpa_return_code, RSN = csvdylpa_reason_code

Reason:

The cross-memory server failed to add its main module to the link pack area (LPA).

Action:

The cross-memory server terminates. Review the provided CSVDYLPA return and reason codes (see "z/OS MVS

Programming: Authorized Assembler Services Reference ALE-DYN") and contact support if you cannot resolve the issue.

ZWES0209E

Module not deleted from LPA, RC = csvdylpa_return_code, RSN = csvdylpa_reason_code

Reason:

The cross-memory server failed to delete its main module from the link pack area (LPA).

Action:

The cross-memory server terminates with a non-zero status. Review the provided CSVDYLPA return and reason codes

(see "z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN") and contact support if you cannot

resolve the issue.

ZWES0210W

No valid LPMEA in global area

Reason:

The cross-memory server detected an invalid LPMEA area for its main module.

Action:

The cross-memory server continues running. If the error occurred in the development mode ignore it, otherwise contact

support.

ZWES0211E

Name/Token delete failed, RC = ieantdl_return_code

Reason:

The cross-memory server failed to delete the cross-memory server's global area's name/token.

Action:

The cross-memory server terminates with a non-zero status. Review the provided IEANTDL return code (see "z/OS MVS

Programming: Assembler Services Reference IAR-XCT") and contact support if you cannot resolve the issue.

ZWES0212E

RACROUTE LIST failed (saf_return_code, racf_return_code, racf_reason_code)

Reason:

The cross-memory server failed to perform RACROUTE LIST on the FACILITY class.

Action:

The cross-memory server terminates. The message contains the SAF return code, RACF return and reason codes (see

"z/OS Security Server RACROUTE Macro Reference"); review the codes. If you cannot resolve the issue, contact support.

ZWES0213E

ZVT not populated, RC = return_code

Reason:

The cross-memory server failed to populate the Zowe vector table.

Action:

The cross-memory server terminates. Contact support.

ZWES0214E

Global area not set, RC = return_code

Reason:

The cross-memory server could not set the cross-memory server's global area.

Action:

The cross-memory server terminates. Contact support.

ZWES0215E

Global area not retrieved, RC = return_code

Reason:

The cross-memory server could not retrieve the cross-memory server's global area.

Action:

The cross-memory server terminates. Contact support.

ZWES0216E

PC-type not set, step = step_name (return_code reason_code)

Reason:

The cross-memory server failed to set up a Program Call (PC) routine.

Action:

Contact support.

ZWES0217E

Too many tokens in command

Reason:

The provided modify command has too many tokens.

Action:

The cross-memory server ignores the command.

ZWES0218E

Command too long (command_length)

Reason:

The provided modify command is too long.

Action:

The cross-memory server ignores the command.

ZWES0219E

Command not tokenized

Reason:

The cross-memory server failed to tokenize the provided modify command.

Action:

The cross-memory server ignores the command. Review the messages preceding this message and contact support if

you cannot resolve the issue.

ZWES0220I

Modify command_verb command received

Reason:

The cross-memory server received a modify command with verb command_verb.

Action:

The cross-memory server proceeds to handle the command.

ZWES0221I

Modify command_verb command accepted

Reason:

The cross-memory server accepted a modify command with verb command_verb.

Action:

No action required.

ZWES0222I

response_text

Reason:

This message contains the response of a successful modify command.

Action:

No action required.

ZWES0223I

Termination command received

Reason:

An operator issued the termination command and the cross-memory server successfully received it.

Action:

The cross-memory server starts the termination sequence.

ZWES0224W

command_verb expects expected_arg_number args, provided_arg_number provided, command ignored

Reason:

A modify command with verb command_verb was used with an incorrect number of arguments.

Action:

The cross-memory server ignores the command.

ZWES0225W

Log component 'component_name' not recognized, command ignored

Reason:

An operator passed an invalid log component in the LOG modify command.

Action:

The cross-memory server ignores the command.

ZWES0226W

Log level 'level' not recognized, command ignored

Reason:

An operator passed an invalid log level in the LOG modify command.

Action:

The cross-memory server ignores the command.

ZWES0227W

Modify command_verb command not recognized

Reason:

The cross-memory server did not recognize a modify command with verb command_verb.

Action:

The cross-memory server ignores the command.

ZWES0228W

Empty modify command received, command ignored

Reason:

The cross-memory server received an empty modify command.

Action:

The cross-memory server ignores the command.

ZWES0229W

Server not ready for command command_verb

Reason:

The cross-memory server is being either initialized or terminated and isn't ready to accept the provided modify

command.

Action:

The cross-memory server ignores the command. Re-issue the command later.

ZWES0230W

Display option 'option_name' not recognized, command ignored

Reason:

The cross-memory server did not recognize a DISPLAY modify command.

Action:

The cross-memory server ignores the command.

ZWES0231E

RESMGR version resource_manager_version not locked, ISGENQ RC = return_code, RSN = reason_code

Reason:

The cross-memory's address space resource manager serialization failed (lock not acquired)

Action:

The cross-memory server terminates. Contact support.

ZWES0232E

RESMGR version resource_manager_version not released, ISGENQ RC = return_code, RSN = reason_code

Reason:

The cross-memory's address space resource manager serialization failed (lock not released).

Action:

The cross-memory server continues running. Contact support.

ZWES0233E

RESMGR ECSA storage not allocated, size = requested_size

Reason:

The cross-memory server could not obtain common storage for the cross-memory server's address space resource

manager.

Action:

The cross-memory server terminates. Ensure that there is no shortage of the extended common service area (ECSA)

storage on your system. If you cannot resolve the issue, contact support.

ZWES0234E

RESMGR NAME/TOKEN not created, RC = ieantcr_return_code

Reason:

The cross-memory server failed to create the resource manager name/token pair.

Action:

The cross-memory server terminates. Review the provided IEANTCR return code (see "z/OS MVS Programming:

Assembler Services Reference IAR-XCT") and contact support if you cannot resolve the issue.

ZWES0235E

RESMGR NAME/TOKEN not retrieved, RC = ieantrt_return_code

Reason:

The cross-memory server failed to retrieve the resource manager name/token pair.

Action:

The cross-memory server terminates. Review the provided IEANTRT return and reason (see "z/OS MVS Programming:

Assembler Services Reference IAR-XCT") codes and contact support if you cannot resolve the issue.

ZWES0236E

RESMGR not added for ASID = hex_asid_number, RC = return_code, manager RC = resmgr_return_code

Reason:

The cross-memory server could not add the resource manager.

Action:

The cross-memory server terminates. Review the RESMGR ADD service return code value in resmgr_return_code (see

"z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU"). If you cannot resolve the issue, contact

support.

ZWES0237E

RESMGR not removed for ASID = hex_asid_number, RC = return_code, manager RC = resmgr_return_code

Reason:

The cross-memory server could not delete the resource manager.

Action:

The cross-memory server terminates with a non-zero status. Review the RESMGR DELETE service return code in

resmgr_return_code (see "z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU"). If you cannot

resolve the issue, contact support.

ZWES0238E

rname_value RNAME not created, failure_reason

Reason:

The cross-memory server failed to create an RNAME.

Action:

The cross-memory server terminates. Contact support.

ZWES0239E

nametoken_name NAME (NT) not created, failure_reason

Reason:

The cross-memory server failed to create a name-token name.

Action:

The cross-memory server terminates. Contact support.

ZWES0240W

Discarding outdated LPA module at module_address (current_module_timestamp - new_module_timestamp)

Reason:

The cross-memory server detected that the current link pack area (LPA) module was outdated; this usually happens

when the cross-memory server gets updated.

Action:

The cross-memory server discards the old module and loads the latest version to LPA.

ZWES0241E

Service with ID service_id not relocated, function_address not in range [module_start_address, module_end_address]

Reason:

An error occurred during the relocation of a cross-memory service.

Action:

The cross-memory server terminates. Contact support.

ZWES0242W

Modify command_verb command rejected

Reason:

The cross-memory server rejected the provided modify command because it was either incorrect or the server was not

ready to process it.

Action:

The cross-memory server ignores the command.

ZWES0243W

Server busy, modify commands are rejected

Reason:

An operator issued too many commands in a short period and the cross-memory server was not able to process the

provided modify command.

Action:

The cross-memory server ignores the command.

ZWES0244E

Resource 'resource_name' not created, RC = return_code

Reason:

The cross-memory server failed to create an internal resource.

Action:

Depending on the location either the cross-memory server terminates or some functionality is impacted. Contact

support.

ZWES0245E

ABEND abend_code-reason_code averted in step 'step_name' (recovery RC = recovery_return_code)

Reason:

An abend occurred in a component of the cross-memory server.

Action:

Depending on the location either the cross-memory server terminates or some functionality is impacted. Contact

support.

ZWES0246E

Service entry service_id is occupied

Reason:

The cross-memory server made an attempt to install a cross-memory service in an already occupied slot.

Action:

The cross-memory server terminates. Contact support.

ZWES0247W

Development mode is enabled

Reason:

The user enabled one or more of the development modes.

Action:

Ensure it was done intentionally, otherwise disable any development mode.

ZWES0248W

Address space is not reusable, start with REUSASID=YES to prevent an ASID shortage

Reason:

An operator started the cross-memory server's address space as a non-reusable address space.

Action:

Use RESUASID=YES when starting the cross-memory server, otherwise starting it without that parameter can cause an

address space identifier (ASID) shortage.

ZWES0249E

Module module_name is loaded from common storage, ensure module_name is valid in the STEPLIB

Reason:

The cross-memory server detected that its module was located in common storage.

Action:

The cross-memory server terminates. Ensure that the module is in a STEPLIB data set.

ZWES0250E

Bad dub status bpx4qdb_status (bpx4qdb_return_code,bpx4qdb_reason_code), verify that the started task user has an

OMVS segment

Reason:

The cross-memory server detected an invalid dub status.

Action:

The cross-memory server terminates. Ensure that the user under which the cross-memory server's started task runs has

an OMVS segment.

ZWES0251I

Look-up routine anchor has been created at address

Reason:

The cross-memory server created a cross-memory server look-up routine anchor.

Action:

No action required.

ZWES0252I

Look-up routine anchor at address has been reused

Reason:

The cross-memory server found and reused an existing look-up routine anchor.

Action:

No action required.

ZWES0253I

Look-up routine anchor at address has been deleted

Reason:

The cross-memory server deleted a look-up routine anchor.

Action:

No action required.

ZWES0254W

Look-up routine anchor at address has been discarded due to reason:

Reason:

The cross-memory server discarded a look-up routine anchor.

Action:

The cross-memory server creates a new anchor. Review the reason and contact support if the reason is not one of the

following:

Incompatible version

Insufficient size

Outdated look-up routine

ZWES0255E

Look-up routine anchor has not been created

Reason:

The cross-memory server could not create a look-up routine anchor.

Action:

The cross-memory server terminates. Ensure there is no shortage of the extended common service area (ECSA) storage

on your system. Contact support if you cannot resolve the issue.

ZWES0256I

Look-up routine anchor at address has been explicitly discarded

Reason:

The user forced the cross-memory server to discard the current look-up routine anchor via a parameter.

Action:

No action required.

ZWES0257W

Look-up routine anchor discard RC = return_code

Reason:

The cross-memory server could not discard the current look-up routine anchor.

Action:

The cross-memory server continues running. Review return_code and contact support if needed.

Possible return codes:

return_code Action

RC_CMS_ZVT_NULL(47) Ignore if you have not run any ZIS after IPL

ZIS Dynamic Linkage Base plug-in messages

ZWES0700I

ZIS Dynamic Base plug-in starting, version major.minor.patch+datestamp, stub version stub_version

Reason:

The dynamic linkage base plug-in with the specified plug-in and stub versions is starting.

Action:

No action required.

ZWES0701I

ZIS Dynamic Base plug-in successfully started

Reason:

The dynamic linkage base plug-in successfully started.

Action:

No action required.

ZWES0702E

ZIS Dynamic Base plug-in startup failed, status = status_code

Reason:

The dynamic linkage base plug-in failed to start.

Action:

The dynamic linkage functionality will not be available. Review the messages preceding this message and contact

support if you cannot resolve the issue.

ZWES0703E

ZIS Dynamic Base plug-in init error - details

Reason:

The dynamic linkage base plug-in failed during initialization.

Action:

The dynamic linkage functionality will not be available. Review the details and contact support if you cannot resolve the

issue.

ZWES0704I

ZIS Dynamic Base plug-in terminating

Reason:

The plug-in is terminating.

Action:

No action required.

ZWES0705I

ZIS Dynamic Base plug-in successfully terminated

Reason:

The plug-in successfully terminated.

Action:

No action required.

ZWES0706E

ZIS Dynamic Base plug-in terminated with error

Reason:

The dynamic linkage base plug-in terminated with errors.

Action:

Review the details and contact support if you cannot resolve the issue.

ZWES0707I

response_text

Reason:

This message contains a response from a modify command of the dynamic linkage base plug-in.

Action:

No action required.

ZWES0708I

Stub vector has been created at address

Reason:

The dynamic linkage base plug-in created a new stub vector at the specified address.

Action:

No action required.

ZWES0710I

Stub vector at address has been reused

Reason:

The dynamic linkage base plug-in reused the stub vector at the specified address.

Action:

No action required.

ZWES0711I

Stub vector at address has been deleted

Reason:

The dynamic linkage base plug-in deleted the stub vector at the specified address.

Action:

No action required.

ZWES0712W

Stub vector at address is discarded due to reason:

Reason:

The dynamic linkage base plug-in discarded an existing stub vector because it was invalid.

Action:

The dynamic linkage base plug-in creates a new vector. Review the reason and contact support if the reason is not one

of the following:

Incompatible version

Insufficient size

ZWES0713W

ZIS Dynamic base plug-in development mode is enabled

Reason:

The user enabled the development mode.

Action:

Ensure it was done intentionally, otherwise disable any development mode.

ZWES0714E

Bad cross-memory server version: expected [min_major.min_minor.min_patch, max_major.max_minor.max_patch),

found current_major.current_minor.current_patch

Reason:

The dynamic linkage base plug-in detected that it was running in an unsupported cross-memory server.

Action:

The dynamic linkage functionality will not be available. Use a supported version of the cross-memory server.

Version: v3.3.x LTS

Troubleshooting Zowe Launcher

The following topics contain information that can help you troubleshoot problems when you encounter unexpected

behavior using Zowe™ Launcher.

Issues and development of the Zowe Launcher is managed in GitHub. When you troubleshoot a problem, you can check

whether a GitHub issue (open or closed) that covers the problem already exists. For a list of issues, see the launcher

repo.

Error Message Codes

Enabling Zowe Launcher Debug Mode

IMPORTANT

You should enable debug mode only when you want to troubleshoot issues. Disable debug mode when you are not

troubleshooting. Running Zowe Launcher in debug mode can adversely affect its performance and consume a large

amount of spool space.

Use debug mode to display additional debug messages for Zowe Launcher.

1. Open the PROCLIB member ZWESLSTC .

2. Find STDENV DD in-stream data.

3. Add a new line ZLDEBUG=ON .

By default, debug mode is disabled, in which ZLDEBUG is set to OFF . To disable debug mode, remove this line or set

ZLDEBUG to OFF .

4. Restart ZWESLSTC Started Task.

TIP

_CEE_ENVFILE_COMMENT sets the comment character. See the following example, in which the last two lines of in-

stream data are commented (not in effect):

Troubleshooting port validation

On start up, Zowe uses the netstat command to check whether the ports required by its enabled components are

available.

Under configuration of dual stack networking, this can fail, with messages similar to the following:

Resolving port validation failures

https://github.com/zowe/launcher
https://github.com/zowe/launcher
https://docs.zowe.org/stable/troubleshoot/launcher/launcher-error-codes
https://www.ibm.com/docs/en/zos/2.5.0?topic=library-cee-envfile-comment

Update the Zowe configuration property zowe.network.server.validatePortFree to value false :

Version: v3.3.x LTS

Error Message Codes

The following error message codes may appear on Zowe Launcher SYSPRINT. Use the following message code references

and the corresponding reasons and actions to help troubleshoot issues.

Zowe Launcher informational messages

ZWEL0001I

component %s started

Reason:

The component <component-name> was started.

Action:

No action required.

ZWEL0002I

component %s stopped

Reason:

The component <component-name> was stopped.

Action:

No action required.

ZWEL0003I

new component initialized %s, restart_cnt=%d, min_uptime=%d seconds, share_as=%s

Reason:

The component <component-name> was initialized.

restart_cnt - The number of attempts to restart the component in case of failure

min_uptime - The minimum uptime that the component can be considered as successfully started

share_as - One of the following values: <yes|no|must> . The value indicates whether child processes of the

component start in the same address space. For details, see _BPX_SHAREAS in the IBM documentation.

Action:

No action required.

ZWEL0004I

https://www.ibm.com/docs/en/zos/2.4.0?topic=shell-setting-bpx-shareas-bpx-spawn-script

component %s(%d) terminated, status = %d

Reason:

The component <component-name> (<process-id>) terminated with the status <code> .

Action:

No action required.

ZWEL0005I

next attempt to restart component %s in %d seconds

Reason:

Next attempt to restart component <component-name> in <n> seconds.

Action:

No action required. The component <component-name> will be restarted in <n> seconds.

ZWEL0006I

starting components

Reason:

Starting the components.

Action:

No action required.

ZWEL0007I

components started

Reason:

The components are started.

Action:

No action required.

ZWEL0008I

stopping components

Reason:

Stopping the components.

Action:

No action required.

ZWEL0009I

components stopped

Reason:

The components are stopped.

Action:

No action required.

ZWEL0010I

launcher has the following components:

Reason:

The launcher has the following components.

Action:

No action required.

ZWEL0011I

name = %16.16s, PID = %d

Reason:

Name = <component-name> , PID = <process-id> .

Action:

No action required.

ZWEL0012I

starting console listener

Reason:

Starting the console listener.

Action:

No action required.

ZWEL0013I

command '%s' received

Reason:

The command <command> was received.

Action:

No action required.

ZWEL0014I

termination command received

Reason:

The termination command was received.

Action:

No action required.

ZWEL0015I

console listener stopped

Reason:

The console listener was stopped.

Action:

No action required.

ZWEL0016I

start component list: '%s'

Reason:

Start the component list <component-list>

Action:

No action required.

ZWEL0017I

ROOT_DIR is '%s'

Reason:

The ROOT_DIR (zowe.runtimeDirectory) is <zowe-runtime-directory>

Action:

No action required.

ZWEL0018I

Zowe instance prepared successfully

Reason:

Zowe instance prepared successfully.

Action:

No action required.

ZWEL0019I

Zowe Launcher stopping

Reason:

Zowe Launcher is stopping.

Action:

No action required.

ZWEL0021I

Zowe Launcher starting

Reason:

Zowe Launcher is starting.

Action:

No action required.

ZWEL0022I

Zowe Launcher stopped

Reason:

Zowe Launcher was stopped.

Action:

No action required.

ZWEL0023I

Zowe YAML config file is '%s'

Reason:

Zowe YAML config file is <path-to-zowe-yaml> .

Action:

No action required.

ZWEL0024I

HA_INSTANCE_ID is '%s'

Reason:

The HA_INSTANCE_ID name is <ha-instance-name> .

Action:

No action required.

ZWEL0025I

restart_intervals for component '%s'= %s

Reason:

Restart intervals for component <component-name> = <restart-intervals>. Restart intervals is defined in

zowe.launcher.restartIntervals .

Action:

No action required.

ZWEL0058I

WORKSPACE_DIR is '%s'

Reason:

The WORKSPACE_DIR (zowe.workspaceDirectory) is <path-to-workspace-dir> .

Action:

No action required.

ZWEL0069I

Configuration is valid

Reason:

The configuration is valid.

Action:

No action required.

Zowe Launcher error messages

ZWEL0026E

%s env variable not found

Reason:

The environmental variable <variable-name> was not found.

Action:

In launcher's STC, under DD statement STDENV , review the <variable-name> .

ZWEL0027E

%s env variable too large

Reason:

<variable-name> environmental variable is too large.

Action:

In launcher's STC, under DD statement STDENV , review the <variable-name> .

ZWEL0028E

failed to get component list

Reason:

Failed to get the component list.

Action:

Review the components defined in the configuration (identified by message ZWEL0023I).

ZWEL0029E

start component list is empty

Reason:

Start component list is empty.

Action:

Review the components defined in the configuration (identified by message ZWEL0023I).

ZWEL0030E

failed to prepare Zowe instance

Reason:

Failed to prepare the zowe instance.

Action:

Check previous messages in the Zowe Launcher SYSPRINT to find the reason and correct it.

ZWEL0031E

failed to setup signal handlers

Reason:

Failed to setup signal handlers.

Action:

Contact Support.

ZWEL0032E

failed to find %s='%s', check if the dir exists

Reason:

Failed to find <dir-type>= <dir-path> , check if the directory exists.

Action:

Verify <dir-type> is correctly defined in configuration (identified by message ZWEL0023I).

ZWEL0033E

failed to get ROOT_DIR dir

Reason:

Failed to get ROOT_DIR (zowe.runtimeDirectory).

Action:

Review zowe.runtimeDirectory defined in configuration (identified by message ZWEL0023I).

ZWEL0034E

ROOT_DIR is empty string

Reason:

ROOT_DIR (zowe.runtimeDirectory) is empty string.

Action:

Review zowe.runtimeDirectory defined in configuration (identified by message ZWEL0023I).

ZWEL0035E

invalid command line arguments, provide HA_INSTANCE_ID as a first argument

Reason:

Invalid command line arguments, provide <HA_INSTANCE_ID> as a first argument.

Action:

Review the command and provide <HA_INSTANCE_ID> as a first argument.

ZWEL0036E

failed to initialize launcher context

Reason:

Failed to initialize launcher context.

Action:

Contact support.

ZWEL0037E

max component number reached, ignoring the rest

Reason:

Maximal number of components reached, ignoring the rest.

Action:

Review the components defined in configuration (identified by message ZWEL0023I).

ZWEL0038E

failed to restart component %s, max retries reached

Reason:

The component <component-name> terminates, and the start limit of the launcher has been reached, thereby preventing

component restart.

Action:

Review the logs to determine the cause of component terminations. When the problem has been corrected, restart the

main Zowe task or restart the component manually, to continue using the component. For more information on

restarting Zowe or individual components, see Starting and stopping Zowe.

ZWEL0039E

cannot start component %s - already running

Reason:

Cannot start the component <component-name> because it is already running.

Action:

No action required.

ZWEL0040E

failed to start component %s

Reason:

Failed to start the component <component-name> .

Action:

Review the component defined in configuration (identified by message ZWEL0023I).

ZWEL0041E

bad value supplied, command ignored

Reason:

Bad value for the command supplied, such command is ignored.

Action:

Review the command.

ZWEL0042E

command not recognized

Reason:

Command not recognized.

https://docs.zowe.org/stable/user-guide/start-zowe-zos

Action:

Review the command.

ZWEL0043E

failed to start console thread

Reason:

Failed to start the console thread.

Action:

Contact support.

ZWEL0044E

failed to stop console thread

Reason:

Failed to stop the console thread.

Action:

Contact support.

ZWEL0045E

error converting zowe.yaml file - %s

Reason:

Error converting zowe.yaml file - <path-to-zowe-yaml> .

Action:

Contact support.

ZWEL0046E

error reading zowe.yaml file - %s

Reason:

There is an error while reading zowe.yaml file - <path-to-zowe.yaml>

Action:

Contact support.

ZWEL0047E

failed to parse zowe.yaml - %s

Reason:

Failed to parse the zowe.yaml - <path-to-zowe-yaml> .

Action:

Verify that the YAML has no syntax errors.

ZWEL0048E

failed to open zowe.yaml - %s: %s

Reason:

Failed to open zowe.yaml - <path-to-zowe-yaml> :?

Action:

Verify if the YAML provided exists and the user running Zowe has permission to read it.

ZWEL0049E

failed to restart component %s

Reason:

Failed to restart the component <component-name> .

Action:

Contact support.

ZWEL0050E

cannot read output from comp %s(%d) - %s

Reason:

Cannot read the output from component <component-name> (<process-id>) - <error-text>

Action:

Contact support.

ZWEL0055E

failed to create file for stdin(%s) - %s

Reason:

Failed to create the file for stdin(<file>) - <error-text> .

Action:

Contact support.

ZWEL0056E

failed to open file for stdin(%s) - %s

Reason:

Failed to open the file for stdin(<file>) - <error-text> .

Action:

Contact support.

ZWEL0057E

failed to create workspace dir '%s'

Reason:

Failed to create the workspace directory <path-to-workspace-dir> .

Action:

Verify that the directory is valid and the Zowe user has permission to create it.

ZWEL0059E

failed to get WORKSPACE_DIR dir

Reason:

Failed to get the WORKSPACE_DIR (zowe.workspaceDirectory) directory.

Action:

Contact support.

ZWEL0060E

WORKSPACE_DIR is empty string

Reason:

The WORKSPACE_DIR (zowe.workspaceDirectory) is empty string.

Action:

Correct the Zowe YAML to define the zowe.workspaceDirectory value.

ZWEL0061E

failed to find %s='%s', check if the file exists

Reason:

Failed to find ?=?, check if the file exists.

Action:

Contact support.

ZWEL0062E

failed to create dir '%s' - %s

Reason:

Failed to create the directory <directory> - <error-text> .

Action:

Review the error text to determine the action to take.

ZWEL0064E

failed to run command %s - %s

Reason:

Failed to run the command <command> - <error-text> .

Action:

Review the error text to determine the action to take.

ZWEL0065E

error reading output from command '%s' - %s

Reason:

There is an error reading the output from command <command> - <error-text>

Action:

Review the error text to determine the action to take.

ZWEL0067E

PARMLIB() entries must all have the same member name

Reason:

PARMLIB() entries must all have the same member name.

Action:

Review the member names are identical for all PARMLIB() entries.

ZWEL0068E

PARMLIB() entries must have a member name

Reason:

PARMLIB() entries must have a member name.

Action:

Review the dataset name contains the member name in PARMLIB entry.

ZWEL0070E

Configuration has validity exceptions:

Reason:

Configuration has validity exceptions.

Action:

Review the exceptions and correct the configuration.

ZWEL0071E

Internal failure during validation, please contact support

Reason:

Internal failure during validation, please contact support.

Action:

Contact support.

ZWEL0072E

Launcher could not load configurations

Reason:

Launcher could not load the configurations.

Action:

Review the configuration entries.

ZWEL0073E

Launcher could not load schemas, status=%d

Reason:

Launcher could not load schemas, status= <return-code>

Action:

For the status=5 , locate the zowe.runtimeDirectory in the configuration.

Check the zowe.runtimeDirectory/schemas contains four .json files shown below:

On occasion the error occurs because the zowe.runtimeDirectory is pointing to a valid directory, but one which doesn't

contain a valid Zowe runtime environment is one of the first failures during a Zowe launch.

ZWEL0074E

Log context was not created

Reason:

The logging context was not created.

Action:

Contact support.

Zowe Launcher warning messages

ZWEL0051W

failed to read zowe.yaml, launcher will use default settings

Reason:

Failed to read zowe.yaml, launcher will use default settings.

Action:

Contact support.

ZWEL0052W

not all components started

Reason:

Not all components were started.

Action:

No action required.

ZWEL0053W

not all components stopped gracefully

Reason:

Not all components were stopped gracefully.

Action:

No action required.

ZWEL0054W

component %s not found

Reason:

The component <component-name> was not found.

Action:

No action required.

ZWEL0063W

Component %s(%d) will be terminated using SIGKILL

Reason:

Component <component-name> (<process-id>) will be terminated using SIGKILL .

Action:

No action required.

ZWEL0066W

command '%s' ended with code %d

Reason:

The command <command> ended with return code <return-code> .

Action:

No action required.

Version: v3.3.x LTS

Troubleshooting Zowe CLI

When there is a problem

If Zowe™ CLI is experiencing a problem, there are steps you can take to find a potential solution.

Applicable environments

These instructions apply to Zowe CLI installed on Windows, Mac OS X, and Linux systems as a standalone installation via

a Zowe download or an NPM registry.

Reaching out for support

1. Is there already a GitHub issue (open or closed) that covers the problem? Check CLI Issues.

2. Review the current list of Known Zowe CLI issues in documentation. Also try searching using the Zowe Docs Search

bar.

Resolving the problem

Collect the following information to help diagnose the issue:

Zowe CLI version installed.

Issue the Zowe CLI command to get the version number.

List of plug-ins installed and their version numbers.

Issue the Zowe CLI plug-ins command to get the version number(s).

Node.js and NPM versions installed.

Issue the Node.js and npm commands to get the version numbers.

List of environment variables in use.

For instructions on using commands to collect this information, see Gathering information to troubleshoot Zowe CLI or

Using individual commands for troubleshooting.

The following information is also useful to collect:

If you are experiencing HTTP errors, see z/OSMF troubleshooting for information to collect.

Is the CLI part of another Node application, such as VSCode, or is it a general installation?

Which queue managers are you trying to administer, and on what systems are they located?

Are the relevant API endpoints online and valid?

https://github.com/zowe/zowe-cli/issues
https://docs.zowe.org/stable/troubleshoot/cli/known-cli
https://docs.zowe.org/
https://docs.zowe.org/stable/troubleshoot/troubleshoot-check-your-zowe-version#zowe-cli
https://docs.zowe.org/stable/troubleshoot/troubleshoot-check-your-zowe-version#zowe-cli-plug-ins
https://docs.zowe.org/stable/troubleshoot/cli/use-individual-troubleshoot-commands#nodejs-and-npm
https://docs.zowe.org/stable/troubleshoot/cli/mustgather-cli
https://docs.zowe.org/stable/troubleshoot/cli/use-individual-troubleshoot-commands
https://docs.zowe.org/stable/troubleshoot/cli/zosmf-cli

Version: v3.3.x LTS

Gathering information to troubleshoot Zowe CLI

An important step in troubleshooting is confirming that your local environment is set up correctly. There are several

Zowe CLI commands you can use to view the conditions for the following system settings:

Configurations

Supported components

Command property values

These commands offer differing levels of information for analysis. Review this list to understand the outputs they provide

and how to apply them for troubleshooting.

Generating a working environment report

Issue the following command:

The output provides a granular view of key areas in the working environment on your terminal, including the following

settings:

Node.js version, operating system path, environment variables

NPM information

Zowe CLI version, profile names

Installed plug-ins and their versions

This detailed report helps provide insights as you troubleshoot. If it finds a problem with a setting, the report displays a

warning message.

Alternatively, the output can be saved as a text file that can be attached to an issue submitted to the Zowe CLI issues

list. Before filing an issue, confirm that it has not already been submitted.

Finding configuration file properties and locations

Issue the following command:

The output provides a brief overview with the following information:

Configuration file locations

https://github.com/zowe/zowe-cli/issues
https://github.com/zowe/zowe-cli/issues

Profile names and types

Profile type defaults

All property values (host, port, etc.)

This overview outlines configuration property values and where they are specified.

Finding configuration file locations

Issue the following command:

The output provides a list of configuration files that affect your Zowe commands in the directory from which this

command is issued.

Finding property values used by a Zowe command

Add the --show-inputs-only option to any Zowe command.

For example, if you want to check the command to list a data set, add the option to the following command:

The output provides the property values that are used by the specified command, which can help the user identify

properties that might be incorrect.

Version: v3.3.x LTS

Using individual commands for Zowe CLI

troubleshooting

Follow these instructions to gather specific pieces of information to help troubleshoot Zowe™ CLI issues.

Identify the currently installed CLI version

Issue the following command:

The exact Zowe CLI version may vary depending upon if the @latest , @zowe-v1-lts , @zowe-v2-lts , or @zowe-v3-lts

version is installed.

Display the version of your globally-installed Zowe CLI through the following NPM command:

More information regarding versioning conventions for Zowe CLI and plug-ins is located in Zowe CLI Releases.

Identify the currently installed versions of plug-ins

Issue the following command:

The output includes the plug-in version number and registry information.

Environment variables

The following settings are configurable with environment variables:

Log levels

Environment variables are available to specify logging level and the CLI home directory.

WARNING

Setting the log level to TRACE or ALL might result in sensitive data being logged. For example, command line

arguments will be logged when TRACE is set.

For more information about logging and environment variables, see Setting CLI log levels.

CLI daemon mode

By default, the CLI daemon mode binary creates or reuses a file in the user's home directory each time a Zowe CLI

command runs. In some cases, this behavior might be undesirable. One example of this would be when the home

directory resides on a network drive and has poor file performance. In this case, changing the file location would improve

performance time.

For information about how to change the location that the daemon uses, see Setting CLI daemon mode properties.

https://github.com/zowe/zowe-cli/blob/master/RELEASE_HISTORY.md#zowe-v3x-lts-releases
https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev#setting-cli-log-levels
https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev#setting-cli-daemon-mode-properties

Home directory

You can set the location on your computer for the Zowe CLI home directory, which contains log files, profiles, and plug-

ins for the product.

The default .zowe folder is created when you issue your first Zowe CLI command. If you change the location of the

folder, you must reinstall plug-ins and recreate or move profiles and log files that you want to retain. In some cases, you

might want to maintain a different set of profiles in multiple folders, then switch between them using the environment

variable.

For information about setting an environment variable for the Zowe CLI home directory, see Setting the CLI home

directory.

The values for these variables can be echoed.

Home directory structure

Location and types of logs

Zowe client logs are located in the ~/.zowe/logs directory:

Imperative CLI Framework log, imperative.log

Generally contains installation and configuration information

Zowe CLI log, zowe.log

Contains information about interaction between the CLI and the server endpoints

Analyze these logs for any information relevant to your issue.

https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev#setting-the-zowe-cli-home-directory
https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev#setting-the-zowe-cli-home-directory

Node.js and npm

Zowe CLI is compatible with the currently supported Node.js LTS versions. For an up-to-date list of supported LTS

versions, see Node.js.org.

To gather the Node.js and npm versions installed on your computer, issue the following commands:

npm configuration

If you are having trouble installing Zowe CLI from an npm registry, gather your npm configuration to help identify issues

with registry settings, global install paths, proxy settings, etc.:

npm log files

In case of errors, npm creates log files in the npm_cache_logs location. To get the npm_cache location for a specific OS:

By default, npm keeps only 10 log files, but sometimes more are needed. To increase the log count:

This command increases the log count to 50, so that more log files will be stored on the system. Now you can run

tests multiple times and not lose the log files. The logs can be passed to Support for analysis.

By default, log files are created only when an npm command fails. To see what is executed, increase the log level of

npm:

With this change, you can see all actions taken by npm on the stdout. If the command is successful, it still does not

generate a log file.

The available log levels are:

silent

error

warn

notice

http

timing

info

verbose

silly

notice

Alternatively, pass --loglevel verbose on the command line. This only works with npm related commands. By

setting log level in the config, it also works when you issue some zowe commands that use npm (for example, zowe

plugins install @zowe/cics).

https://nodejs.org/en/download/releases/

Version: v3.3.x LTS

Using cURL to troubleshoot Zowe CLI

When a REST API call fails on Zowe CLI, you can use cURL to troubleshoot.

Run a command with cURL and compare its output with what is returned using Zowe CLI. This can help pinpoint whether

the problem lies with z/OSMF or Zowe CLI, depending on which command returns an API error.

Installing cURL

cURL is installed by default on Windows 10 V1803 and later, macOS, and most Linux distributions.

If the cURL command is missing from your system, you can download it from the cURL Releases and Downloads page.

Understanding cURL commands

A cURL command using the https protocol follows the basic syntax curl <URL> .

Add cURL options to establish communication between Zowe CLI and z/OSMF, as in the following example command:

NOTE

Some terminals might require single quotes rather than double quotes.

--location

Use --location to allow the server to redirect to a different URL, if needed.

When the server attempts to redirect and --location is not included in the command, the server responds with a 3XX

status code.

--request <API method>

Use --request to identify the API method (such as POST , GET , PUT , DELETE). Not necessary when the API method is

GET .

<API method>

Specifies the API method used in the request.

"https://<host>:<port>/<API>"

Indicates the protocol and URL.

<host>

Specifies the host name where the z/OSMF services are running.

<port>

https://curl.se/download.html

Specifies the REST port number. If not specified, defaults to 443 for HTTPS.

<API>

Specifies the API endpoint used in the request.

--header "X-CSRF-ZOSMF-HEADER;"

Required to establish communication with z/OSMF. Specifies that the client is sending a cross-site request to the REST

interface.

;

Indicates that the header has no value. (Not all headers require a value.)

To pass an additional header with a value, use a colon to separate the key and value. For example: --header "X-

IBM-Data-Type: binary" .

--insecure

Use --insecure with a trusted server that does not require verification before a data transfer.

For example, this bypasses SSL certificate verification for servers with self-signed certificates.

--user "<ID>:<PASSWORD>"

Required and displays as plain text. Also possible to use an environment variable.

<ID>

Specifies the z/OSMF user identification.

<PASSWORD>

Specifies the user password for z/OSMF.

NOTE

To be prompted for a password instead of displaying it in plain text, omit the password from the command and enter

--user "<ID>" .

Comparing commands

To troubleshoot, run a Zowe API request with Zowe CLI and cURL commands, then compare responses.

When both responses include the same error, that may indicate there could be a problem with z/OSMF.

If an API call fails with the Zowe CLI command but not cURL, this can mean the problem lies with Zowe CLI.

The following APIs illustrate some common examples of comparing commands that you can use to troubleshoot with

cURL.

https://docs.zowe.org/stable/user-guide/cli-using-using-environment-variables

z/OSMF Info API

The z/OSMF Info API uses a GET request to obtain basic information from z/OSMF, such as the version, available

services, and other details.

Submitting the cURL command:

Run the following example command using your information:

A successful cURL response follows the format below:

Submitting the Zowe CLI command:

Run the following example command using your information:

A successful Zowe CLI response follows the format below:

z/OSMF Files API

The z/OSMF Files API uses a PUT request to upload a file to a data set via z/OSMF.

Submitting the cURL command:

Run the following example command using your information:

A successful cURL response is empty without any error messages.

Submitting the Zowe CLI command:

Run the following example command using your information:

A successful Zowe CLI response follows the format below:

z/OSMF Jobs API

The z/OSMF Jobs API uses a PUT request to submit a job from a data set via z/OSMF.

Submitting the cURL command:

Run the following example command using your information:

A successful cURL response folllows the format below:

Submitting the Zowe CLI command:

Run the following example command using your information:

A successful Zowe CLI response follows the format below:

https://www.ibm.com/docs/en/zos/2.5.0?topic=service-retrieve-zosmf-information
https://www.ibm.com/docs/en/zos/2.5.0?topic=interface-write-data-zos-data-set-member
https://www.ibm.com/docs/en/zos/2.5.0?topic=interface-submit-job

Version: v3.3.x LTS

z/OSMF troubleshooting

The core command groups use the z/OSMF REST APIs, which can experience any number of problems.

If you encounter HTTP 500 errors with the CLI, consider gathering the following information:

The IZU* (IZUSVR and IZUANG) joblogs (z/OSMF server)

z/OSMF USS logs (default location: /global/zosmf/data/logs, but may change depending on installation)

If you encounter HTTP 401 errors with the CLI, consider gathering the following information:

Any security violations for the TSO user in SYSLOG

Alternate methods

At times, it may be beneficial to test z/OSMF outside of the CLI. You can use the CLI tool curl or a REST tool such as

"Postman" to isolate areas where the problem might be occurring (CLI configuration, server-side, etc.).

Example curl command to GET /zosmf/info :

Version: v3.3.x LTS

Troubleshooting Zowe CLI credentials

Secure credentials

Authentication mechanisms

You can troubleshoot a failed log-in to a mainframe service by reviewing the authentication mechanisms used by Zowe

CLI.

Zowe CLI accepts various methods, or mechanisms, of authentication when communicating with the mainframe, and the

method that the CLI ultimately follows is based on the service it is communicating with.

However, some services can accept multiple methods of authentication. When multiple methods are provided (in a

configuration profile or command) for a service, the CLI follows an order of precedence to determine which method to

apply.

To find the authentication methods used for different services and their order of precedence, see the table in

Authentication mechanisms.

PEM certificate files

PEM certificate files are used by Zowe CLI to authenticate to the API Mediation Layer. To be accepted, these certificate

files must first be recorded in the service's keyring/trust-store on the mainframe before they are used by Zowe CLI.

Some users choose to secure PEM certificates by placing them in a password protected container, such as a PGP file, a

ZIP file, or a password protected PKCS12 file (or a PFX file). However, Zowe CLI does not currently support any certificate

files that require a password for use.

NOTE

These client certificate files are different from the certificates generated or imported during Zowe server

configuration. For more information, see Using Certificates.

To log into the API Mediation Layer with a PEM certificate file, refer to this workaround.

Symptom:

When using a password protected certificate to log in to API ML, an error message displays.

Sample message:

Solution:

Create a new PEM certificate file with no password requirement to log in to API ML.

https://docs.zowe.org/stable/extend/extend-cli/cli-authentication-mechanisms
https://docs.zowe.org/stable/user-guide/use-certificates/

Version: v3.3.x LTS

Known Zowe CLI issues

The following topics contain information that can help you troubleshoot problems when you encounter unexpected

behavior installing and using Zowe™ CLI.

Zowe commands fail with secure credential errors

Valid on Windows, macOS, and Linux

Symptoms:

After you install Zowe CLI, and the installation appears to complete successfully, Zowe commands that load the secure

credential store return error messages. For example, the following commands return error messages:

zowe config init

zowe config secure

Most Zowe commands that access your mainframe environment

This behavior occurs under the following conditions:

npm version 8.11.0 or 8.12.0 is running on your computer.

The computer on which you installed Zowe CLI cannot access the Internet or it has limited access to the Internet.

Your site does not allow connections to https://github.com/.

You installed Zowe CLI from a local package or from an NPM public online registry

Solution:

1. Define the npm_config_global environment variable. Issue the command that corresponds with your operating

system:

Windows Command Prompt: set npm_config_global=true

Windows PowerShell: $env:npm_config_global="true"

macOS/Linux Bash: export npm_config_global=true

2. Install or reinstall Zowe CLI using your preferred installation method.

3. After the Zowe CLI installation completes, reset the npm_config_global environment variable. Issue the command

that corresponds with your operating system:

Windows Command Prompt: set npm_config_global=

Windows PowerShell: $env:npm_config_global=""

macOS/Linux Bash: export npm_config_global=

4. Continue configuring Zowe CLI. Or, reissue a Zowe command that returned an error message. You should no longer

get an error message.

Chain commands fail in a batch script

https://github.com/

Valid on Windows

Symptom: When invoking Zowe CLI in a batch script (.bat or .cmd file), subsequent commands in the script do not

run.

Solution:

To prevent the Zowe executable from taking control and stopping the execution of the script it is called from, add call

in front of each Zowe CLI command.

In the example below, the script never prints "hello" to the terminal:

To fix this, add call before the Zowe CLI command.

For multiple Zowe CLI commands, see the following example:

Command not found message displays when issuing npm install
commands

Valid on all supported platforms

Symptom:

When you issue NPM commands to install the CLI, the message command not found displays. The message indicates

that Node.js and NPM are not installed on your computer, or that PATH does not contain the correct path to the NodeJS

folder.

Solution:

To correct this behavior, verify the following:

Node.js and NPM are installed.

PATH contains the correct path to the NodeJS folder.

For more information, see System requirements for Zowe CLI.

EACCESS error when issuing npm install command

Valid on Windows, Mac, or Linux

Symptom:

An EACCESS error is returned when you issue the npm install -g command to install a package from Zowe.org or npm.

Solution:

To resolve the issue, follow the steps described in Resolving EACCESS permissions errors when installing packages

globally in the npm documentation.

Installation fails on Oracle Linux 6

https://docs.zowe.org/stable/user-guide/systemrequirements-cli
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally

Valid on Oracle Linux 6

Symptom:

You receive error messages when you attempt to install the product on an Oracle Linux 6 operating system.

Solution:

Install the product on Oracle Linux 7 or another Linux or Windows OS. Zowe CLI is not compatible with Oracle Linux 6.

Node.js commands do not respond as expected

Valid on Windows or Linux

Symptom:

You attempt to issue node.js commands and you do not receive the expected output.

Solution:

There might be a program that is named node on your path. The Node.js installer automatically adds a program that is

named node to your path. When there are pre-existing programs that are named node on your computer, the program

that appears first in the path is used. To correct this behavior, change the order of the programs in the path so that

Node.js appears first.

npm install -g command fails due to an EPERM error

Valid on Windows

Symptom:

This behavior is due to a problem with Node Package Manager (npm). There is an open issue on the npm GitHub

repository to fix the defect.

Solution:

If you encounter this problem, some users report that repeatedly attempting to install Zowe CLI yields success. Some

users also report success using the following workarounds:

Issue the npm cache clean command.

Uninstall and reinstall Zowe CLI. For instructions, see the Zowe CLI installation checklist.

Add the --no-optional flag to the end of the npm install command.

Paths converting in Git Bash

Valid on Windows

Symptom:

https://docs.zowe.org/stable/user-guide/cli-install-cli-checklist

When issuing a command with an absolute directory path that begins with a forward slash, Git Bash converts it into an

invalid path that does not exist.

If a command includes a path similar to the following example:

Git Bash can erroneously convert the root directory to a drive letter, as in the example below:

NOTE

Depending on the root directory, the Git Bash conversion can add other directories it assumes to be included in the

path.

Solutions:

Replace the single slash in front of a path with double slashes (//). This stops Git Bash from remapping the path.

To avoid conversion in the example above, edit the path in the following manner:

Set the environment variable MSYS_NO_PATHCONV to 1 in one of the following ways:

Use the export command.

While running commands in a terminal, run the export command once during that terminal session. If writing a

script, run the command once at the top of the script.

The export command is included in the following example:

Set the environment variable in your ~/.bashrc file to define it permanently.

The better option depends on particular circumstances. Using double forward slashes is a good choice when defining

system-wide environment variables could cause problems with other applications. On the other hand, the environment

variable helps avoid rewriting paths on every CLI command that uses them.

Sudo syntax required to complete some installations

Valid on Linux and macOS

Symptom:

The installation fails on Linux or macOS.

Solution:

Depending on how you configured Node.js on Linux or macOS, you might need to add the prefix sudo before the npm

install -g command or the npm uninstall -g command. This step gives Node.js write access to the installation

directory.

Missing data set search results with --mainframe-search option

Valid on Windows, Mac, or Linux

Symptom:

When the zowe zos-files search data-sets command is issued with the --mainframe-search option, results can omit

data sets that are in binary format.

Solution:

Issue the zowe files search ds command without the --mainframe-search option. This returns results that include

data sets in binary format.

Error message with PowerShell scripts

Valid on Windows

Symptom:

PowerShell users on Windows can encounter an error when they try to run Zowe CLI with certain execution policies in

place.

Example of an error message:

Solutions:

Update developer settings in Windows to enable running local scripts without signing:

Run PowerShell as an administrator and use the Set-ExecutionPolicy command to change the execution policy to a

less-restrictive setting, for example: Set-ExecutionPolicy RemoteSigned -scope CurrentUser .

Version: v3.3.x LTS

Raising a CLI issue on GitHub

When necessary, raise a GitHub issue in the Zowe™ CLI repository. It is suggested that you use either the bug or

enhancement template.

Raising a bug report

Please provide as much of the information listed on Troubleshooting CLI as is reasonable. Anyone working on the issue

might need to request this and other information if it is not supplied initially. A description of the error and how it can be

reproduced is the most important information.

Raising an enhancement report

Enhancement reports are just as important to the Zowe project as bug reports. Enhancement reports should be clear and

detailed requirements for a potential enhancement.

https://github.com/zowe/zowe-cli/issues
https://docs.zowe.org/stable/troubleshoot/cli/troubleshoot-cli

Version: v3.3.x LTS

Troubleshooting Zowe CLI plug-ins

When there is a problem

If a plug-in for Zowe™ CLI is experiencing a problem, there are steps you can take to find a potential solution.

Error codes

For help with error codes from a back-end vendor, refer to the vendor’s help documentation.

Reaching out for support

1. Is there already a GitHub issue (open or closed) that covers the problem? Check the following repositories:

IBM CICS Plug-in issues

IBM Db2 Database Plug-in issues

IBM MQ Plug-in issues

IBM z/OS FTP Plug-in issues

If there is no issue on the problem, file an issue in the repository for the respective plug-in so the dev team can

review it.

2. Try searching for the issue using the Zowe Docs Search bar.

3. Use the Zowe CLI Slack channel to reach the Zowe CLI community for assistance.

https://github.com/zowe/cics-for-zowe-client/issues
https://github.com/zowe/zowe-cli-db2-plugin/issues
https://github.com/zowe/zowe-cli-mq-plugin/issues
https://github.com/zowe/zowe-cli-ftp-plugin/issues
https://docs.zowe.org/
https://openmainframeproject.slack.com/archives/CC8AALGN6

Version: v3.3.x LTS

IBM Db2 Database Plug-in troubleshooting

Incompatible glibc version

The ibm_db dependency, which utilizes pre-built drivers to access DB2 and downloads those drivers at install time, pulls

down drivers with a pre-requisite on the GNU C library (glibc) version 2.32.

Due to potential incompatibility issues, users on some Linux distributions might encounter an error while attempting to

install any version of the DB2 Plug-in. Known distributions affected include Ubuntu 20, Debian 11, CentOS 8, and Red Hat

Enterprise Linux 8.

If you are using any of these distributions of Linux, a workaround is required.

Symptom:

Solution:

Use one of the following workarounds:

For Zowe v3 LTS DB2 Plug-in versions 6.1.0 and above, run the following command before installing the DB2 Plug-in:

For Zowe v2 LTS, and Zowe v3 LTS DB2 Plug-in versions prior to 6.1.0, run the following command before installing the

DB2 Plug-in:

ODBC driver install failure

As part of the IBM Db2 Database Plug-in installation, the ODBC driver is automatically installed. The driver is required to

connect to Db2, but installation can fail due to security restrictions.

When the ODBC driver installation fails, Zowe CLI displays an error message. To resolve the error, the user can manually

download and install the driver.

Symptom:

The ODBC driver installation fails when installing the IBM Db2 Database Plug-in.

The ODBC driver installation can fail due to several factors, displaying the following error when the zowe plugins

install command is issued:

To identify the cause of the error and get more details to troubleshoot, run the following command:

The response includes an error message, which could specify a timeout or unpacking error.

Timeout error

Network restrictions can prevent the ODBC driver from downloading, resulting in a timeout error:

Solution:

Download the ODBC driver manually by following the instructions in Downloading the ODBC driver.

Unpacking error

If the driver downloads successfully, security settings can still prompt an unpacking error.

In the following example, the ODBC driver is downloaded manually and the environment variable IBM_DB_INSTALLER_URL

is set to the local path to the ODBC driver.

Solution:

To fix a failed extraction:

1. Manually extract the ODBC driver binaries from the build.zip file which is bundled with the ibm_db package. The

build.zip archive can also be downloaded from GitHub.

2. Open the build/Release folder and copy the binary for your Node version (for example,

odbc_bindings.node.18.18.2 if you have Node 18) into the Db2 plug-in folder

(C:\Users\username\.zowe\plugins\installed\node_modules\@zowe\db2-for-zowe-

cli\node_modules\ibm_db\build\Release).

3. Rename the file to odbc_bindings.node . This is the name used by the Db2 plug-in.

You successfully extracted the ODBC driver.

NOTE

The preceding steps extract the driver binary to fix a broken installation of the IBM Db2 Database Plug-in. When

installing a new version of the plug-in, perform the workaround again to fix a failed extraction.

https://docs.zowe.org/stable/user-guide/cli-db2plugin#downloading-the-odbc-driver
https://www.npmjs.com/package/ibm_db
https://github.com/ibmdb/node-ibm_db/blob/master/build.zip

Version: v3.3.x LTS

Troubleshooting Zowe Explorer

As a Zowe Explorer user, you may encounter problems when using Visual Studio Code extension functions. Review Zowe

Explorer known issues and troubleshooting solutions here.

Before reaching out for support

1. Is there already a GitHub issue (open or closed) that covers the problem? Check Zowe Explorer Issues.

2. Review the current list of Known issues in documentation. Also, try searching using the Zowe Docs search bar

(keyboard shortcut ctrl + k).

3. Collect the following information to help diagnose the issue:

The Zowe Explorer and Visual Studio Code versions installed

See Checking your Zowe version release number for information.

Node.js and NPM versions installed

Your operating system

Zowe Logs, which usually can be found in C:\Users\userID\.vscode\extensions\zowe.vscode-extension-for-

zowe-X.Y.Z\logs

NOTE

In some cases, this path can differ. On operating systems such Linux or Mac, the default path is

~/.vscode/extensions/zowe.vscode-extension-for-zowe-X.Y.Z/logs . In a non-standard installation of

Visual Studio Code, extensions could be stored under a different directory.

Use the Slack channel to reach the Zowe Explorer community for assistance.

Connection issues with Zowe Explorer

If you are using Zowe Explorer at a site that uses an Internet proxy but cannot connect to a mainframe, ensure that the

Proxy Support setting in Visual Studio Code is properly configured. Your system administrator can provide information

on which option works best for your network environment.

Note that Zowe Explorer cannot bypass this setting as it would circumvent the VS Code setting applied to all other

extensions.

To access the Proxy Support setting in VS Code:

1. Open VS Code and select the Manage icon on the Side Bar.

2. Select the Settings option from the context menu.

3. In the Settings view, open the Application menu and select Proxy.

4. Find the Proxy Support drop-down menu and select the appropriate option.

https://github.com/zowe/zowe-explorer-vscode/issues
https://docs.zowe.org/stable/troubleshoot/ze/known-ze
https://docs.zowe.org/stable/troubleshoot/troubleshoot-check-your-zowe-version#zowe-explorer-for-visual-studio-code
https://app.slack.com/client/T1BAJVCTY/CUVE37Z5F

In addition, VS Code allows users and administrators to configure proxy options on launch. See Network Connections in

Visual Studio Code for more information on proxy server support.

System administrators can also add IP addresses, IP ranges, or DNS hostnames for each system inaccessible by proxy to

the NO_PROXY environment variable. VS Code uses this variable for outgoing requests.

Resolving invalid profiles

A problem with a configuration file can make Zowe Explorer unable to read your configurations.

Zowe Explorer displays an error message advising it cannot read the configuration file when a Zowe V3 configuration file

fails to load.

Possible problems in the file could include a syntax error, or an invalid keyword or symbol.

To fix the configuration file causing the error:

1. Click the Show Config button in the message window.

This opens the file in an Editor tab.

2. Modify the file as needed and save the changes.

3. Reload Visual Studio Code to confirm that Zowe Explorer can read the updated file.

Missing write access to VS Code extensions folder

In some environments, the path for VS Code extensions (typically ~/.vscode/extensions) can be read-only. This can

happen when an environment has developers sharing a common read-only extensions folder that is managed by an

admin with write access.

In these cases, Zowe Explorer fails to activate because it cannot write to the logs and temp folders in the extension

path. When Zowe Explorer launches, an EACCES: permission denied error displays. See the following examples.

logs folder write access error:

https://code.visualstudio.com/docs/setup/network#_proxy-server-support
https://code.visualstudio.com/docs/setup/network#_proxy-server-support

temp folder write access error:

To avoid this, change the logs and temp folder locations:

1. In VS Code, select the File menu, select Preferences, and click on Settings.

2. In either the User or Workspace tab, click on the Extensions option to open the menu.

3. Select Zowe Explorer.

4. Enter the new path in the Logs Folder or Temporary Downloads Folder fields. For examples:

logs folder setting:

Log files include information about Zowe Explorer and the connections it makes to the mainframe. These files

can be used for troubleshooting and to analyze errors.

temp folder setting:

Temporary files are local copies of data sets or USS files downloaded from the mainframe to edit in VS Code.

These files last until VS Code closes and all changes have been uploaded to the mainframe.

After a new path is entered, Zowe Explorer writes logs and temporary files using the corresponding path.

Common issues with Zowe Explorer table view

To troubleshoot the table view for data sets and jobs, review the following common issues:

Table does not load

Verify that your z/OSMF profile is active and connected.

Check that your search criteria is valid.

Ensure you have the proper permissions to access the data sets or jobs on the mainframe.

Slow performance with large number of results

Use a more specific search to reduce the number of results.

Lower the number of results per page.

Data set table view: members view shows no data

Verify that the PDS exists, is accessible, and contains members.

Ensure that the PDS is not migrated.

Jobs table view: action buttons are disabled

Ensure you have selected at least one job row.

For the Cancel action, verify that all selected jobs have ACTIVE status.

Version: v3.3.x LTS

Known Zowe Explorer issues

The following topics contain information that can help you troubleshoot problems when you encounter unexpected

behavior when using Zowe Explorer.

Bidirectional languages

Files written in languages primarily read from right to left (Arabic, Hebrew, many Asian languages) can include portions

of text that are written and read left to right, such as numbers.

These bidirectional (BiDi) languages are not currently supported in Visual Studio Code. See Issue #86667 for more

information.

As a result, VS Code extensions like Zowe Explorer, Zowe Explorer CICS Extension, and Zowe Explorer FTP Extension are

not able to support BiDi languages in files.

Client certificate support

Some Zowe Explorer users prefer to use certificates to access the API Mediation Layer. This can be the case in sites that

use credentials such as passwords and multifactor authentication, which might only be valid for a short period of time.

On the other hand, certificates can be valid for much longer.

Zowe Explorer does not support authenticating to API ML using client certificates. However, it is possible to use Zowe CLI

to authenticate to API ML using client certificates and receive a token that Zowe Explorer can use for API ML access.

To use a client certificate to generate an API ML token:

1. Open a command line window and issue the following command:

<APIML Host>

Specifies the API ML host.

<APIML Port>

Specifies the API ML port.

<PEM Public Certificate Path>

Specifies the path for the PEM public certificate.

<PEM Private Certificate Path>

Specifies the path to the PEM private certificate.

Zowe CLI procures a security token from API ML and adds that token to the base profile in the applicable

configuration file.

2. Open Zowe Explorer, or reload it if already open.

https://github.com/microsoft/vscode/issues/86667

Zowe Explorer can access the API ML token in the base profile for authentication.

NOTE

If you have multiple types of configuration files and base profiles, see How configuration files and profiles work

together to learn which configuration and profile would be used to store the API ML token.

Data Set creation error

Symptom:

Data set creation fails.

Sample message:

Error running command zowe.createDataset: z/OSMF REST API Error: http(s) request error event called Error: self signed

certificate in certificate chain. This is likely caused by the extension that contributes zowe.createDataset.

Solution:

Set the value of the Reject-Unauthorized parameter to false . Use the profile edit function to change profile's

parameters.

Opening binary files error

Symptom:

When opening a binary file, an error message appears.

Sample messages:

Solution:

There is no solution or workaround at this time.

Visual Studio Code mainframe connection error

Symptom:

When performing an action that requires a mainframe connection (such as searching for data sets), you get a proxy

error.

Sample message:

"z/OSMF REST API Error" that includes the message Failed to establish a socket connection to proxies , as in the

following image:

https://docs.zowe.org/stable/user-guide/cli-using-understand-profiles-configs#how-configuration-files-and-profiles-work-together
https://docs.zowe.org/stable/user-guide/cli-using-understand-profiles-configs#how-configuration-files-and-profiles-work-together

Solution:

In VS Code settings, search for proxy and change the http.proxySupport setting to off , as in the following image:

Version: v3.3.x LTS

Known Zowe Explorer limitations

Data set pagination and descending sort for PDS members

Limitation

Zowe Explorer v3.2.0 and higher implements server-side pagination by default when displaying lists of data sets and

Partitioned Data Set (PDS) members. This feature divides large lists into separate, more manageable pages.

When sorting PDS members in descending order, members are first paginated alphabetically. Your specified descending

sort is then applied to the members within each page. Consequently, you might need to navigate through multiple pages

(using Next page/Previous page) to locate a specific member.

NOTE

This behavior primarily affects profile types that support listing ranges of PDS members, such as z/OSMF and z/FTP.

Workarounds

To mitigate this behavior:

Disable Data Set List Pagination

Set the Zowe > Ds > Paginate: Max Items Per Page user setting to 0 . This disables the pagination feature for

data set and PDS member lists, loading all items at once. This approach might impact performance for very large

PDSs.

Refine Member Search Pattern

Use a more specific member pattern when searching. This can limit the number of members returned, potentially

reducing the need to navigate across multiple pages.

Mismatched credentials when using Zowe Explorer and Zowe

CLI

Limitation

Mismatching credentials can potentially lock you out from using Zowe CLI and Zowe Explorer in Visual Studio Code with

either Windows Subsystem for Linux (WSL) or Remote Secure Shell (SSH).

WSL allows developers to run a Linux environment on Windows without the need for a separate virtual machine or dual

booting. When using Zowe Explorer with WSL, two parallel processes take place: VS Code runs on the Windows operating

system, while code execution and tooling happen within the Linux environment.

With Remote SSH, the network protocol provides users with a secure connection to a remote computer. When using this

protocol with Zowe Explorer, you can securely connect to a remote machine or a remote development environment.

Both WSL and Remote SSH provide more tools for mainframe developers, but they also have limitations when it comes

to credentials.

Authentication information used in Zowe Explorer — such as usernames and passwords, SSH keys, and API Mediation

Layer tokens — resides on the developer’s local machine, provided the developer is not connected to a remote

environment through VS Code. If you are connected to a remote environment through VS Code, your secure credentials

are stored on the remote system.

Using the VS Code integrated terminal with virtual machines does not include access to the credentials stored by Zowe

Explorer in the local machine. Zowe CLI, for example, is not able to retrieve credentials saved on a developer’s PC when

accessing the mainframe. Instead, Zowe CLI attempts to use any credentials stored in the virtual machine.

This can lead to confusion and inconsistencies when authenticating and accessing resources.

Workaround

It is crucial to ensure that credentials are carefully managed between the local machine and the remote server to

maintain proper authentication.

To avoid any potential issues (such as being locked out) caused by credential mismatch or discrepancies, credentials in

both local and virtual/remote machines must match.

Version: v3.3.x LTS

Raising a Zowe Explorer issue on GitHub

When necessary, raise a GitHub issue in the Zowe Explorer for Visual Studio Code repository. It is suggested that you use

either the bug or feature request.

Raising a bug report

Please provide as much of the information listed on Troubleshooting Zowe Explorer as is reasonable. Anyone working on

the issue might need to request this and other information if it is not supplied initially. A description of the error and how

it can be reproduced is the most important information.

Submitting a feature request

Feature requests are just as important to the Zowe project as bug reports. Feature requests should contain clearly

formulated ideas that can improve user experience.

https://github.com/zowe/zowe-explorer-vscode/issues
https://docs.zowe.org/stable/troubleshoot/ze/troubleshoot-ze

Version: v3.3.x LTS

Troubleshooting Zowe Explorer plug-in for

IntelliJ IDEA

As a Zowe Explorer plug-in for IntelliJ IDEA user, you may encounter problems both with the plug-in and the IntelliJ IDEA

platform. Our support is open for any type of issues, related to this client-side component. See the next sections as an

example of how to react on these problems.

Troubleshooting IntelliJ IDEA platform issues

Sometimes there could be inconveniences in how your IDE works. Before trying to fix any problem:

1. Go to Help > About

2. Click Copy and Close button and save this information somewhere for later

After that, there are a few steps that could be possibly done to fix the issue:

If the issue details are clear and IDE says, which component it is - copy all the related information and send

it to the component's developer

If the issue is unclear - try to reload IDE / your computer. If the problem persists, try to reinstall the IDE or install

the newest one supported LTS version of the IDE you are using

Ask for help or search for the related issue - there is an issue tracker, related to the IntelliJ IDEA issues. Try to

find something related or create a new one

Troubleshooting the plug-in

If you have an issue with the plug-in:

1. Click the gear button, select Plugins...

2. Go to Installed tab, locate the plug-in, save the exact version number

https://youtrack.jetbrains.com/issues/IDEA

After these actions, you have some options to try:

If the problem occurs for the plug-in in editor - try to close the file you are editing, refresh the path and open it

again

If the problem occurs with displaying a mask or a filter - try to hit refresh on a working set or try to recreate a

connection and a working set

If the problem occurs for some other issues related to Files Explorer or JES Explorer - try to recreate a new

connection, and a new working set for it

If the problem occurs for TSO Console - try to reopen the session, try to recreate a session entirely

Other non-related issues, e.g. if the problem occurs for encoding or permissions or "Internal IDE error"

notification appears constantly - copy all the necessary information about the IDE you use and the plug-in's

version, create a new issue listing all the necessary information (like the steps to recreate the issue) as well as the

versions, or search for the related issue in the repository and put a thumb-up for it, so we know that it should have a

higher priority

If you want a direct consulting, don't hesitate to visit our Slack channel and leave a message. Our team is always willing

to help with any issues related to the platform or the plug-in, no matter the size of an issue or a question.

https://github.com/zowe/zowe-explorer-intellij/issues
https://openmainframeproject.slack.com/archives/C020BGPSU0M

Version: v3.3.x LTS

Troubleshooting Zowe Chat

As a Zowe Chat user, you might encounter some issues with how Zowe Chat works. This section lists some solutions to

help you.

Check the chatServer.log

When you run into some errors, you can check the server log which can be found in

$ZOWE_CHAT_HOME/log/chatServer.log .

Note: You need to set rejectUnauthorized to false in chatServer.yaml to access the log.

Raising a Zowe Chat issue on GitHub

When necessary, you can reach out for troubleshooting support via GitHub. You can raise GitHub issues against the

Zowe Chat repository. You could either use it for a bug report or feature request.

Contacting support via Slack

You can also reach out for support through the Zowe Chat Slack channel.

https://github.com/zowe/zowe-chat
https://openmainframeproject.slack.com/archives/C03NNABMN0J

Version: v3.3.x LTS

Contributing to Zowe

You are welcome to contribute to Zowe in many forms and help make this project better! We want to make it as easy as

possible for you to become a Zowe contributor. This topic outlines the different ways that you can get involved and

provides some of the resources that are available to help you get started. All feedback is welcome.

Report bugs and enhancements

Fix issues

Send a Pull Request

Report security issues

Contribution guidelines

Promote Zowe

Helpful resources

Report bugs and enhancements

Report bugs: Download and try one of the latest Zowe builds. Report any bugs you find by creating a Zowe bug

report in GitHub.

Report enhancements: Got an idea for a feature? Or something you're already using could be improved? Post an

enhancement request in GitHub!

Upvote enhancements and bugs: You can show us that an issue matters to you by applying the thumbs-up emoji for

a specific issue. See this link to view the list of issues sorted by the most upvotes. This information is taken into

account when planning the upcoming PI.

If you have an issue that is specific to a sub-project or community team, feel free to submit an issue against a specific

repo.

Fix issues

There are many issues and bugs with the label Good first issue in the Zowe GitHub repositories to help you get

familiar with the contribution process. Check out the following list of GitHub repos to make your contribution!

Zowe sub-projects repositories

Zowe operations squads repositories

When you decide to work on an issue, check the comments on that issue to ensure that it's not taken by anyone. If

nobody is working on it, comment on that issue to let others know that you want to work on it to avoid duplicate

work. The squad can assign that issue to you and provide guidance as well.

You can also reach out to the Zowe squads on Slack to check with the squads if there is any good starter issue that

you can work on.

Send a Pull Request

All code in Zowe aligns with the established licensing and copyright notice guidelines.

https://github.com/zowe/community/issues/new?assignees=&labels=bug&template=bug_report.md&title=
https://github.com/zowe/community/issues/new?assignees=&labels=bug&template=bug_report.md&title=
https://github.com/zowe/community/issues/new?assignees=&labels=enhancement&template=feature_request.md&title=
https://github.com/zowe/community/issues/new?assignees=&labels=enhancement&template=feature_request.md&title=
https://github.com/zowe/api-layer/issues?q=is%3Aissue+is%3Aopen+sort%3Areactions-%2B1-desc
https://github.com/zowe/
https://github.com/zowe/community/blob/master/README.md#zowe-sub-projects
https://github.com/zowe/community/blob/master/README.md#zowe-operations-squads
https://github.com/zowe/community/blob/master/README.md#slack
https://github.com/zowe/zlc/blob/master/process/LicenseAndCopyrightGuidance.md

Before submitting a Pull Request, review the general Zowe Pull Request Guidelines and make sure that you provide the

information that is required in the Pull Request template in that specific repo.

All Zowe commits need to be signed by using the Developer’s Certificate of Origin 1.1 (DCO), which is the same

mechanism that the Linux® Kernel and many other communities use to manage code contributions. You need to add a

Signed-off-by line as a part of the commit message. Here is an example Signed-off-by line, which indicates that the

submitter accepts the DCO:

Signed-off-by: John Doe <john.doe@hisdomain.com>

You can find more information about DCO signoff in the zac repo.

Report security issues

Please direct all security issues to zowe-security@lists.openmainframeproject.org . A member of the security team

will reply to acknowledge receipt of the vulnerability and coordinate remediation with the affected project.

Contribution guidelines

Check out the contribution guidelines for different components and squads to learn how to participate.

Zowe CLI

Zowe API Mediation Layer

Zowe Application Framework

Zowe Explorer

Zowe Client SDKs

Zowe Explorer plug-in for IntelliJ IDEA

Zowe Docs

Promote Zowe

Contribute a blog about Zowe. Read the Zowe blog guidelines to get started.

Present Zowe on conferences and social channels

Helpful resources

General code guidelines

UI guidelines

Zowe learning resources

https://github.com/zowe/community#pull-request-guidelines
https://developercertificate.org/
https://github.com/zowe/zac/blob/master/CONTRIBUTING.md
https://github.com/zowe/zowe-cli/blob/master/CONTRIBUTING.md
https://github.com/zowe/api-layer/blob/master/CONTRIBUTING.md
https://github.com/zowe/zlux
https://github.com/zowe/zowe-explorer-vscode/blob/master/CONTRIBUTING.md
https://github.com/zowe/zowe-cli/blob/master/docs/SDKGuidelines.md
https://github.com/zowe/zowe-explorer-intellij/blob/main/CONTRIBUTING.md
https://docs.zowe.org/stable/contribute/contributing
https://github.com/zowe/community/blob/master/blogging/blog_guidelines.md
https://docs.zowe.org/stable/contribute/guidelines-code/categories
https://docs.zowe.org/stable/contribute/guidelines-ui/ui
https://docs.zowe.org/stable/getting-started/zowe-resources

Version: v3.3.x LTS

Code categories

The Zowe™ codebase consists of a few key areas, with both unique and shared guidelines that define how to write new

code. A few such areas are:

Server Core

Server Security

Microservices

Zowe Desktop Applications

Zowe Application Framework

Zowe CLI and CLI Plug-ins

Imperative CLI Framework

Programming languages

For each area of the codebase, there are established and favored programming languages. Each repository in Github

identifies the primary language used. Some of the basic skills needed to contribute to the project include:

CLI - Node.js, TypeScript

Desktop UI - Node.js, JavaScript

APIs - C, Assembler, Java, Spring

API Mediation Layer - Java, Spring, JavaScript

NOTE

JavaScript is not recommended and should be avoided in favor of Typescript to utilize typing.

Component-specific guidelines and tutorials

This "Code Guidelines" section provides high-level best practices. Each component may have more specific contribution

guidelines. Look for a CONTRIBUTING.md file in the component's GitHub repository for specific details.

To learn more about how to develop Zowe applications and plug-ins or extending Zowe with APIs, see Extending.

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview

Version: v3.3.x LTS

General code style guidelines

All code written in the languages described in Code categories should adhere to the following guidelines to facilitate

collaboration and understanding.

Note: Uncertainties, unimplemented but known future action-items, and odd/specific constants should all be

accompanied with a short comment to make others aware of the reasoning that went into the code.

Whitespaces

Do not use tabs for whitespace. Use 2 spaces per tab instead.

Naming Conventions

Self-documenting code reduces the need for extended code comments. It is encouraged to use names as long as

necessary to describe what is occurring.

Functions and methods

Methods should be named as verbs (for example, get or set), while Objects/Classes should be nouns.

Objects and functions should be CamelCase. Methods on Objects should be dromedaryCase.

Variables

Constants should be CAPITALIZED_AND_UNDERSCORED for clarity, while variables can remain dromedaryCase.

Avoid non-descriptive variable names such as single letters (except for iteration in loops such as i or j) and variable

names that have been arbitrarily shortened (Don't strip vowels; long variable names are OK).

https://docs.zowe.org/stable/contribute/guidelines-code/categories

Version: v3.3.x LTS

Pull requests guidelines

The Zowe™ source code is stored in GitHub repositories under the Zowe GitHub project. You contribute to the project

through Pull Requests in GitHub.

Each pull request is made against a repository that has assigned "maintainers". Pull requests cannot be merged without

the approval of at least one maintainer, who will review Pull Requests to ensure that they meet the following criteria:

The code in the pull request must adhere to the General Code Style Guidelines.

The code must compile/transpile (where applicable) and pass a smoke-test such that the code is not known to break

the current state of Zowe.

The pull request must describe the purpose and implementation to the extent that the maintainer understands what

is being accomplished. Some pull requests need less details than others.

The pull request must state how to test this change, if applicable, such that the maintainer or a QA team can check

correctness. The explanation may simply be to run included test code.

If a pull request depends upon a pull request from the same/another repository that is pending, this must be stated

such that maintainers know in which order to merge open pull requests.

https://github.com/zowe
https://docs.zowe.org/stable/contribute/guidelines-code/general

Version: v3.3.x LTS

Documentation Guidelines

Documentation of Zowe™ comes in various forms depending on the subject being detailed. In general, consider how you

can help end users and contributors through external documentation, in-product help, error messages, etc... and open

an issue in zowe/docs-site if you need assistance.

Contributing to external documentation

The external documentation for the Zowe project, Zowe Docs, is completely open-source. See How to contribute for

more information about contributing to the documentation.

Consider: Release Notes, Install/Config/User Guides, Developer Tutorials, etc...

Component Categories

Provide the following documentation depending on the component that you contribute to:

Server Core

Principles of operation and end-user guides (configuration, troubleshooting) should be documented on Zowe Docs site.

Code documentation follows language-specific formats.

Server Security

Principles of operation and end-user guides (configuration, troubleshooting) should be documented on Zowe Docs site.

Code documentation follows language-specific formats.

Microservices

Microservices implement a web API, and therefore must be documented for understanding and testing. These web APIs

must be accompanied with documentation in the Swagger (https://swagger.io/) format. These documents must be

Swagger 2.0, .yaml extension files. Zowe Application Framework plug-ins that implement microservices should store

these files within the /doc/swagger folder.

Zowe Desktop Applications

Zowe Desktop applications should include documentation that explains how to use them, such that this documentation

can integrate with a Zowe Desktop documentation reader. This is not strictly API documentation, but rather user guides

that can display within the Desktop GUI. The preferred documentation format is a .md extension file that exists in the

/doc/guide folder of an App.

Web Framework

Principles of operation and end-user guides (configuration, troubleshooting) should be documented on Zowe Docs site.

Code documentation follows language-specific formats.

https://github.com/zowe/docs-site
https://docs.zowe.org/
https://docs.zowe.org/stable/contribute/contributing
https://swagger.io/

CLI Plugins

Provide a readme.md file for developers (overview, build, test) as well as end-user documentation for your plug-in on

Zowe Docs site.

For more information, see the CLI documentation contribution guidelines.

Core CLI Imperative CLI Framework

Contributions that affect end users of the CLI should be documented on Zowe Docs site.

Contributions that affect the underlying Imperative CLI Framework should be documented in the GitHub Wiki for future

developers using the framework.

Code documentation follows language-specific formats.

Programming Languages

Each of the common languages in Zowe have code-documentation-generation tools, each with their own in-code

comment style requirements to adhere to in order to generate readable API references. Objects and functions of interest

should be commented in accordance to the language-specific tools to result in output that serves as the first point of

documentation for APIs.

Typescript

When writing TypeScript code, comment objects and functions in compliance with JSDoc. If you are writing in an area of

the codebase that does not yet have a definition file for JSDoc, define a configuration file that can be used for future

documentation of that code.

Java

When writing Java code, comment objects and functions in the Javadoc format.

C

When writing C code, comment functions and structures in compliance with Doxygen.

https://github.com/zowe/zowe-cli/blob/master/CONTRIBUTING.md#documentation-guidelines
https://github.com/zowe/imperative/wiki
https://jsdoc.app/

Version: v3.3.x LTS

UI Guidelines

Introduction

This style guide is the visual language that represents Zowe™. It is a living document that will be updated based on the

needs of our users and software requirements.

Clear

Our users rely on our software to help them be efficient in their work. The interfaces and experiences that we design

should be clear so that there is never confusion about where to click or how to take the next step. Users should always

feel confident in their actions.

Consistent

Users should be able to look at Zowe software products and know that they are in a family. Each software product is

different, but should use similar patterns, icons, and interactions. If a user switches to a new product within Zowe, it

should feel familiar.

Smart

Our users are intelligent, and they need smart software. Zowe design patterns should always compliment the user’s

intelligence and reflect the user’s complex work environment. Designs should align with the Zowe design language by

putting the human needs of the user first.

Version: v3.3.x LTS

Colors

Color brings a design to life. Color is versatile; it's used to express emotion and tone, as well as place emphasis and

create associations. Color should always be used in meaningful and intentional ways to create patterns and visual cues.

Color palette

The Zowe™ color palette is designed and implemented in a theme-able manner. The universal color variables are

determined by common roles and usage; it is not based singularly on a color value (i.e. unique hex code). The same

color value might be assigned to multiple variables in a theme's palette when the values have distinctly different roles.

A universal variable can also have multiple associated roles when the color is consistently used across those roles. This

allows for uniform color application across themes, while giving each theme the freedom to express its own individuality

at a more detailed level.

Light theme

Dark theme

Color contrast | WCAG AA standards

Type colors

All type color combinations on Zowe must pass WCAG AA standards of 4.5:1 for normal text and 3:1 for large text.

For larger text, if the font weight is light (300) or normal (400) the text should be no smaller than 24px. If the font

weight is Semi-Bold (600) then the large text should be no smaller than 19px.

Body Text (4.5:1)

Large Text (3:1): at least 24px / 19px semi-bold

WCAG guidelines: https://www.w3.org/WAI/standards-guidelines/wcag/

Contrast Checker Tool: https://webaim.org/resources/contrastchecker/

https://www.w3.org/WAI/standards-guidelines/wcag/
https://webaim.org/resources/contrastchecker/

Version: v3.3.x LTS

Typography

Typography is used to create clear hierarchies, useful organizations, and purposeful alignments that guide users through

the product and experience. It is the core structure of any well designed interface.

Typeface

Title typeface: Roboto Condensed

Body typeface: Roboto

Sample:

Font weight

Font weight is an important typographic style that can add emphasis and is used to differentiate content hierarchy. Font

weight and size pairings must be carefully balanced. A bold weight will always have more emphasis than a lighter weight

font of the same size. However, a lighter weight font can rank hierarchically higher than a bold font if the lighter weight

type size is significantly larger than the bold.

Roboto font family provides a wide range of weights. However, only SemiBold, Regular, Light should be used for product

design.

Font-weight: 300 / Light

Should only be used at sizes greater than or equal to 18px / 1.125rem

Font-weight: 400 / Normal

Font-weight: 500 / Semi-bold

Body copy

We recommended that you use two sizes for body copy. The first size is UI specific. To maximize screen real estate we

chose a smaller 14px / 0.875rem body copy size for the standard UI console. However, for areas that have prolonged

reading, such as Documentation, we use a larger body copy size of 16px / 1rem to enhance readability.

Line scale

1.333 Perfect Fourth-type scale - desktop

1.2 Minor Third type-scale - mobile

Line-height

Line-height, traditionally known as leading, is one of several factors that directly contribute to readability and pacing of

copy. Line-heights are based on the size of the font itself. Ideal line-heights for standard copy have a ratio of 1:1.5

(typesize : line-height). For example, a type at 16px / 1rem would have a line-height of 1.5rem / 24px (16 x 1.5). The

exception to this rule are headings, which need less spacing and therefore have a line-height ratio of 1:1.25.

Embed font

To embed your selected fonts into a web page, copy the following code into the <head> of your HTML document:

Import font

Specify in CSS

Use the following CSS rules to specify these families:

Version: v3.3.x LTS

Grid

Grid systems are used for creating page layouts through a series of rows and columns that house your content. Zowe™

uses a responsive, mobile-first, fluid grid system that appropriately scales up to 12 columns as the device or view port

size increases.

12 column grid

A 12 column grid is recommended. 12 is a well-distributed division that provides a good range of widths to assign to

content. It is dividable by 2, 3, 4 and 6, which allows flexibility. Many frameworks, such as Bootstrap and Pure, use a 12

column grid by default. Other grid systems like a 5 column grid can reduce flexibility, balance, and consistency.

Gutters

Columns create gutters (gaps between column content) through padding. For devices with a screen width greater than

768px, the column padding is 20px. For devices with a screen width less than 768px, the column padding is 10px.

Screen width ≥ 768px = 20px gutters

Screen width 768px = 10px gutters

Columns

Zowe designs should be limited to 12 columns. If designers feel that they need fewer columns in their grid, they can

specify the number of 12 available columns they wish to span.

This can translate to percentages of the twelve columns. Using this method, a designer can create a folded, less granular

grid. For example, if your component spans three equal columns, that is equal to 25% of twelve columns.

Column count: 12

Margins

The 12 column grid does not have a maximum width. It has a width of 100%, with built in margins that create padding

between column count and the edges of the viewport.

In devices with a screen width greater than 768px, the margins are 5% on the left, and 5% on the right.

In devices with a screen width less than 768px, the margins are 3% on the left, and 3% on the right.

Example: Screen Width > 768px

5% left = 38px (rounded to nearest whole pixel) 5% right = 38px (rounded to nearest whole pixel) 12 columns + gutters

= 768px - 38px - 38px = 692px (rounded to nearest whole pixel)

Example: Screen Width 320px

3% left = 10px (rounded to nearest whole pixel) 3% right = 10px (rounded to nearest whole pixel) 12 columns + gutters

= 320px - 10px - 10px = 300px (rounded to nearest whole pixel)

Version: v3.3.x LTS

Iconography

Icons are key component for a successful UI design because they are a visual way to help add meaning to elements.

Font Awesome is a robust icon library that allows for an easy addition to any web project. Scalable vector icons that can

instantly be customized — size, color, drop shadow, and anything that can be done with the power of CSS.

One Font, Hundreds of Icons – In a single collection, Font Awesome is a pictographic language of web-related

actions.

No JavaScript Required – Fewer compatibility concerns because Font Awesome doesn’t require JavaScript.

Infinite Scalability – Scalable vector graphics means every icon looks awesome at any size.

Free, as in Speech – Font Awesome is completely free for commercial use. Check out the license.

CSS Control – Easily style icon color, size, shadow, and anything that’s possible with CSS.

Perfect on Retina Displays – Font Awesome icons are vectors, which mean they’re gorgeous on high-resolution

displays.

Plays Well with Others – Originally designed for Bootstrap, Font Awesome works great with all frameworks.

Desktop Friendly – To use on the desktop or for a complete set of vectors, check out the cheatsheet.

https://fontawesome.com/

Accessibility-minded – Font Awesome loves screen readers and helps make your icons accessible on the web.

To learn more or download the library go to www.fontawesome.com

http://www.fontawesome.com/

Version: v3.3.x LTS

Application icon

General rules

Embrace simplicity. Use a simple, unique shape or element that represents the essence of the application. Avoid

excessive details and redundant shading.

Use the Zowe™ color palette. Avoid using a monochromatic palette for your icons. Use the Zowe color palette to

ensure that the icons have a consistent look.

Use unique shapes and design elements. Avoid using single commonly used design elements, such as the gear,

document, or folder. These elements can reduce recognizability. Do not use photos and screenshots. Keep icons simple

and abstract.

Avoid labels and text. Short, commonly used abbreviations are acceptable, if necessary. Remember that all icons have

center-aligned labels beneath them.

Use brand identity. If your Zowe application has a brand identity element such as a logo, you can use it. Remember to

include the copyright symbol.

Shape, size, and composition

Use a flat design style. Flat design focuses on open space, bright colors, and flat graphics or illustrations. Our

minimalistic design approach puts the emphasis on usability.

A flat icon has clean, crisp edges and a flat dimensional layout.

Use solid fill shapes. Most Zowe App icons have solid fill shapes, which are more readable on dark backgrounds.

Use the circle shape for the background application icons. Set the outer corners to 100% opacity. Create an image file

that is 87x87 pixels, and save the file in PNG format.

Maintain consistent visual proportions.

Colors and shades

Verify the contrast

Verify that the background color of the icon provides enough contrast against the desktop.

Use the Zowe palette

To ensure that your app icons are clear and consistent, use the Zowe color palette. If you need to use well-established

brand identity elements, you can use the colors that are associated with the brand.

Layer Shadows

Use smooth shadows to represent that some elements are on different layers and should be visually separated. Avoid

using too many layers because they can overcomplicate the icon.

https://docs.zowe.org/stable/contribute/guidelines-ui/colors#color-palette

Use the long shadow for consistency.

Although the long shadow effect does not have any semantic meaning, it adds focus to the main icon shape and

identifies the central,most meaningful element.

Use the gradient shadow settings shown in the following image, or use a flat non-gradient shadow with 20% opacity and

#000000 color.

Version: v3.3.x LTS

Contributing to Zowe Documentation

You are welcome to contribute to the Zowe™ documentation repository. Anyone can open an issue about documentation,

or contribute a change with a pull request (PR) to the zowe/docs-site GitHub repository.

Before You Get Started

Before contributing a documentation change to the repository, you should be familiar with:

Git and GitHub: To learn about git and GitHub, refer to the Github Guides.

Slack: The Zowe Documentation team communicates using the Slack application. To learn about Slack, refer to the

Slack Help Center. The Zowe team is part of the Open Mainframe Project channel.

Markdown Language: The Zowe documentation is written in Markdown language. To learn about Markdown, refer to

The Markdown Guide.

Contributions to Zowe documentation are reviewed before being committed to the repository. Commits needs to have

Developer Certificate of Origin (DCO). Committing changes to the Zowe repository requires additional access rights. See

https://github.com/zowe/community/blob/master/COMMITTERS.md. Also see Participating in Zowe Documentation for

more details about roles and permissions.

Getting started checklist

If you are ready to get started contributing to the Zowe Documentation repository:

Verify that you are familiar with the concepts in Before You Get Started.

Familiarize yourself with the Zowe documentation repository.

Contact the Doc Squad in Slack to verify that you can open a pull request and review changes.

Open an issue for Zowe documentation if you find a problem.

Read the documentation style guide.

The Zowe documentation repository

The Zowe documentation is managed in a GitHub repository.

Review the site's overall organization and structure

Review the help files related to your planned changes or addition

Sending a GitHub Pull Request

You can provide suggested edits to any documentation page by using the Edit this page link on top of each page. After

you make the changes, you submit updates in a pull request for the Zowe documentation team to review and merge.

Follow these steps:

1. Click Edit this page on the page that you want to update.

https://github.com/zowe/docs-site/
https://guides.github.com/
https://slack.com/help
https://openmainframeproject.slack.com/
https://www.markdownguide.org/
https://github.com/zowe/community/blob/master/COMMITTERS.md
https://openmainframeproject.slack.com/archives/CC961JYMQ
https://github.com/zowe/docs-site

2. Make the changes to the file.

3. Scroll to the end of the page and enter a brief description about your change.

4. Optional: Enter an extended description.

5. Select Propose file change.

6. Select Create pull request.

Opening an issue for Zowe documentation

You can request the documentation to be improved or clarified, report an error, or submit suggestions and ideas by

opening an issue in GitHub for the Zowe documentation team to address. The team tracks the issues and works to

address your feedback.

Follow these steps:

1. Click the Open doc issue link at the top of the page.

2. Enter the details of the issue.

3. Click Submit new issue.

Documentation style guide

This section gives writing style guidelines for the Zowe documentation.

Headings and titles

Use sentence-style capitalization for headings

Capitalize only the initial letter of the first word in the text and other words that require capitalization, such as proper

nouns. Examples of proper nouns include the names of specific people, places, companies, languages, protocols, and

products.

Example: Verifying that your system meets the software requirements.

For tasks and procedures, use gerunds for headings

Example:

Building an API response

Setting the active build configuration

For conceptual and reference information, use noun phrases for headings

Example:

Query language

Platform and application integration

Use headline-style capitalization for only these items

Titles of books, CDs, videos, and stand-alone information units.

Example:

Installation and User's Guide

Quick Start Guides or discrete sets of product documentation

Technical elements

Variables

Style:

Italic when used outside of code examples,

Example: myHost

If wrap using angle brackets <> within code examples, italic font is not supported.

Example:

put <pax-file-name>.pax

Where pax-file-name is a variable that indicates the full name of the PAX file you download. For example, zoe-

0.8.1.pax.

Message text and prompts to the user

Style: Put messages in quotation marks.

Example: "The file does not exist."

Code and code examples

Style: Monospace

Example: java -version

Command names, and names of macros, programs, and utilities that you can type as commands

Style: Monospace

Example: Use the BROWSE command.

Interface controls

Categories: check boxes, containers, fields, folders, icons, items inside list boxes, labels (such as Note:), links, list boxes,

menu choices, menu names, multicolumn lists, property sheets, push buttons, radio buttons, spin buttons, and Tabs

Style: Bold

Example: From the Language menu, click the language that you want to use. The default selection is English.

Directory names

Style: Monospace

Example: Move the install.exe file into the newuser directory.

File names, file extensions, and script names

Style: Monospace

Example:

Run the install.exe file.

Extract all the data from the .zip file.

Search or query terms

Style: Monospace

Example: In the Search field, enter Zowe .

Citations that are not links

Categories: Chapter titles and section titles, entries within a blog, references to industry standards, and topic titles in

IBM Knowledge Center

Style: Double quotation marks

Example:

See the "Measuring the true performance of a cloud" entry in the blog.

For installation information, see "Installing the product".

Tone

Use simple present tense rather than future or past tense, as much as possible

Example:

✔️ The API returns a promise.

❌ The API will return a promise.

Use simple past tense if past tense is needed

Example:

✔️ The limit was exceeded.

❌ The limit has been exceeded.

Use active voice as much as possible

Example:

✔️ In the Limits window, specify the minimum and maximum values.

❌ The Limits window is used to specify the minimum and maximum values.

Exceptions: Passive voice is acceptable when any of these conditions are true:

The system performs the action.

It is more appropriate to focus on the receiver of the action.

You want to avoid blaming the user for an error, such as in an error message.

The information is clearer in passive voice.

Example:

✔️ The file was deleted.

❌ You deleted the file.

Using second person such as "you" instead of first person such as "we" and "our"

In most cases, use second person ("you") to speak directly to the reader.

End sentences with prepositions selectively

Use a preposition at the end of a sentence to avoid an awkward or stilted construction.

Example:

✔️ Click the item that you want to search for.

❌ Click the item for which you want to search.

Avoid anthropomorphism

Focus technical information on users and their actions, not on a product and its actions.

Example:

✔️ User focus: On the Replicator page, you can synchronize your local database with replica databases.

❌ Product focus: The Replicator page lets you synchronize your local database with replica databases.

Avoid complex sentences that overuse punctuation such as commas and semicolons.

Release notes

Release notes should be written in a consistent style that is easy to read and provides relevant information to users.

To help ensure these best practices are followed, see CHANGELOG and release notes formatting and Writing style for

release notes entries.

Word usage and punctuation

Admonitions

Use the admonitions syntax provided by Docusaurus.

https://github.com/zowe/docs-site/blob/master/release-handbook/release_notes_guide.md#changelog-and-release-notes-formatting
https://github.com/zowe/docs-site/blob/master/release-handbook/release_notes_guide.md#writing-style-for-release-notes-entries
https://github.com/zowe/docs-site/blob/master/release-handbook/release_notes_guide.md#writing-style-for-release-notes-entries
https://docusaurus.io/docs/markdown-features/admonitions

NOTE

Some content with Markdown syntax . Check this link.

TIP

Some content with Markdown syntax . Check this link.

INFO

Some content with Markdown syntax . Check this link.

WARNING

Some content with Markdown syntax . Check this link.

DANGER

Some content with Markdown syntax . Check this link.

Use of "following"

For whatever list or steps we are introducing, the word "following" should precede a noun.

Examples:

Before a procedure, use "Follow these steps:"

The <component_name> supports the following use cases:

Before you install Zowe, review the following prerequisite installation tasks:

Avoid ending the sentence with "following".

Examples:

✔️ Complete the following tasks.

❌ Complete the following.

Use a consistent style for referring to version numbers

When talking about a specific version, capitalize the first letter of Version.

Examples:

✔️ Java Version 8.1 or Java V8.1

❌ Java version 8.1, Java 8.1, or Java v8.1

When just talking about version, use "version" in lower case.

Example: Use the latest version of Java.

https://docs.zowe.org/
https://docs.zowe.org/
https://docs.zowe.org/
https://docs.zowe.org/
https://docs.zowe.org/

Avoid "may"

Use "can" to indicate ability, or use "might" to indicate possibility.

Examples:

Indicating ability:

✔️ You can use the command line interface to update your application."

❌ "You may use the command line interface to update your application."

Indicating possibility:

✔️ "You might need more advanced features when you are integrating with another application. "

❌ "You may need more advanced features when you are integrating with another application."

Use "issue" when you want to say "run"/"enter" a command

Example: At a command prompt, issue the following command:

Use of slashes

Avoid spaces when using a slash in between words.

Examples:

Indicating or (on/off), and or (document/file), per (millions of instructions/second):

✔️ Save the document/file in your desktop folder.

❌ Save the document / file in your desktop folder.

Punctuation in lists

Use punctuation (periods, commas) in bulleted and numbered lists when appropriate. Do not use conjunctions (and, or)

to separate list items.

Use periods for list items when the items are complete sentences, or the introductory text is a sentence fragment and

each item completes the sentence

Examples:

✔️ You can obtain IBM SDK for Node.js - z/OS for free in one of the following ways:

Order the SMP/E edition through your IBM representative if that is your standard way to order IBM software.

Order the SMP/E edition through IBM Shopz with optional paid support available.

Download PAX file format at ibm.com/products/sdk-nodejs-compiler-zos. IBM defect Support is not available for this

format.

❌ Through customization, you can change attributes such as:

Enabling or disabling components so you only run what you need

Changing the network ports Zowe runs on to suit your environment

Customizing the behavior of a component, such as turning on optional features or logging

Use periods for list items when the items are complete sentences, or the introductory text is a sentence fragment and

each item completes the sentence

Examples:

✔️ You can obtain IBM SDK for Node.js - z/OS for free in one of the following ways:

Order the SMP/E edition through your IBM representative if that is your standard way to order IBM software.

Order the SMP/E edition through IBM Shopz with optional paid support available.

Download PAX file format at ibm.com/products/sdk-nodejs-compiler-zos. IBM defect Support is not available for this

format.

❌ Through customization, you can change attributes such as:

Enabling or disabling components so you only run what you need

Changing the network ports Zowe runs on to suit your environment

Customizing the behavior of a component, such as turning on optional features or logging

Do not use punctuation or conjunctions (and, or) in bullet lists when the list items are not complete sentences, when the

bullet item has three or fewer words, or when the bullet items are UI labels, headings, strings, or similar

Examples:

✔️ The z/OSMF configuration process occurs in three stages, and in the following order:

Security setup

Configuration

Server initialization

❌ The Zowe runtime, which consists of a number of components including:

Zowe Application Framework.

Zowe API Mediation Layer.

Z Secure Services (ZSS).

Do not use conjunctions (and, or) in bullet lists

Examples:

✔️ Integrated development environments:

VS Code 1.53.2+

Eclipse Che

Red Hat CodeReady Workspaces

Theia 1.18+

❌ Before continuing with the installation, you should be familiar with the following topics:

Zowe's hardware and software requirements, and

The zwe utility used for installing, configuring, and managing Zowe, and

The configuration file used for Zowe, zowe.yaml .

Punctuation in numbered lists

Abbreviations

Do not use an abbreviation as a noun unless the sentence makes sense when you substitute the spelled-

out form of the term

Examples:

✔️ The tutorials are available as PDF files.

❌ The tutorials are available as PDFs. [portable document formats]

Do not use abbreviations as verbs

Examples:

✔️ You can use the FTP command to send the files to the server.

❌ You can FTP the files to the server.

Do not use Latin abbreviations

Use their English equivalents instead. Latin abbreviations are sometimes misunderstood.

Latin English equivalent

e.g. for example

etc.

and so on.

When you list a clear sequence of elements such as "1, 2, 3, and so on" and "Monday, Tuesday, Wednesday,

and so on." Otherwise, rewrite the sentence to replace "etc." with something more descriptive such as "and

other output."

i.e. that is

Spell out the full name and its abbreviation when the word appears for the first time. Use abbreviations in

the texts that follow

Example: Mainframe Virtual Desktop (MVD)

Structure and format

Add "More information" to link to useful resources or related topics at the end of topics where necessary.

Word usage

The following table alphabetically lists the common used words and their usage guidelines.

Do Don't

API ML (where appropriate) The API ML

application app

data set dataset (unless used in syntax)

Capitalize "Server" when it's part of the product name

file name filename (unless it's a property written as one word)

Java java

keyboard shortcut hotkey

IBM z/OS Management Facility (z/OSMF)

z/OSMF
zosmf (unless used in syntax)

ID id

PAX pax

personal computer

PC

server

machine

later
higher

Do not use to describe versions of software or fix packs.

macOS MacOS

Node.js
node.js

Nodejs

plug-in plugin

REXX Rexx

UNIX System Services

z/OS UNIX System Services
USS

zLUX
ZLUX

zLux

Version: v3.3.x LTS

Zowe CLI command reference guide

View detailed documentation on commands, actions, and options in Zowe CLI. You can read an interactive online version,

download a PDF document, or download a ZIP file containing the HTML for the online version.

This reference documentation is organized to contain the web help for Zowe CLI, CLI plug-ins maintained by Zowe, and

Zowe V3 LTS-conformant third-party CLI plug-ins. As third-party plug-ins are approved under the Zowe V3 LTS

Conformance Program and contribute their web help to Zowe, we update the documentation accordingly.

To view the web help for V2 conformant plug-ins, click the version drop-menu on the top right corner of this page and

click the link to any previous v2.xx.x version of this page.

Browse the interactive online version

Download the CLI reference guide in PDF format

Download the CLI reference guide in ZIP format

https://docs.zowe.org/stable/web_help/index.html
https://docs.zowe.org/stable/CLIReference_Zowe.pdf
https://docs.zowe.org/stable/zowe_web_help.zip

Version: v3.3.x LTS

Zowe YAML server configuration file reference

Zowe v3 uses a YAML configuration file for server installation, configuration, and runtime. This file is usually referred to

as the Zowe configuration YAML file or the zowe.yaml file. YAML is a human-friendly data serialization language for all

programming languages. To learn more about YAML specifications, see https://yaml.org/. For a free, offline YAML validator

to help validate your syntax, download the Red Hat's VS Code YAML extension.

Content within the YAML file is documented by and validated against schema files which are shipped within Zowe and

extended by Zowe extensions. For details on the schema technology and where to find the schema files within our

source code, see Using the Configuration Manager.

NOTE

In the following sections, we refer to configuration keys by using the concatenation of key names and dots. For

example, if you want to update the configuration key zowe.certificate.keystore.type with the value PKCS12 , you

should set the value for this entry in the zowe.yaml :

High-level overview of YAML configuration file

The YAML configuration file has few high-level sections:

zowe

Defines global configurations specific to Zowe, including default values.

java

Defines Java configurations used by Zowe components.

node

Defines node.js configurations used by Zowe components.

zOSMF

Tells Zowe your z/OSMF configurations.

components

Defines detailed configurations for each Zowe component or extension. Each component or extension may have a

key entry under this section. For example, components.gateway is the configuration for the API Mediation Layer

Gateway service.

haInstances

Defines customized configurations for each High Availability (HA) instance. You should predefine all Zowe HA

instances you want to start within your Sysplex.

Extract sharable configuration out of zowe.yaml

The Zowe YAML configuration file supports splitting into several files or PARMLIB members. This can help simplify

grouping configuration changes by type or owner. For details, see Splitting configuration into multiple storage types.

Creating portable references

https://yaml.org/
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml
https://docs.zowe.org/stable/user-guide/configmgr-using#json-schema-validation
https://docs.zowe.org/stable/user-guide/configmgr-using#splitting-configuration-into-multiple-storage-types

The Zowe YAML configuration file has template logic for relating one value to another, a system environment variable or

symbol, and the possibility to add conditional behavior. This template logic can help to make your configuration portable

between systems that need slightly different behavior while retaining the same configuration file. For details, see

Configuration templates in the article Zowe Configuration Manager.

Configuration override - defaults.yaml

Values for global configuration and components are defined in the defaults.yaml file. This file is always merged with

current configs when configmgr is used.

For example, if you decide to remove the zowe.job section by commenting or deleting, the zowe.job section reappears

after merging with the defaults.

Example of initial user config:

Example of modified user config - zowe.job commented out:

Example of merged result:

NOTE

To disable a component which is defined enabled in defaults.yaml , ensure that you have a definition of that

component in your config, and change enabled: true to enabled: false . Deleting or commenting out a

component does not disable the component.

Configuration override - inside zowe.yaml

In the zowe.yaml , you can define default values which can be overridden in more granular level configurations. This can

happen in several ways:

The component can override the default certificate configuration. For the specific entry of certification configuration

that is not overridden, the configuration falls back to default configurations.

Example:

In this example, the App Server usees the certificate alias app-server instead of localhost from the same keystore

defined in zowe.certificate.keystore.file . Note that the service uses the same truststore defined in

zowe.certificate.truststore.file .

Zowe high availability (HA) instance component configuration haInstances.<ha-instance>.components.

<component> can override global level component configurations components.<component> . Any configuration in the

components.<component> level can be overridden in the haInstances.<ha-instance>.components.<component>

level.

Example:

In this example configuration, the App Server on lpar2a HA instance will not be started. On lpar2b HA instance, it will

be started but on port 28544.

YAML configurations - certificate

https://docs.zowe.org/stable/user-guide/configmgr-using#configuration-templates
https://github.com/zowe/zowe-install-packaging/blame/v3.x/master/files/defaults.yaml
https://github.com/zowe/zowe-install-packaging/blame/v3.x/master/files/defaults.yaml

In Zowe YAML configuration, the certificate definition shares the same format which can be used in several configuration

entries. For example, zowe.certificate , components.<component>.certificate , and haInstances.<ha-

instance>.components.<component>.certificate . The certificate definition may include the following entries:

keystore.type

Specifies the type of the keystore. If you are using keystore, this value usually should be PKCS12 . If you are using

keyring, this value should be JCERACFKS .

keystore.file

Specifies the path of the keystore file. If you are using keyring, this should look like safkeyring://<keyring-

owner>/<keyring-name> . For example, safkeyring://ZWESVUSR/ZoweKeyring .

keystore.password

Specifies the password of the keystore.

keystore.alias

Represents the alias name of the certificate stored in keystore. If you are using keyring, this is the certificate label

connected to the keyring.

truststore.type

Specifies the type of the truststore file. If you are using keystore, this value usually should be PKCS12 . If you are

using keyring, this value should be JCERACFKS .

truststore.file

Specifies the path to the truststore file. If you are using keyring, this should look like safkeyring://<keyring-

owner>/<keyring-name> , and usually will be the same value of keystore.file .

truststore.password

Specifies the password of the truststore.

pem.key

Specifies the private key file in PEM format. This can be used by applications that do not support either PKCS12

keystore format or z/OS keyring.

pem.certificate

Specifies the public key file in PEM format. This can be used by applications that do not support either PKCS12

keystore format or a z/OS keyring.

pem.certificateAuthorities

Specifies certificate authorities in PEM format. This can be used by applications that do not support either PKCS12

keystore format or a z/OS keyring.

YAML configurations - zowe

The high-level configuration zowe supports these definitions:

Directories

zowe.runtimeDirectory

Specifies the runtime directory where Zowe is installed.

zowe.logDirectory

Some Zowe components write logs to file system. This parameter specifies which directory should be used to store

log files.

zowe.workspaceDirectory

Specifies components where they can write temporary runtime files.

zowe.extensionDirectory

Specifies the location of the runtime of all your extensions.

Zowe Job

zowe.job.name

Specifies the Zowe job name for the ZWESLSTC started task.

zowe.job.prefix

Specifies the Zowe address space prefix for Zowe components.

Domain and port to access Zowe

zowe.externalDomains

Specifies a list of external domains to be used by the Zowe instance. This configuration is an array of domain name

strings. In Sysplex deployment, this value is the DVIPA domain name defined in Sysplex Distributor. For example,

In Kubernetes deployment, this value is the domain name you will use to access your Zowe running in a Kubernetes

cluster.

zowe.externalPort

Specifies the port that is to be exposed to external Zowe users. By default, this value is set based on Zowe APIML

Gateway port. In Sysplex deployment, this is the DVIPA port defined in Sysplex Distributor. For more information, see

Configure Sysplex Distributor. In Kubernetes deployment, this value is the Gateway Service port to be exposed

externally.

Extra environment variables

zowe.environments

Defines extra environment variables to customize the Zowe runtime. This configuration is a list of key / value pairs.

Example:

NOTE

Variables defined here are global to all Zowe components, on all HA instances.

An example use case is to override system-wide environment variables for the Zowe runtime, such as the directory

to use for temporary files.

Certificate

zowe.certificate

Specifies the northbound certificate facing Zowe users.

zowe.verifyCertificates Specifies how Zowe is to validate the certificates used by components or external

service(s) like z/OSMF.

Possible values:

STRICT : This is the default value. Zowe validates if the certificate is trusted in Zowe's trust store and if the

certificate Command Name and Subject Alternative Name (SAN) is validated. This is recommended for the best

security.

NONSTRICT : Zowe validates if the certificate is trusted in Zowe's trust store. In this mode, Zowe does not validate

certificate Common Name and Subject Alternative Name (SAN). This option does not have the highest security

https://docs.zowe.org/stable/user-guide/configure-sysplex#configuring-sysplex-distributor

level but allows you to try out Zowe when you do not have permission to fix the certificate used by external

services like z/OSMF.

DISABLED : This value disables certificate validation completely. This is NOT recommended for security purpose.

Launcher and launch scripts

Launcher is the program behind the ZWESLSTC started task.

zowe.launcher

The launcher section defines defaults about how the Zowe launcher acts on components.

zowe.launcher.restartIntervals

An array of positive integers that defines how many times a component attempts to be restarted if it fails, and how

much time to wait in seconds for that restart to succeed before retrying.

zowe.launcher.minUptime

Specifies the minimum amount of time a Zowe component should be running in order to be declared as started

successfully.

zowe.launcher.shareAs

Specifies if the launcher should start components in the same address space. See documentation for _BPX_SHAREAS

for details.

zowe.launchScript.logLevel

Set to debug or trace to enable different levels of debug messages from Zowe launch scripts. This setting may help

troubleshoot issues during Zowe start.

Setup

Zowe YAML configuration uses the zowe.setup section to instruct how Zowe should be installed and configured. This

section is optional for Zowe runtime and only applies to zwe install and zwe init commands.

zowe.setup.dataset.prefix

Specifies where the SZWEAUTH data set is installed.

zowe.setup.dataset.parmlib

Specifies the user custom parameter library. The Zowe server command may generate sample PARMLIB members

and stores in this library.

zowe.setup.dataset.jcllib

Specifies the custom JCL library. The Zowe server command may generate sample JCLs and put into this data set.

zowe.setup.dataset.authLoadlib

Specifies the user custom APF LOADLIB. This field is optional. If this parameter is defined, members of SZWEAUTH are

copied over to this data set to be APF authorized. If this parameter is not defined, SZWEAUTH from

zowe.setup.dataset.prefix is APF authorized.

zowe.setup.dataset.authPluginLib

Specifies the user custom APF PLUGINLIB. Zowe ZIS plug-ins can be installed into this load library. This loadlib

requires APF authorize.

zowe.setup.security.product

Speficies the security product. Can be RACF , ACF2 , or TSS . This configuration is optional. The default value is RACF .

zowe.setup.security.groups.admin

Specifies the group for Zowe administrators. This configuration is optional. The default value is ZWEADMIN .

zowe.setup.security.groups.stc

Specifies the group for Zowe started tasks. This configuration is optional. The default value is ZWEADMIN .

https://www.ibm.com/docs/en/zos/2.4.0?topic=shell-setting-bpx-shareas-bpx-spawn-script

zowe.setup.security.groups.sysProg

Speficies the system programmer user ID/group. This configuration is optional. The default value is ZWEADMIN .

zowe.setup.security.users.zowe

Specifies the userid for Zowe started task. This configuration is optional. The default value is ZWESVUSR .

zowe.setup.security.users.zis

Specifies the userid for ZIS started task. This configuration is optional. The default value is ZWESIUSR .

zowe.setup.security.stcs.zowe

Specifies the Zowe started task name. This configuration is optional. The default value is ZWESLSTC .

zowe.setup.security.stcs.zis

Specifies the ZIS started task name. This configuration is optional. The default value is ZWESISTC .

zowe.setup.security.stcs.aux

Specifies ZIS AUX started task name. This configuration is optional. The default value is ZWESASTC .

zowe.setup.certificate.type

Specifies the type of certificate. Valid values are PKCS1 (USS keystore) or JCERACFKS (z/OS keyring).

zowe.setup.certificate.dname

Specifies the distinguished name of the certificate. You can define caCommonName , commonName , orgUnit , org ,

locality , state , and / or country . These configurations are optional.

zowe.setup.certificate.validity

Specifies the validity days of the certificate. This is optional.

zowe.setup.certificate.san

Specifies the Subject Alternative Name (s) of the certificate if they are different from zowe.externalDomains . Note

that for JCERACFKS type, with limitation of RACDCERT command, this should contain exact one hostname (domain)

and one IP address.

zowe.setup.certificate.importCertificateAuthorities

Specifies the list of certificate authorities to be imported to the Zowe PKCS12 keystore or JCERACFKS keyring. Note

that for JCERACFKS, only a maximum 2 CAs are supported. For PKCS12 certificates, ensure this value is the USS files

in PEM format. For JCERACFKS certificates, ensure this value represents certificate labels on the z/OS system.

For PKCS12 certificate users

zowe.setup.certificate.pkcs12.directory

Specifies the directory where the PKCS12 keystore and truststore are stored. This value is required if

zowe.setup.certificate.type is PKCS12 .

zowe.setup.certificate.pkcs12.lock

Specifies a boolean configuration to indicate if the PKCS12 keystore directory is to be locked only for Zowe runtime

user and group. The default value is true .

name, password, caAlias, and caPassword

Under zowe.setup.certificate.pkcs12 , these parameters

customize the keystore and truststore. These configurations are optional, but it is recommended to update the

values from default values.

zowe.setup.certificate.pkcs12.import.keystore

Specifiy this parameter if you already acquired certificates from another CA, stored them in PKCS12 format, and

want to import into Zowe PKCS12 keystore.

zowe.setup.certificate.pkcs12.import.password

Specifies the password for keystore defined in zowe.setup.certificate.pkcs12.import.keystore .

zowe.setup.certificate.pkcs12.import.alias

Specifies the original certificate alias defined in zowe.setup.certificate.pkcs12.import.keystore . After import,

the certificate is saved as an alias specified in zowe.setup.certificate.pkcs12.name .

For JCERACFKS certificate (z/OS keyring) users

zowe.setup.certificate.keyring.owner

Specifies the keyring owner. It's optional and default value is zowe.setup.security.users.zowe . If it's also not

defined, the default value is ZWESVUSR .

zowe.setup.certificate.keyring.name

Specifies the keyring name to be created on z/OS. This is required if zowe.setup.certificate.type is JCERACFKS .

label and caLabel

Specify these parameters under zowe.setup.certificate.keyring to let Zowe generate a new certificate.

The default value of label is localhost . The default value of caLabel is localca .

To import a certificate stored in an MVS data set into Zowe keyring, use the following parameters:

zowe.setup.certificate.keyring.connect.dsName

This value is required to inform Zowe about the data set where the certificate stored.

zowe.setup.certificate.keyring.connect.passwor

Specifies the password when importing the certificate.

zowe.setup.certificate.keyring.label

Specifies the label of the certificate to be imported.

To connect an existing certificate into a Zowe keyring apply the following parameters:

zowe.setup.certificate.keyring.connect.user

This parameter is required and specifies the owner of an existing certificate. This field can have the value of

SITE .

zowe.setup.certificate.keyring.connect.label

This parameter is required and specifies the label of an existing certificate.

If zowe.verifyCertificates is not DISABLED , and z/OSMF host (zOSMF.host) is provided, Zowe attempts to trust the

z/OSMF certificate.

For RACF

If the CA of the z/OSMF is not in the Zowe truststore, you can define it using

zowe.setup.certificate.keyring.zOSMF.user and label zowe.setup.certificate.keyring.zOSMF.ca

Example:

For ACF2 or TSS (Top Secret)

zowe.setup.certificate.keyring.zOSMF.ca is required to indicate the label of the z/OSMF root certificate

authority.

zowe.setup.vsam.mode

Indicates if VSAM utilizes Record Level Sharing (RLS) services. Valid values are RLS or NONRLS .

zowe.setup.vsam.volume

Indicates the name of volume. This field is required if VSAM mode is NONRLS .

zowe.setup.vsam.storageClass

Indicates the name of RLS storage class. This field is required if VSAM mode is RLS .

YAML configurations - java

The high-level configuration java supports these definitions:

home

Specifies the path to the Java runtime directory.

YAML configurations - node

The high-level configuration node supports these definitions:

home

Specifies the path to the Node.js runtime directory.

TIP

Ensure the value of node.home in the zowe.yaml is visible to the Zowe STC users, and contains bin/node .

Example:

This value is valid only when the path /usrlppSysplex/nodejs/node-v18.18.2/bin/node exists. If you observe

output of node:...FSUM7351 not found , check that the value contains bin/node .

YAML configurations - zOSMF

The high-level configuration zOSMF supports the following definitions:

zOSMF.host

Specifies the hostname of your z/OSMF instance.

zOSMF.port

Specifies the port of your z/OSMF instance.

zOSMF.applId

Specifies the application ID of your z/OSMF instance.

YAML configurations - components

All Zowe components and extensions can have a dedicated section under the components high-level configuration.

In this section, component represents any Zowe components or extension. For all components and extensions, the

following parameters are the common definitions:

components.component.enabled

Specifies if the component should be started in this Zowe instance, thereby providing control over each component

instead of a group.

components.component.certificate

Allows for customization for a component to use a different certificate from default values. This section follows the

same format defined in YAML configurations - certificate. If this parameter is not customized, the component uses

certificates defined in zowe.certificate .

components.component.launcher

Specifies if a specific component has a launcher section which overrides the overall Zowe Launcher default defined

in zowe.launcher .

Configure component gateway

These configurations can be used under the components.gateway section:

port

Specifies the port which the Gateway should start on. This value must be a valid port number.

debug

Specifies the enablement of debug mode for the Gateway.

apiml.connectionTimeout Specifies the value in milliseconds which corresponds to the period in which API ML

should establish a single, non-managed connection with the service. If omitted, the default value specified in the API

ML Gateway service configuration is used.

apiml.connection.idleConnectionTimeoutSeconds

Specifies how long the connection to southbound remains open without communication. The default value is 5

seconds. The unit is in seconds.

apiml.health.protected

Specifies if the health check endpoint is accessible with or without authentication.

apiml.gateway.timeoutMillis

Specifies the timeout for the connection to the services in milliseconds.

apiml.gateway.servicesToDisableRetry

Specifies a comma-separated list of service IDs for which automatic retries are disabled. Disabling retry for services

where retries are not required helps prevent potential memory issues when handling requests with large payloads to

the service. This parameter applies to Zowe version 3.3.0 and later versions.

apiml.security.x509.enabled

Specifies if client certificate authentication functionality through ZSS is enabled. Set this parameter to true to

enable the client certificate authentication functionality through ZSS.

apiml.security.x509.externalMapperUrl

Specifies the URL where the Gateway can query the mapping of client certificates.

apiml.security.auth.jwt.customAuthHeader

Provides a valid JWT for the southbound service in the custom header. A valid value is any valid name for an HTTP

header.

apiml.security.auth.passticket.customAuthHeader

Provides PassTickets for the southbound service in the custom header. A valid value is any valid name for an HTTP

header.

apiml.security.auth.passticket.customUserHeader

Provides User Info when a PassTicket is provided in the custom header. A valid value is any valid name for an HTTP

header.

apiml.security.auth.provider

Specifies the authentication provider used by the API Gateway. Valid options are saf or zosmf .

apiml.security.auth.zosmf.serviceId

Allows customization of the service id in case zosmf is specified as an authentication provider. The default value is

ibmzosmf

apiml.security.auth.zosmf.jwtAutoconfiguration

Customizes the behavior of the Gateway with respect to how JWTs are produced. Valid options are jwt and ltpa .

jwt is the default option. ltpa allows API ML to produce JWTs instead of the z/OSMF service. jwt is the default and

recommended option.

apiml.security.authorization.endpoint.url

Specifies the URL to the authorization endpoint. This endpoint informs the Gateway if a user has a particular

permission on SAF profile, such as permission to the APIML.SERVICES profile of the ZOWE class.

apiml.security.personalAccessToken.enabled

Specifies if Personal Access Tokens are enabled. The default value is false .

apiml.security.forwardHeader.trustedProxies Specifies the regular expression pattern used to identify trusted

proxies from which X-Forwarded-* headers are accepted and forwarded. API ML gateways (including cloud

gateways) in Multitenancy Configuration are trusted by default. This parameter applies to Zowe version 3.3.0 and

later versions.

apiml.security.useInternalMapper

This property is a global feature toggle. Set the value to true to enable the Internal Mapper. The default value is

true .

apiml.security.oidc.enabled

Specifies the global feature toggle. Set the value to true to enable OIDC authentication functionality.

apiml.security.oidc.registry

Specifies the SAF registry used to group identities recognized as having an OIDC identity mapping. The registry

name is the string used during the creation of the mapping between distributed and mainframe user identities. For

more information, see ESM configuration prerequisites.

apiml.security.oidc.jwks.uri

Specifies the URI obtained from the authorization server's metadata where the Gateway queries for the JWK used to

sign and verify the access tokens. A valid value is any valid URI.

apiml.security.oidc.jwks.refreshInternalHours

Specifies the frequency in hours to refresh the JWK keys from the OIDC provider. Defaults to one hour.

apiml.security.oidc.identityMapperUser

(Optional) If the userId is different from the default Zowe runtime userId (ZWESVUSR), specify the

identityMapperUser userId to configure API ML access to the external user identity mapper.

NOTE

User authorization is required to use the IRR.RUSERMAP resource within the FACILITY class. The default value is

ZWESVUSR . Permissions are set up during installation with the ZWESECUR JCL or workflow. To authenticate to the

mapping API, a JWT is sent with the request. The token represents the user that is configured with this property.

apiml.security.oidc.identityMapperUrl

Specifies the URL where the Gateway can query the mapping of the distributed user ID to the mainframe user ID.

This property informs the Gateway about the location of this API. ZSS is the default API provider in Zowe. Note that if

you are using Zowe release 2.14 or a later version, we recommend you use the API ML internal mapper. To provide

your own API to perform the mapping, it is necessary to customize this value.

The following URL is the default value for Zowe and ZSS:

https://docs.zowe.org/user-guide/api-mediation/api-mediation-multi-tenancy
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-oidc-authentication#esm-configuration-prerequisites
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-client-certificates#configure-internal-api-ml-mapper

apiml.security.ssl.verifySslCertificatesOfServices

Specifies if API ML is used to verify certificates of services in strict mode. Setting to true enables strict mode

where API ML validates if the certificate is trusted in the truststore, and also if the certificate Common Name or

Subject Alternate Name (SAN) matches the service hostname.

apiml.security.ssl.nonStrictVerifySslCertificatesOfServices

Specifies if API ML is used to verify certificates of services in non-strict mode. Setting the value to true enables the

non-strict mode where API ML validates if the certificate is trusted in the truststore, but ignores the certificate

Common Name or Subject Alternate Name (SAN) check. Zowe ignores this configuration when strict mode is

enabled with apiml.security.ssl.verifySslCertificatesOfServices .

apiml.service.allowEncodedSlashes

Specifies if the Gateway allows encoded characters to be part of URL requests redirected through the Gateway. Set

to true to allow encoded characters to be part of URL requests.

apiml.service.corsEnabled

Specifies if CORS are enabled in the API Gateway for Gateway routes gateway/api/v1/** . Set to true to enable

CORS.

server.maxConnectionsPerRoute

Specifies the maximum connections for each service.

server.maxTotalConnections

Specifies the total connections for all services registered under API Mediation Layer.

server.ssl.enabled

Specifies if TLS is used

server.webSocket.maxIdleTimeout

This timeout handles how long the Websocket connection remains open if there is no communication happening over

the open connection. The default is one hour (3600000 milliseconds).

server.webSocket.connectTimeout

This timeout limits how long the API Gateway waits until it drops connection if the Gateway cannot reach the target

server. The default is 45 seconds (45000 milliseconds).

server.webSocket.asyncWriteTimeout

This timeout handles how long before the server fails with an unsuccessful response when trying to write a message

to the Websocket connection. The default is 60 seconds (60000 milliseconds).

server.webSocket.requestBufferSize

This property handles the maximum request size allowed in the WebSocket handshake requests. The default is 8K.

Configure component discovery

These configurations can be applied to the components.discovery section:

port

Specifies the port which discovery is to be started on. This value may be a valid port number or an offset from the

Gateway component's port. To define an offset enter "+{offset}" or "-{offset}" as a string. The offset must start

with + or - .

debug

Specifies the enablement of debug mode for the Discovery Service.

apiml.health.protected

Specifies if the health check endpoint is accessible with or without authentication.

apiml.security.ssl.verifySslCertificatesOfServices

Specifies if API ML is to verify certificates of services in strict mode. Set to true to enable strict mode where API

ML validates both trust in the certificate in the turststore, and also if the certificate Common Name or Subject

Alternate Name (SAN) matches the service hostname.

apiml.security.ssl.nonStrictVerifySslCertificatesOfServices

Specifies if API ML is to verify certificates of services in non-strict mode. Set to true to enable the non-strict

mode where API ML validates if the certificate is trusted in the truststore, but ignores the certificate Common Name

or Subject Alternate Name (SAN) check. Zowe ignores this configuration if strict mode is enabled with

apiml.security.ssl.verifySslCertificatesOfServices .

alternativeStaticApiDefinitionsDirectories

Specifies the alternative directories of static definitions. A valid value is the list of directories separated by commas.

apiml.server.maxTotalConnections

Specifies the total number of connections for all services registered under API Mediation Layer.

apiml.discovery.serviceIdPrefixReplacer

Modifies the service ID of a service instance before it registers to API Mediation Layer. Use this parameter to ensure

compatibility of services that use a non-conformant organization prefix with v2, based on Zowe v2 conformance.

server.ssl.enabled

Specifies if TLS is used. The default value is true .

Configure component api-catalog

The following configurations can be used under the components.api-catalog section:

port

Specifies the port which API Catalog is to be started on.

debug

Specifies the enablement of debug mode for the API Catalog. This value is equivalent to the

APIML_DEBUG_MODE_ENABLED variable but with a higher granular level.

apiml.health.protected

Specifies if the health check endpoint is accessible with or without authentication. The default value is true .

apiml.security.authorization.provider

Specifies the provider used for the SAF resource check.

apiml.security.authorization.endpoint.url

Specifies the base path of endpoint's URL ({base path}/{userId}/{class}/{entity}/{level}).

apiml.catalog.customStyle.logo

Specifies the location of the logo that replaces the default Zowe logo in the API Catalog header. Supported image

formats are: svg , png and jpg/jpeg .

apiml.catalog.customStyle.fontFamily

Specifies the font family to use across the API Catalog.

apiml.catalog.customStyle.backgroundColor

Specifies the HTML color of the main background across the API Catalog.

apiml.catalog.customStyle.titlesColor`

Specifies the title color.

`apiml.catalog.customStyle.headerColor

Specifies the HTML color of the header element in the API Catalog home page.

apiml.catalog.customStyle.textColor

Specifies the HTML color of the main text across the API Catalog

apiml.catalog.customStyle.docLink

Specifies a custom link to be displayed in the header. Use this property to refer to applicable documentation. The

format is <link_name>|<link_url> .

Configure component Caching Service

These configurations can be used under the components.caching-service section:

port

Specifies the port which Caching Service should be started on. This may be defined as a valid port number or as an

offset from the Gateway component's port. To define an offset enter "+{offset}" or "-{offset}" as a string. The

offset must start with + or - .

debug

Specifies if debug mode is enabled for the Caching Service.

storage.mode

Sets the storage type used to persist data in the Caching Service. The valid values are infinispan , and redis .

storage.size

Specifies the number of records before eviction strategies start evicting.

storage.evictionStrategy

Specifies eviction strategy to be used when the storage size is achieved. The valid values are reject , and

removeOldest .

storage.vsam.name

Specifies the data set name of the Caching service VSAM data set.

storage.infinispan.initialHosts

This property specifies the list of cluster nodes (members). In case of multiple instances, the value for each Caching

Service instance can be either a list of all the members, separated by a comma, or just the replica. The format is

${haInstance.hostname}[${components.caching-service.storage.infinispan.jgroups.port}] .

storage.infinispan.persistence.dataLocation

The path where the Soft-Index store keeps its data files for the Infinispan Soft-Index Cache Store. The default value is

data . If you run the Caching Service in Highly Available mode and the instances use the same filesystem, you have

to specify a different value of the CACHING_STORAGE_INFINISPAN_PERSISTENCE_DATALOCATION property for each

instance. For more information, see the Soft-Index File Store.

storage.infinispan.jgroups.port

Specifies the port number used by Infinispan to synchronise data among caching-service instances.

storage.redis.masterNodeUri

Specifies the URI used to connect to the Redis master instance in the form username:password@host:port .

storage.redis.timeout

Specifies the timeout second to Redis. Defaults to 60 seconds.

https://infinispan.org/blog/2014/10/31/soft-index-file-store

storage.redis.sentinel.masterInstance

Specifies the Redis master instance ID used by the Redis Sentinel instances.

storage.redis.sentinel.nodes

Specifies the array of URIs used to connect to a Redis Sentinel instances in the form username:password@host:port .

storage.redis.ssl.enabled

Specifies the boolean flag indicating if Redis is being used with SSL/TLS support. Defaults to true .

storage.redis.ssl.keystore

Specifies the keystore file used to store the private key.

storage.redis.ssl.keystorePassword

Specifies the password used to unlock the keystore.

storage.redis.ssl.truststore

Specifies the truststore file used to keep other parties public keys and certificates.

storage.redis.ssl.truststorePassword

Specifies the password used to unlock the truststore.

apiml.security.ssl.verifySslCertificatesOfServices

Specifies if API ML is to verify certificates of services in strict mode. Set to true to enable strict mode where API

ML validates both if the certificate is trusted in truststore, and also if the certificate Common Name or Subject

Alternate Name (SAN) match the service hostname.

apiml.security.ssl.nonStrictVerifySslCertificatesOfServices

Specifies if API ML is to verify certificates of services in non-strict mode. Set to true to enable non-strict mode

where API ML validates if the certificate is trusted in truststore, but ignores the certificate Common Name or Subject

Alternate Name (SAN) check. Zowe ignores this configuration if strict mode is enabled with

apiml.security.ssl.verifySslCertificatesOfServices .

Configure component app-server

The following configurations can be used under the components.app-server section:

port

Specifies the port which App Server is to be started on. This value may be defined as a valid port number or as an

offset from the Gateway component's port. To define an offset enter "+{offset}" or "-{offset}" as a string. The

offset must start with + or - .

Configure component zss

The following configurations can be used under the components.zss section:

port

Specifies the port which ZSS is to be started on. This value may be defined as a valid port number or as an offset

from the Gateway component's port. To define an offset enter "+{offset}" or "-{offset}" as a string. The offset

must start with + or - .

Configure external extension

You can define a components.<extension-id> section and use common component configuration entries.

For example, enable my-extension :

YAML configurations - haInstances

All Zowe high availability instances should have a dedicated section under the haInstances high-level configuration.

In this section, ha-instance represents any Zowe high availability instance ID.

NOTE

Each ha-instance must be unique. The identification of an ha-instance is based on the name in lowercase format.

For all high availability instances, these are the common definitions.

haInstances.ha-instance.hostname

Specifies the host name where you want to start this instance. This value could be the host name of one LPAR in

your Sysplex.

haInstances.ha-instance.sysname

Specifies the system name of the LPAR where the instance is running. Zowe uses the ROUTE command to send JES2

start or stop command to this HA instance.

haInstances.ha-instance.components.component

This optional settings allows you to override component configurations for this high availability instance. See

Configuration override - defaults.yaml for more details.

Auto-generated environment variables

Each line of Zowe YAML configuration has a matching environment variable during runtime. This variable is converted

based on a pre-defined pattern:

All configurations under zowe , components , haInstances are converted to a variable with the name with the

following conditions:

prefixed with ZWE_

any non-alphabetic-numeric characters are converted to underscore (_)

no double underscores (__)

Calculated configurations of haInstance , which is a portion of haInstances.<current-ha-instance> are converted

the same way.

Calculated configurations of configs , which is a portion of haInstances.<current-ha-instance>.components.

<current-component> are converted the same way.

All other configuration entries are converted to a variable with a name with the following conditions:

all upper cases

any non-alphabetic-numeric characters are converted to underscore (_)

no double underscores (__)

Examples:

ZWE_zowe_runtimeDirectory is parent directory where zwe server command is located.

ZWE_zowe_workspaceDirectory is the path of the user customized workspace directory.

ZWE_zowe_setup_dataset_prefix is the high-level qualifier where Zowe MVS data sets are installed.

ZWE_zowe_setup_dataset_parmlib is the data set configured to store customized version of parameter library

members.

ZWE_zowe_setup_dataset_authPluginLib is the data set configured to store APF authorized ZIS plug-ins load library.

ZWE_zowe_setup_security_users_zowe is the name of Zowe runtime user.

ZWE_configs_port is your component port number you can use in your start script. It points to the value of

haInstances.<current-ha-instance>.components.<your-component>.port , or fall back to components.<my-

component>.port , or fall back to configs.port defined in your component manifest.

Troubleshooting your YAML with the Red Hat VS Code extension

After you download the Red Hat VSCode extension for YAML, YAML validation for your files is turned on by default. Syntax

mistakes are highlighted in red. To parse sensitive information, we highly recommend leaving the data gathering option

disabled. To customize your settings, click the "Extensions" category in VS Code left-hand side workspace, scroll down to

YAML Language Support by Red Hat, click the gear icon, and select "Extension Settings".

Version: v3.3.x LTS

ZWE Server Command Reference

zwe is the management utility for Zowe server components.

It is a Unix command that is installed via a download of the Zowe server components.

When installed, you can find it within the zowe runtime directory's "bin" subdirectory.

This command can be accessed directly from that location, or you can save that location to your Unix PATH environment

variable so that it's accessible at all times just by typing zwe .

zwe has several useful features, and more are added often.

Using the zwe command

With the zwe command you can:

Install/initialize a Zowe instance

Install/upgrade Zowe extensions

Validate the configuration against a schema

Diagnose a message

Collect support information

Accessing zwe help

Every zwe subcommand, and the zwe command itself, has built-in help that is accessible by adding --help to the

command.

To access the help content:

The built-in help goes over the following topics:

What the current command does

What subcommands exist

What parameters exist

Example uses of the current command

This zwe command reference includes the same content as the built-in help. In the sections that follow, you can find all

zwe help information.

Version: v3.3.x LTS

zwe

zwe

zwe [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands

certificate

components

config

diagnose

init

install

internal

migrate

sample

start

stop

support

version

Description

A command line utility helps you managing Zowe instance.

You can issue --help or -h to find information for all commands it supports.

Examples

Parameters

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/config/zwe-config
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-diagnose
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-install
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/zwe-migrate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/zwe-sample
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-start
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-stop
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/support/zwe-support
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-version

Full name Alias Type Required Help message

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

Error code
Exit

code
Error message

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe certificate keyring-jcl clean

zwe > certificate > keyring-jcl > clean

zwe certificate keyring-jcl clean [parameter [parameter]...]

Description

Remove Zowe keyring.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--dataset-prefix,--ds-prefix string yes Dataset prefix where Zowe is installed.

--jcllib string yes JCLLIB data set name where the JCL will be placed.

--security-dry-run boolean no Whether to dry run security related setup.

--security-product string no Security product. Can be a value of RACF, ACF2 or TSS.

--keyring-owner string yes Owner of the keyring.

--keyring-name string yes Name of the keyring.

--alias -a string yes Certificate alias name.

--ca-alias -ca string yes Certificate authority alias name.

--ignore-security-failures boolean no Whether to ignore security setup job failures.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-clean

Full name Alias Type Required Help message

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0176E 176 Failed to clean up Zowe keyring "%s".

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

Error code
Exit

code
Error message

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

Error code
Exit

code
Error message

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe certificate keyring-jcl connect

zwe > certificate > keyring-jcl > connect

zwe certificate keyring-jcl connect [parameter [parameter]...]

Description

Connect existing certificate to Zowe keyring.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--dataset-

prefix,--ds-prefix
string yes Dataset prefix where Zowe is installed.

--jcllib string yes JCLLIB data set name where the JCL will be placed.

--security-dry-

run
boolean no Whether to dry run security related setup.

--security-

product
string no Security product. Can be a value of RACF, ACF2 or TSS.

--keyring-owner string yes Owner of the keyring.

--keyring-name string yes Name of the keyring.

--trust-cas string no
Labels of extra certificate authorities should be trusted,

separated by comma (Maximum 2).

--connect-user string yes Certificate owner. Can be SITE or a user ID.

--connect-label string yes Certificate label to connect.

--trust-zosmf boolean no Whether to trust z/OSMF CA.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-connect

Full name Alias Type Required Help message

--zosmf-ca string no
Labels of z/OSMF root certificate authorities. Specify _auto_ to

let Zowe to detect automatically. This works for RACF and TSS.

--zosmf-user string no
z/OSMF user name. This is used to automatically detect z/OSMF

root certificate authorities.

--ignore-

security-failures
boolean no Whether to ignore security setup job failures.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0175E 175 Failed to connect existing certificate to Zowe keyring "%s".

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

Error code
Exit

code
Error message

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

Error code
Exit

code
Error message

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe certificate keyring-jcl generate

zwe > certificate > keyring-jcl > generate

zwe certificate keyring-jcl generate [parameter [parameter]...]

Description

Generate new set of certificate in Zowe keyring.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--dataset-prefix,-

-ds-prefix
string yes Dataset prefix where Zowe is installed.

--jcllib string yes JCLLIB data set name where the JCL will be placed.

--security-dry-

run
boolean no Whether to dry run security related setup.

--security-

product
string no Security product. Can be a value of RACF, ACF2 or TSS.

--keyring-owner string yes Owner of the keyring.

--keyring-name string yes Name of the keyring.

--domains -d string yes
Domain and IP for the certificate separated by comma. (Please

note RACDCERT is limited to only have one domain and one IP.)

--alias -a string yes Certificate alias name.

--ca-alias -ca string yes Certificate authority alias name.

--common-name -cn string no Common name of certificate and certificate authority.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-generate

Full name Alias Type Required Help message

--org-unit string no Organization unit of certificate and certificate authority.

--org string no Organization of certificate and certificate authority.

--locality string no Locality of certificate and certificate authority.

--state string no State of certificate and certificate authority.

--country string no Country of certificate and certificate authority.

--validity string no Validity days of certificate.

--trust-cas string no
Labels of extra certificate authorities should be trusted,

separated by comma (Maximum 2).

--trust-zosmf boolean no Whether to trust z/OSMF CA.

--zosmf-ca string no
Labels of z/OSMF root certificate authorities. Specify _auto_ to

let Zowe to detect automatically. This works for RACF and TSS.

--zosmf-user string no
z/OSMF user name. This is used to automatically detect z/OSMF

root certificate authorities.

--ignore-

security-failures
boolean no Whether to ignore security setup job failures.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0174E 174 Failed to generate certificate in Zowe keyring "%s".

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

Error code
Exit

code
Error message

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe certificate keyring-jcl import-ds

zwe > certificate > keyring-jcl > import-ds

zwe certificate keyring-jcl import-ds [parameter [parameter]...]

Description

Import certificate stored in MVS data set into Zowe keyring.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--dataset-prefix,-

-ds-prefix
string yes Dataset prefix where Zowe is installed.

--jcllib string yes JCLLIB data set name where the JCL will be placed.

--security-dry-

run
boolean no Whether to dry run security related setup.

--security-

product
string no Security product. Can be a value of RACF, ACF2 or TSS.

--keyring-owner string yes Owner of the keyring.

--keyring-name string yes Name of the keyring.

--alias -a string yes Certificate alias name.

--trust-cas string no
Labels of extra certificate authorities should be trusted,

separated by comma (Maximum 2).

--trust-zosmf boolean no Whether to trust z/OSMF CA.

--zosmf-ca string no
Labels of z/OSMF root certificate authorities. Specify _auto_ to

let Zowe to detect automatically. This works for RACF and TSS.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-import-ds

Full name Alias Type Required Help message

--zosmf-user string no
z/OSMF user name. This is used to automatically detect z/OSMF

root certificate authorities.

--import-ds-

name
string yes Name of the data set holds certificate to import into keyring.

--import-ds-

password
string yes Password of the data set holds certificate to import.

--ignore-

security-failures
boolean no Whether to ignore security setup job failures.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0173E 173 Failed to import certificate to Zowe keyring "%s".

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

Error code
Exit

code
Error message

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

Error code
Exit

code
Error message

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe certificate keyring-jcl

zwe > certificate > keyring-jcl

zwe certificate keyring-jcl [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands

clean

connect

generate

import-ds

Description

Manage z/OS Keyring with JCL.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-clean
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-connect
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-generate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-import-ds

Errors

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

Error code
Exit

code
Error message

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe certificate pkcs12 create ca

zwe > certificate > pkcs12 > create > ca

zwe certificate pkcs12 create ca [parameter [parameter]...]

Description

Create a new PKCS12 format certificate authority.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--allow-overwrite,--allow-

overwritten
boolean no Allow overwritten existing MVS data set.

--alias -a string yes Certificate authority alias name.

--password -p string yes
Password of the certificate authority

keystore.

--common-name -cn string no Common name of certificate authority.

--org-unit string no Organization unit of certificate authority.

--org string no Organization of certificate authority.

--locality string no Locality of certificate authority.

--state string no State of certificate authority.

--country string no Country of certificate authority.

--validity string no Validity days of certificate authority.

Inherited from parent command

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create-ca

Full name Alias Type Required Help message

--keystore-dir -d string yes Keystore directory.

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0300W %s already exists. This %s will be overwritten.

ZWEL0158E 158 %s already exists.

ZWEL0168E 168 Failed to create certificate authority %s.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

Error code
Exit

code
Error message

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

Error code
Exit

code
Error message

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe certificate pkcs12 create cert

zwe > certificate > pkcs12 > create > cert

zwe certificate pkcs12 create cert [parameter [parameter]...]

Description

Create a new PKCS12 format certificate.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--allow-overwrite,--allow-

overwritten
boolean no Allow overwritten existing MVS data set.

--keystore -k string yes PKCS12 keystore name.

--alias -a string yes Certificate alias name.

--password -p string yes Password of the certificate keystore.

--common-name -cn string no Common name of certificate.

--domains -d string no
Domain list of certificate Subject Alternative Name

(SAN).

--ca-alias string yes
Alias name of the certificate authority which is used

to sign CSR.

--ca-password string yes
Password of the certificate authority keystore which

is used to sign CSR.

--org-unit string no Organization unit of certificate.

--org string no Organization of certificate.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create-cert

Full name Alias Type Required Help message

--locality string no Locality of certificate.

--state string no State of certificate.

--country string no Country of certificate.

--validity string no Validity days of certificate.

--key-usage string no Key usage of certificate.

--extended-key-usage string no Extended key usage of certificate.

Inherited from parent command

Full name Alias Type Required Help message

--keystore-dir -d string yes Keystore directory.

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0300W %s already exists. This %s will be overwritten.

ZWEL0158E 158 %s already exists.

ZWEL0169E 169 Failed to create certificate "%s".

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

Error code
Exit

code
Error message

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe certificate pkcs12 create

zwe > certificate > pkcs12 > create

zwe certificate pkcs12 create [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands

ca

cert

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--keystore-dir -d string yes Keystore directory.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create-ca
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create-cert

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit

code
Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe certificate pkcs12 export

zwe > certificate > pkcs12 > export

zwe certificate pkcs12 export [parameter [parameter]...]

Description

Export PKCS12 keystore as PEM files.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--keystore -f string yes PKCS12 keystore file name.

--password -p string yes Password of the certificate keystore.

--private-keys string no Private keys should also be exported.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-export

Errors

Error code Exit code Error message

ZWEL0178E 178 Failed to export PKCS12 keystore %s.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

Error code
Exit

code
Error message

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe certificate pkcs12 import

zwe > certificate > pkcs12 > import

zwe certificate pkcs12 import [parameter [parameter]...]

Description

Import certificate and/or certificate authorities into PKCS12 keystore.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--keystore -f string yes Destination PKCS12 keystore file name.

--password -p string yes Password of the destination PKCS12 keystore.

--alias -a string no
Alias in the destination PKCS12 keystore after imported. Required if

--source-alias is specified.

--source-

keystore
-sf string no Source PKCS12 keystore file name.

--source-

password
-sp string no Password of the source PKCS12 keystore.

--source-alias -sa string no Private keys should also be exported.

--trust-cas string no
PEM files of extra certificate authorities should be trusted,

separated by comma.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-import

Full name Alias Type Required Help message

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0179E 179 Failed to import certificate (authorities) into keystore %s.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

Error code
Exit

code
Error message

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

Error code
Exit

code
Error message

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe certificate pkcs12 lock

zwe > certificate > pkcs12 > lock

zwe certificate pkcs12 lock [parameter [parameter]...]

Description

This command will lock the keystore directory to only be accessible by specified user group.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--keystore-dir -d string yes Keystore directory.

--user string yes Owner of the keystore directory.

--group string yes Group of the keystore directory.

--group-

permission
string no

Group permission. Can be <empty> for no permission, or read ,

write .

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-lock

Full name Alias Type Required Help message

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0177E 177 Failed to lock keystore directory %s.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

Error code
Exit

code
Error message

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Error code
Exit

code
Error message

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe certificate pkcs12 trust-service

zwe > certificate > pkcs12 > trust-service

zwe certificate pkcs12 trust-service [parameter [parameter]...]

Description

This command can detect and trust any service by importing the certificate into truststore.

NOTE: the service must be online and accessible.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--service-name -n string yes Service name.

--keystore-dir -d string yes Keystore directory.

--keystore -k string yes PKCS12 keystore name.

--password -p string yes Password of the certificate keystore.

--host string yes Host name of the service.

--port string yes Port of the service.

--alias -a string yes Certificate alias name for the imported the certificate.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-trust-service

Full name Alias Type Required Help message

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0300W %s already exists. This %s will be overwritten.

ZWEL0170E 170 Failed to trust service "%s".

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

Error code
Exit

code
Error message

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

Error code
Exit

code
Error message

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe certificate pkcs12

zwe > certificate > pkcs12

zwe certificate pkcs12 [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands

create

export

import

lock

trust-service

Description

Manage PKCS12 format keystore and truststore.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-export
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-import
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-lock
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-trust-service

Errors

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

Error code
Exit

code
Error message

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe certificate verify-service

zwe > certificate > verify-service

zwe certificate verify-service [parameter [parameter]...]

Description

This command can verify if the service certificate is valid by checking the certificate Common Name (CN) and Subject

Alternate Name (SAN).

NOTE: the service must be online and accessible.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--host string yes Host name of the service.

--port string yes Port of the service.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate-verify-service

Errors

Error code Exit code Error message

ZWEL0171E 171 Failed to verify certificate (CN and SAN) of service "%s".

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

Error code
Exit

code
Error message

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe certificate

zwe > certificate

zwe certificate [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands

keyring-jcl

pkcs12

verify-service

Description

Set of commands to help you manage certificates.

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate-verify-service

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit

code
Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe components install extract

zwe > components > install > extract

zwe components install extract [parameter [parameter]...]

Description

Extract module package and lay down to target directory.

NOTE: this sub-command will be automatically executed by zwe components install , so usually you don't need to

execute this manually.

Examples

Parameters

Full name Alias Type Required Help message

--component-file,--component -o string yes Path to the component package or directory.

--auto-encoding -e string no If we want to automatically tagging the module files.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install-extract

Error code
Exit

code
Error message

ZWEL0139E 139 Failed to create directory %s.

ZWEL0153E 153 Cannot install Zowe component to system root directory.

ZWEL0154E 154 Temporary directory is empty.

ZWEL0155E 155
Component %s already exists in %s. If you meant to upgrade this component, run the

command 'zwe components upgrade' instead.

ZWEL0167E 167 Cannot find component name from %s package manifest.

ZWEL0204E 204 Symlink creation failure, error=%s

ZWEL0313E 313 Cannot find component file %s.

ZWEL0318E 318 File extension invalid. Supported file extensions: .pax, .tar, .zip

Inherited from parent command

Error code
Exit

code
Error message

ZWEL0156E 156 Component name is not initialized after extract step.

ZWEL0180E 180
Zowe extension directory (zowe.extensionDirectory) is not defined in Zowe YAML

configuration file.

ZWEL0304E 304 Handler install failure, cannot continue.

ZWEL0305E 305 Could not find one of the components' directories.

ZWEL0314E 314 Cannot install with component=all. This option only exists for upgrade.

ZWEL0315E 315 Handler (-handler or zowe.extensionRegistry.defaultHandler) required but not specified.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

Error code
Exit

code
Error message

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

Error code
Exit

code
Error message

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe components install process-hook

zwe > components > install > process-hook

zwe components install process-hook [parameter [parameter]...]

Description

Process module install hook if exists.

NOTE: this sub-command will be automatically executed by zwe components install , so usually you don't need to

execute this manually.

Examples

Parameters

Full name Alias Type Required Help message

--component-name -n string yes Component name.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install-process-hook

Error code
Exit

code
Error message

ZWEL0156E 156 Component name is not initialized after extract step.

ZWEL0180E 180
Zowe extension directory (zowe.extensionDirectory) is not defined in Zowe YAML

configuration file.

ZWEL0304E 304 Handler install failure, cannot continue.

ZWEL0305E 305 Could not find one of the components' directories.

ZWEL0314E 314 Cannot install with component=all. This option only exists for upgrade.

ZWEL0315E 315 Handler (-handler or zowe.extensionRegistry.defaultHandler) required but not specified.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

Error code
Exit

code
Error message

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe components install

zwe > components > install

zwe components install [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands

extract

process-hook

Description

Install a Zowe component, given a component archive, component directory, or component name. When a component

name is given instead of a path, the installation will be performed against a Zowe package registry if one is configured.

Archives can be in the .tar, .zip, or pax format where a component is at the root of the archive.

Components are the packaging standard of Zowe. Zowe has core Components, but extensions are also delivered as

Components. You can read more about them here: https://docs.zowe.org/stable/extend/packaging-zos-extensions/

IMPORTANT NOTES, by default, this command will enable the component globally by modifying your YAML

configuration. You can pass --skip-enable to disable this behavior.

Examples

Parameters only for this command

Full name Alias Type Required Help message

--component-file,-

-component
-o string yes

Either a path or component name. The path must be to a

component package or directory. If a name is specified instead,

install checks the zowe package registry.

--auto-encoding -e string no If we want to automatically tagging the module files.

--skip-enable boolean no Install component without enabling it for use.

--registry -r string no
Specifies the registry to searh within instead of the default. The

registry must be compatible with the manager used.

--handler string no

Specifies the registry handler name used with the package

registry, instead of the default. The handler must be

compatible with the registry used.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install-extract
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install-process-hook
https://docs.zowe.org/stable/extend/packaging-zos-extensions/

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code
Exit

code
Error message

ZWEL0156E 156 Component name is not initialized after extract step.

ZWEL0180E 180
Zowe extension directory (zowe.extensionDirectory) is not defined in Zowe YAML

configuration file.

ZWEL0304E 304 Handler install failure, cannot continue.

ZWEL0305E 305 Could not find one of the components' directories.

ZWEL0314E 314 Cannot install with component=all. This option only exists for upgrade.

ZWEL0315E 315 Handler (-handler or zowe.extensionRegistry.defaultHandler) required but not specified.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

Error code
Exit

code
Error message

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

Error code
Exit

code
Error message

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe components disable

zwe > components > disable

zwe components disable [parameter [parameter]...]

Description

Disable a Zowe component.

IMPORTANT NOTES, this command will modify your YAML configuration.

Examples

Parameters

Full name Alias Type Required Help message

--component-name,--component -o string yes Component name to be disabled.

--ha-instance -i string no Zowe high availability instance ID from zowe.yaml.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-disable

Error code Exit code Error message

ZWEL0152E 152 Cannot find component %s.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

Error code
Exit

code
Error message

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe components enable

zwe > components > enable

zwe components enable [parameter [parameter]...]

Description

Enable a Zowe component.

IMPORTANT NOTES, this command will modify your YAML configuration.

Examples

Parameters

Full name Alias Type Required Help message

--component-name,--component -o string yes Component name to be enabled.

--ha-instance -i string no Zowe high availability instance ID from zowe.yaml.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-enable

Error code Exit code Error message

ZWEL0152E 152 Cannot find component %s.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

Error code
Exit

code
Error message

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe components search

zwe > components > search

zwe components search [parameter [parameter]...]

Description

Search for a Zowe component within a Zowe package registry.

This command requires you have a registry manager set up for zowe's use already, such as npm or conda.

Examples

Parameters

Full name Alias Type Required Help message

--component-

name,--component
-o string no Component name to search for.

--component-id,--id -d string no Component id to search for.

--registry -r string no
Specifies the registry to search within instead of the default.

The registry must be compatible with the manager used.

--handler string no

Specifies the registry handler name used with the package

registry, instead of the default. The handler must be compatible

with the registry used.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-search

Full name Alias Type Required Help message

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code
Exit

code
Error message

ZWEL0310E 310 Component name (-name

ZWEL0311E 311
Handler (-handler,-h or zowe.extensionRegistry.defaultHandler) required but not

specified.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

Error code
Exit

code
Error message

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

Error code
Exit

code
Error message

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe components uninstall

zwe > components > uninstall

zwe components uninstall [parameter [parameter]...]

Description

Uninstall a Zowe component, given its name.

Examples

Parameters

Full name Alias Type Required Help message

--component-

name,--component
-o string yes The name of an installed component.

--registry -r string no
Specifies the registry to search within instead of the default.

The registry must be compatible with the manager used.

--handler string no

Specifies the registry handler name used with the package

registry, instead of the default. The handler must be

compatible with the registry used.

--dry-run -d boolean no
Whether or not to perform the upgrade versus just checking if

an upgrade is available

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-uninstall

Full name Alias Type Required Help message

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code
Exit

code
Error message

ZWEL0306W 306 Component %s cannot be uninstalled, because it is not currently installed.

ZWEL0307E 307
Component %s cannot be uninstalled, because it is a core component. If you do not want

to use it, disable it instead.

ZWEL0308W 308 Component directory %s could not be removed, rc=%s.

ZWEL0309W 309 Skipping removal of component %s because it is a core component.

ZWEL0312W 312 Component %s marked for removal but is not installed.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

Error code
Exit

code
Error message

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

Error code
Exit

code
Error message

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe components upgrade

zwe > components > upgrade

zwe components upgrade [parameter [parameter]...]

Description

Upgrade a Zowe component from a Zowe package registry when given a component name or "all" to upgrade all

components. The upgrade will only be performed if a Zowe package registry is configured.

Examples

Parameters

Full name Alias Type Required Help message

--component-file,-

-component
-o string yes

Either a path or component name. The path must be to a

component package or directory. If a name is specified instead,

install checks the zowe package registry.

--registry -r string no
Specifies the registry to search within instead of the default.

The registry must be compatible with the manager used.

--handler string no

Specifies the registry handler name used with the package

registry, instead of the default. The handler must be

compatible with the registry used.

--dry-run -d boolean no
Whether or not to perform the upgrade versus just checking if

an upgrade is available

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-upgrade

Full name Alias Type Required Help message

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code
Exit

code
Error message

ZWEL0156E 156 Component name is not initialized after extract step.

ZWEL0180E 180
Zowe extension directory (zowe.extensionDirectory) is not defined in Zowe YAML

configuration file.

ZWEL0304E 304 Handler install failure, cannot continue.

ZWEL0305E 305 Could not find one of the components' directories.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

Error code
Exit

code
Error message

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

Error code
Exit

code
Error message

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe components

zwe > components

zwe components [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands

disable

enable

install

search

uninstall

upgrade

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-disable
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-enable
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-search
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-uninstall
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-upgrade

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

Error code
Exit

code
Error message

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe config get

zwe > config > get

zwe config get [parameter [parameter]...]

Description

Return value of a configuration defined in YAML configuration. This command requires zowe.useConfigmgr=true or --

configmgr to be used.

Examples

Parameters

Full name Alias Type Required Help message

--ha-instance -i string no Zowe high availability instance ID.

--path -p string yes Path of the configuration. For example, components.gateway.port .

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/config/zwe-config
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/config/zwe-config-get

Error code
Exit

code
Error message

ZWEL0303E 303
Invalid config path syntax for %s. Get only supports single period delimiters between

values.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

Error code
Exit

code
Error message

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe config validate

zwe > config > validate

zwe config validate [parameter [parameter]...]

Description

Runs schema validation upon given zowe yaml configuration files. This command can be used to prove that the zowe

configuration is good before starting zowe. It requires that zowe.useConfigmgr=true or --configmgr are set. This

command can optionally validate enabled components or all components, but otherwise would only validate the zowe

core configuration.

Examples

Parameters

Full name Alias Type Required Help message

--components boolean no Turns on validation for enabled components.

--all boolean no Turns on validation for all components, even disabled ones.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/config/zwe-config
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/config/zwe-config-validate

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit

code
Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe config

zwe > config

zwe config [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands

get

validate

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/config/zwe-config
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/config/zwe-config-get
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/config/zwe-config-validate

Error code
Exit

code
Error message

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

Error code
Exit

code
Error message

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe init apfauth

zwe > init > apfauth

zwe init apfauth [parameter [parameter]...]

Description

This command will APF authorize load library for you.

NOTE: You require proper permission to run APF authorize command.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.dataset.prefix shows where the SZWEAUTH data set is installed.

zowe.setup.dataset.authLoadlib is the user custom APF LOADLIB. This field is optional. If it's not defined,

SZWEAUTH from zowe.setup.dataset.prefix data set will be APF authorized.

zowe.setup.dataset.authPluginLib is the user custom APF PLUGINLIB. You can install Zowe ZIS plugins into this

load library.

Examples

Parameters

Full name Alias Type Required Help message

--security-dry-run boolean no Whether to dry run security related setup.

--ignore-security-failures boolean no Whether to ignore security setup job failures.

Inherited from parent command

Full name Alias Type Required Help message

--allow-overwrite,--allow-

overwritten
boolean no Allow overwritten existing MVS data set.

--skip-security-setup boolean no Whether should skip security related setup.

--security-dry-run boolean no Whether to dry run security related setup.

--ignore-security-failures boolean no Whether to ignore security setup job failures.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-apfauth

Full name Alias Type Required Help message

--update-config boolean no
Whether to update YAML configuration file with

initialization result.

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0157E 157 %s (%s) is not defined in Zowe YAML configuration file.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

Error code
Exit

code
Error message

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

Error code
Exit

code
Error message

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe init certificate

zwe > init > certificate

zwe init certificate [parameter [parameter]...]

Description

This command will generate certificate used by Zowe services.

If you specify --update-config with this command, these configurations could be written back to your Zowe YAML

configuration file:

zowe.certificate based on your zowe.setup.certificate configuration.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.certificate.type is the type of certificate. Valid values are "PKCS12" (USS keystore) or "JCEKS",

"JCECCAKS", "JCERACFKS", "JCECCARACFKS", and "JCEHYBRIDRACFKS (z/OS keyring).

zowe.setup.certificate.dname is the distinguished name of the certificate. You can define caCommonName ,

commonName , orgUnit , org , locality , state , and / or country . These configurations are optional.

zowe.setup.certificate.validity is the validity days of the certificate. This is optional.

zowe.setup.certificate.san is the Subject Alternative Name (s) of the certificate if they are different from

zowe.externalDomains . Please note, for JCEKS , JCECCAKS , JCERACFKS , JCECCARACFKS , and JCEHYBRIDRACFKS type,

with limitation of RACDCERT command, this should contain exact one hostname (domain) and one IP address.

zowe.setup.certificate.importCertificateAuthorities is the list of certificate authorities will be imported to

Zowe PKCS12 keystore or keyring. Please note, for keyring type, only maximum 2 CAs is supported. If you are using

PKCS12 certificate, this should be USS files in PEM format. If you are using JCEKS , JCECCAKS , JCERACFKS ,

JCECCARACFKS , or JCEHYBRIDRACFKS certificate, this should be certificate labels on the z/OS system.

zOSMF.host and zOSMF.port is the z/OSMF service information. This is required if you are using z/OSMF as

authentication service.

zowe.verifyCertificates indicates how Zowe should validate the certificate of services registered under Zowe

APIML. Valid values are "STRICT", "NONSTRICT" or "DISABLED". If this is "STRICT", this command will try to validate

the z/OSMF service certificate if z/OSMF is defined.

For PKCS12 certificate users,

zowe.setup.certificate.pkcs12.directory is the directory where you plan to store the PKCS12 keystore and

truststore. This is required if zowe.setup.certificate.type is PKCS12 .

zowe.setup.certificate.pkcs12.lock is a boolean configuration to tell if we should lock the PKCS12 keystore

directory only for Zowe runtime user and group. Default value is true.

zowe.setup.security.groups.admin and zowe.setup.security.users.zowe will be the default owner of keystore

directory.

You can also define name , password , caAlias and caPassword under zowe.setup.certificate.pkcs12 to

customized keystore and truststore. These configurations are optional, but it is recommended to update them from

default values.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-certificate

Define zowe.setup.certificate.pkcs12.import.keystore if you already acquired certificate from other CA, stored

them in PKCS12 format, and want to import into Zowe PKCS12 keystore.

zowe.setup.certificate.pkcs12.import.password is the password for keystore defined in

zowe.setup.certificate.pkcs12.import.keystore .

zowe.setup.certificate.pkcs12.import.alias is the original certificate alias defined in

zowe.setup.certificate.pkcs12.import.keystore . After imported, the certificate will be saved as alias specified in

zowe.setup.certificate.pkcs12.name .

For keyring certificate users,

zowe.setup.certificate.keyring.owner is the keyring owner. It's optional and default value is

zowe.setup.security.users.zowe . If it's also not defined, the default value is ZWESVUSR .

zowe.setup.certificate.keyring.name is the keyring name will be created on z/OS. This is required if

zowe.setup.certificate.type is one of JCEKS , JCECCAKS , JCERACFKS , JCECCARACFKS , or JCEHYBRIDRACFKS .

If you want to let Zowe to generate new certificate,

You can also customize label and caLabel under zowe.setup.certificate.keyring if you want to generate

new certificate. Default value of label is localhost and default value of caLabel is localca .

If you want to import certificate stored in MVS data set into Zowe keyring,

zowe.setup.certificate.keyring.connect.dsName is required in this case. It tells Zowe the data set where the

certificate stored.

zowe.setup.certificate.keyring.connect.password is the password when importing the certificate.

The certificate will be imported with label defined in zowe.setup.certificate.keyring.label .

If you want to connect existing certificate into Zowe keyring,

zowe.setup.certificate.keyring.connect.user is required and tells Zowe the owner of existing certificate.

This field can have value of SITE .

zowe.setup.certificate.keyring.connect.label is also required and tells Zowe the label of existing

certificate.

If zowe.verifyCertificates is not DISABLED , and z/OSMF host (zOSMF.host) is provided, Zowe will try to trust

z/OSMF certificate.

If you are using RACF or TSS security manager, Zowe will try to automatically detect the z/OSMF CA based on

certificate owner specified by zowe.setup.certificate.keyring.zOSMF.user . Default value of this field is

IZUSVR . If the automatic detection failed, you will need to define zowe.setup.certificate.keyring.zOSMF.ca

indicates what is the label of z/OSMF root certificate authority.

If you are using ACF2 security manager, zowe.setup.certificate.keyring.zOSMF.ca is required to indicates

what is the label of z/OSMF root certificate authority.

Examples

Parameters

Full name Alias Type Required Help message

--allow-overwrite,--allow-

overwritten
boolean no Allow overwritten existing MVS data set.

Full name Alias Type Required Help message

--update-config boolean no
Whether to update YAML configuration file with

initialization result.

--ignore-security-failures boolean no Whether to ignore security setup job failures.

Inherited from parent command

Full name Alias Type Required Help message

--allow-overwrite,--allow-

overwritten
boolean no Allow overwritten existing MVS data set.

--skip-security-setup boolean no Whether should skip security related setup.

--security-dry-run boolean no Whether to dry run security related setup.

--ignore-security-failures boolean no Whether to ignore security setup job failures.

--update-config boolean no
Whether to update YAML configuration file with

initialization result.

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0157E 157 %s (%s) is not defined in Zowe YAML configuration file.

ZWEL0164E 164 Value of %s (%s) defined in Zowe YAML configuration file is invalid. Valid values are %s.

Error code Exit code Error message

ZWEL0300W %s already exists. This %s will be overwritten.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

Error code
Exit

code
Error message

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe init mvs

zwe > init > mvs

zwe init mvs [parameter [parameter]...]

Description

This command will prepare Zowe custom data sets.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.dataset.prefix shows where the SZWESAMP and SZWEAUTH data sets are installed.

Below data sets will be initialized by this command:

zowe.setup.dataset.parmlib is the user custom parameter library. Zowe server command may generate sample

PARMLIB members and stores here.

zowe.setup.dataset.jcllib is the custom JCL library. Zowe server command may generate sample JCLs and put

into this data set.

zowe.setup.dataset.authLoadlib is the user custom APF LOADLIB. This field is optional. If this is defined, members

of SZWEAUTH will be copied over to this data set. This loadlib requires APF authorize.

zowe.setup.dataset.authPluginLib is the user custom APF PLUGINLIB. You can install Zowe ZIS plugins into this

load library. This loadlib requires APF authorize.

NOTE: Existing members in custom data sets will not be overwritten by default. You can pass --allow-overwrite

parameters to force update.

Examples

Parameters

Full name Alias Type Required Help message

--allow-overwrite,--allow-overwritten boolean no Allow overwritten existing MVS data set.

Inherited from parent command

Full name Alias Type Required Help message

--allow-overwrite,--allow-

overwritten
boolean no Allow overwritten existing MVS data set.

--skip-security-setup boolean no Whether should skip security related setup.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-mvs

Full name Alias Type Required Help message

--security-dry-run boolean no Whether to dry run security related setup.

--ignore-security-failures boolean no Whether to ignore security setup job failures.

--update-config boolean no
Whether to update YAML configuration file with

initialization result.

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code
Exit

code
Error message

ZWEL0157E 157 %s (%s) is not defined in Zowe YAML configuration file.

ZWEL0300W %s already exists. This %s will be overwritten.

ZWEL0301W
%s already exists and will not be overwritten. For upgrades, you must use --allow-

overwrite.

ZWEL0158E 158 %s already exists.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

Error code
Exit

code
Error message

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

Error code
Exit

code
Error message

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe init security

zwe > init > security

zwe init security [parameter [parameter]...]

Description

This command will run ZWESECUR jcl.

NOTE: You require proper permission to run security configuration.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.dataset.prefix shows where the SZWESAMP data set is installed,

zowe.setup.dataset.jcllib is the custom JCL library. Zowe will create customized ZWESECUR JCL here before

applying it.

zowe.setup.security.product is security product. Can be RACF , ACF2 , or TSS . This configuration is optional.

Default value is RACF .

zowe.setup.security.groups.admin is the group for Zowe administrators. This configuration is optional. Default

value is ZWEADMIN .

zowe.setup.security.groups.stc is the group for Zowe started tasks. This configuration is optional. Default value is

ZWEADMIN .

zowe.setup.security.groups.sysProg is system programmer user ID/group. This configuration is optional. Default

value is ZWEADMIN .

zowe.setup.security.users.zowe is the userid for Zowe started task. This configuration is optional. Default value is

ZWESVUSR .

zowe.setup.security.users.zis is userid for ZIS started task. This configuration is optional. Default value is

ZWESIUSR .

zowe.setup.security.stcs.zowe is Zowe started task name. This configuration is optional. Default value is

ZWESLSTC .

zowe.setup.security.stcs.zis is ZIS started task name. This configuration is optional. Default value is ZWESISTC .

zowe.setup.security.stcs.aux is ZIS auxiliary started task name. This configuration is optional. Default value is

ZWESASTC .

Examples

Parameters

Full name Alias Type Required Help message

--security-dry-run boolean no Whether to dry run security related setup.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-security

Full name Alias Type Required Help message

--ignore-security-failures boolean no Whether to ignore security setup job failures.

Inherited from parent command

Full name Alias Type Required Help message

--allow-overwrite,--allow-

overwritten
boolean no Allow overwritten existing MVS data set.

--skip-security-setup boolean no Whether should skip security related setup.

--security-dry-run boolean no Whether to dry run security related setup.

--ignore-security-failures boolean no Whether to ignore security setup job failures.

--update-config boolean no
Whether to update YAML configuration file with

initialization result.

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0157E 157 %s (%s) is not defined in Zowe YAML configuration file.

ZWEL0159E 159 Failed to modify %s.

ZWEL0160E 160 Failed to write to %s. Please check if target data set is opened by others.

ZWEL0161E 161 Failed to run JCL %s.

Error code Exit code Error message

ZWEL0161W Failed to run JCL %s.

ZWEL0162E 162 Failed to find job %s result.

ZWEL0162W Failed to find job %s result.

ZWEL0163E 163 Job %s ends with code %s.

ZWEL0163W Job %s ends with code %s.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

Error code
Exit

code
Error message

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

Error code
Exit

code
Error message

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe init stc

zwe > init > stc

zwe init stc [parameter [parameter]...]

Description

This command will copy Zowe started tasks ZWESLSTC , ZWESISTC , ZWESASTC to your target procedure library.

NOTE: You require proper permission to write to target procedure library.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.dataset.prefix shows where the SZWESAMP data set is installed,

zowe.setup.dataset.proclib shows what is the target procedure library.

zowe.setup.dataset.parmlib is the user custom parameter library. Zowe server command may generate sample

PARMLIB members and stores here.

zowe.setup.dataset.jcllib is the custom JCL library. Zowe will create temporary started tasks here before putting

into target procedure library.

zowe.setup.dataset.authLoadlib is the user custom APF LOADLIB. This field is optional. If this is not defined,

SZWEAUTH from zowe.setup.dataset.prefix data set will be used as STEPLIB in STCs.

zowe.setup.security.stcs.zowe is Zowe started task name. This configuration is optional. Default value is

ZWESLSTC .

zowe.setup.security.stcs.zis is ZIS started task name. This configuration is optional. Default value is ZWESISTC .

zowe.setup.security.stcs.aux is ZIS auxiliary started task name. This configuration is optional. Default value is

ZWESASTC .

Examples

Parameters

Full name Alias Type Required Help message

--allow-overwrite,--allow-overwritten boolean no Allow overwritten existing MVS data set.

Inherited from parent command

Full name Alias Type Required Help message

--allow-overwrite,--allow-

overwritten
boolean no Allow overwritten existing MVS data set.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-stc

Full name Alias Type Required Help message

--skip-security-setup boolean no Whether should skip security related setup.

--security-dry-run boolean no Whether to dry run security related setup.

--ignore-security-failures boolean no Whether to ignore security setup job failures.

--update-config boolean no
Whether to update YAML configuration file with

initialization result.

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code
Exit

code
Error message

ZWEL0157E 157 %s (%s) is not defined in Zowe YAML configuration file.

ZWEL0300W %s already exists. This %s will be overwritten.

ZWEL0301W
%s already exists and will not be overwritten. For upgrades, you must use --allow-

overwrite.

ZWEL0143E 143
%s.%s(%s) already exists. This data set member will be overwritten during

configuration.

ZWEL0158E 158 %s already exists.

ZWEL0159E 159 Failed to modify %s.

ZWEL0160E 160 Failed to write to %s. Please check if target data set is opened by others.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit

code
Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe init vsam

zwe > init > vsam

zwe init vsam [parameter [parameter]...]

Description

This command will run ZWECSVSM JCL to create VSAM data set for Zowe APIML Caching Service.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.dataset.prefix shows where the SZWESAMP data set is installed.

zowe.setup.dataset.jcllib is the custom JCL library. Zowe server command may generate sample JCLs and put

into this data set.

zowe.setup.vsam.mode indicates whether the VSAM will utilize Record Level Sharing (RLS) services or not. Valid

value is RLS or NONRLS .

zowe.setup.vsam.volume indicates the name of volume. This field is required if VSAM mode is NONRLS .

zowe.setup.vsam.storageClass indicates the name of RLS storage class. This field is required if VSAM mode is RLS .

components.caching-service.storage.mode indicates what storage Zowe Caching Service will use. Only if this value

is VSAM , this command will try to create VSAM data set.

components.caching-service.storage.vsam.name defines the VSAM data set name.

Examples

Parameters

Full name Alias Type Required Help message

--allow-overwrite,--allow-overwritten boolean no Allow overwritten existing MVS data set.

Inherited from parent command

Full name Alias Type Required Help message

--allow-overwrite,--allow-

overwritten
boolean no Allow overwritten existing MVS data set.

--skip-security-setup boolean no Whether should skip security related setup.

--security-dry-run boolean no Whether to dry run security related setup.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-vsam

Full name Alias Type Required Help message

--ignore-security-failures boolean no Whether to ignore security setup job failures.

--update-config boolean no
Whether to update YAML configuration file with

initialization result.

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code
Exit

code
Error message

ZWEL0157E 157 %s (%s) is not defined in Zowe YAML configuration file.

ZWEL0300W %s already exists. This %s will be overwritten.

ZWEL0301W
%s already exists and will not be overwritten. For upgrades, you must use --allow-

overwrite.

ZWEL0158E 158 %s already exists.

ZWEL0159E 159 Failed to modify %s.

ZWEL0160E 160 Failed to write to %s. Please check if target data set is opened by others.

ZWEL0161E 161 Failed to run JCL %s.

ZWEL0162E 162 Failed to find job %s result.

ZWEL0163E 163 Job %s ends with code %s.

ZWEL0321W 0 Zowe Caching Service is not configured to use VSAM. Command skipped.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit

code
Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe init

zwe > init

zwe init [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands

apfauth

certificate

mvs

security

stc

vsam

Description

Init Zowe instance based on zowe.yaml configuration.

You can find an example zowe.yaml in Zowe runtime directory folder.

This command will run these sub-commands in sequence:

zwe init mvs

zwe init vsam

zwe init apfauth

zwe init security

zwe init certificate

zwe init stc

If you pass --skip-security-setup with this command, zwe init apfauth and zwe init security steps will be

skipped.

If you pass --update-config with this command, these configurations could be written back to your Zowe YAML

configuration file:

zowe.runtimeDirectory based on where your zwe command is located, and if it is not defined,

zowe.certificate based on your zowe.setup.certificate configuration,

java.home based on your current JAVA_HOME or automatic detection,

node.home based on your current NODE_HOME or automatic detection.

IMPORTANT, if you modify any of the values below, it's suggested to re-run relevant zwe init command to make them

taking effect.

These Zowe YAML configurations showing with sample values are used:

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-apfauth
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-mvs
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-security
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-stc
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-vsam

zowe.setup.dataset.prefix shows where the SZWEAUTH data set is installed.

zowe.setup.dataset.parmlib is the user custom parameter library. Zowe server command may generate sample

PARMLIB members and stores here.

zowe.setup.dataset.jcllib is the custom JCL library. Zowe server command may generate sample JCLs and put

into this data set.

zowe.setup.dataset.authLoadlib is the user custom APF LOADLIB. This field is optional. If this is defined, members

of SZWEAUTH will be copied over to this data set and it will be APF authorized. If it's not defined, SZWEAUTH from

zowe.setup.dataset.prefix data set will be APF authorized.

zowe.setup.dataset.authPluginLib is the user custom APF PLUGINLIB. You can install Zowe ZIS plugins into this

load library. This loadlib requires APF authorize.

zowe.setup.security.product is security product. Can be RACF , ACF2 , or TSS . This configuration is optional.

Default value is RACF .

zowe.setup.security.groups.admin is the group for Zowe administrators. This configuration is optional. Default

value is ZWEADMIN .

zowe.setup.security.groups.stc is the group for Zowe started tasks. This configuration is optional. Default value is

ZWEADMIN .

zowe.setup.security.groups.sysProg is system programmer user ID/group. This configuration is optional. Default

value is ZWEADMIN .

zowe.setup.security.users.zowe is the userid for Zowe started task. This configuration is optional. Default value is

ZWESVUSR .

zowe.setup.security.users.zis is userid for ZIS started task. This configuration is optional. Default value is

ZWESIUSR .

zowe.setup.security.stcs.zowe is Zowe started task name. This configuration is optional. Default value is

ZWESLSTC .

zowe.setup.security.stcs.zis is ZIS started task name. This configuration is optional. Default value is ZWESISTC .

zowe.setup.security.stcs.aux is ZIS auxiliary started task name. This configuration is optional. Default value is

ZWESASTC .

zowe.setup.certificate.type is the type of certificate. Valid values are "PKCS12" (USS keystore) or "JCEKS",

"JCECCAKS", "JCERACFKS", "JCECCARACFKS", and "JCEHYBRIDRACFKS (z/OS keyring).

zowe.setup.certificate.dname is the distinguished name of the certificate. You can define caCommonName ,

commonName , orgUnit , org , locality , state , and / or country . These configurations are optional.

zowe.setup.certificate.validity is the validity days of the certificate. This is optional.

zowe.setup.certificate.san is the Subject Alternative Name (s) of the certificate if they are different from

zowe.externalDomains . Please note, for JCEKS , JCECCAKS , JCERACFKS , JCECCARACFKS , and JCEHYBRIDRACFKS type,

with limitation of RACDCERT command, this should contain exact one hostname (domain) and one IP address.

zowe.setup.certificate.importCertificateAuthorities is the list of certificate authorities will be imported to

Zowe PKCS12 keystore or keyring. Please note, for keyring type, only maximum 2 CAs is supported. If you are using

PKCS12 certificate, this should be USS files in PEM format. If you are using JCEKS , JCECCAKS , JCERACFKS ,

JCECCARACFKS , or JCEHYBRIDRACFKS certificate, this should be certificate labels on the z/OS system.

For PKCS12 certificate users,

zowe.setup.certificate.pkcs12.directory is the directory where you plan to store the PKCS12 keystore and

truststore. This is required if zowe.setup.certificate.type is PKCS12 .

zowe.setup.certificate.pkcs12.lock is a boolean configuration to tell if we should lock the PKCS12 keystore

directory only for Zowe runtime user and group. Default value is true.

You can also define name , password , caAlias and caPassword under zowe.setup.certificate.pkcs12 to

customized keystore and truststore. These configurations are optional, but it is recommended to update them from

default values.

Define zowe.setup.certificate.pkcs12.import.keystore if you already acquired certificate from other CA, stored

them in PKCS12 format, and want to import into Zowe PKCS12 keystore.

zowe.setup.certificate.pkcs12.import.password is the password for keystore defined in

zowe.setup.certificate.pkcs12.import.keystore .

zowe.setup.certificate.pkcs12.import.alias is the original certificate alias defined in

zowe.setup.certificate.pkcs12.import.keystore . After imported, the certificate will be saved as alias specified in

zowe.setup.certificate.pkcs12.name .

For keyring certificate users,

zowe.setup.certificate.keyring.owner is the keyring owner. It's optional and default value is

zowe.setup.security.users.zowe . If it's also not defined, the default value is ZWESVUSR .

zowe.setup.certificate.keyring.name is the keyring name will be created on z/OS. This is required if

zowe.setup.certificate.type is one of JCEKS , JCECCAKS , JCERACFKS , JCECCARACFKS , or JCEHYBRIDRACFKS .

If you want to let Zowe to generate new certificate,

You can also customize label and caLabel under zowe.setup.certificate.keyring if you want to generate

new certificate. Default value of label is localhost and default value of caLabel is localca .

If you want to import certificate stored in MVS data set into Zowe keyring,

zowe.setup.certificate.keyring.connect.dsName is required in this case. It tells Zowe the data set where the

certificate stored.

zowe.setup.certificate.keyring.connect.password is the password when importing the certificate.

The certificate will be imported with label defined in zowe.setup.certificate.keyring.label .

If you want to connect existing certificate into Zowe keyring,

zowe.setup.certificate.keyring.connect.user is required and tells Zowe the owner of existing certificate.

This field can have value of SITE .

zowe.setup.certificate.keyring.connect.label is also required and tells Zowe the label of existing

certificate.

If zowe.verifyCertificates is not DISABLED , and z/OSMF host (zOSMF.host) is provided, Zowe will try to trust

z/OSMF certificate.

If you are using RACF security manager, Zowe will try to automatically detect the z/OSMF CA based on certificate

owner specified by zowe.setup.certificate.keyring.zOSMF.user . Default value of this field is IZUSVR . If the

automatic detection failed, you will need to define zowe.setup.certificate.keyring.zOSMF.ca indicates what is

the label of z/OSMF root certificate authority.

If you are using ACF2 or TSS (Top Secret) security manager, zowe.setup.certificate.keyring.zOSMF.ca is

required to indicates what is the label of z/OSMF root certificate authority.

zowe.setup.vsam.mode indicates whether the VSAM will utilize Record Level Sharing (RLS) services or not. Valid

value is RLS or NONRLS .

zowe.setup.vsam.volume indicates the name of volume. This field is required if VSAM mode is NONRLS .

zowe.setup.vsam.storageClass indicates the name of RLS storage class. This field is required if VSAM mode is RLS .

zowe.verifyCertificates indicates how Zowe should validate the certificate of services registered under Zowe

APIML. Valid values are "STRICT", "NONSTRICT" or "DISABLED". If this is "STRICT", this command will try to validate

the z/OSMF service certificate if z/OSMF is defined.

zOSMF.host and zOSMF.port is the z/OSMF service information. This is required if you are using z/OSMF as

authentication service.

components.caching-service.storage.mode indicates what storage Zowe Caching Service will use. Only if this value

is VSAM , this command will try to create VSAM data set.

components.caching-service.storage.vsam.name defines the VSAM data set name.

Examples

Parameters

Full name Alias Type Required Help message

--allow-overwrite,--allow-

overwritten
boolean no Allow overwritten existing MVS data set.

--skip-security-setup boolean no Whether should skip security related setup.

--security-dry-run boolean no Whether to dry run security related setup.

--ignore-security-failures boolean no Whether to ignore security setup job failures.

--update-config boolean no
Whether to update YAML configuration file with

initialization result.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

Error code
Exit

code
Error message

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

Error code
Exit

code
Error message

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe internal config get

zwe > internal > config > get

zwe internal config get [parameter [parameter]...]

Description

Return value of a configuration defined in YAML configuration.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--ha-instance -i string no Zowe high availability instance ID.

--path -p string yes Path of the configuration. For example, components.gateway.port .

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config-get

Error code
Exit

code
Error message

ZWEL0303E 303
Invalid config path syntax for %s. Get only supports single period delimiters between

values.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

Error code
Exit

code
Error message

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe internal config output

zwe > internal > config > output

zwe internal config output [parameter [parameter]...]

Description

Outputs the merged YAML used at Zowe runtime into zowe.workspaceDirectory/.env/.zowe-merged.yaml

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config-output

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

Error code
Exit

code
Error message

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe internal config set

zwe > internal > config > set

zwe internal config set [parameter [parameter]...]

Description

Set value of a configuration and write back to the YAML configuration.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--ha-

instance
-i string no Zowe high availability instance ID.

--path -p string yes Path of the configuration. For example, components.gateway.port .

--value -e string no New value of the configuration.

--string boolean no
When specified, the value is treated as a string even if it looks like a

number or boolean

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config-set

Full name Alias Type Required Help message

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

Error code
Exit

code
Error message

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe internal config

zwe > internal > config

zwe internal config [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands

get

output

set

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config-get
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config-output
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config-set

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

Error code
Exit

code
Error message

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe internal container cleanup

zwe > internal > container > cleanup

zwe internal container cleanup [parameter [parameter]...]

Description

Clean up Kubernetes runtime.

Currently this command will remove all outdated static definitions.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-cleanup

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

Error code
Exit

code
Error message

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe internal container init

zwe > internal > container > init

zwe internal container init [parameter [parameter]...]

Description

Initialize special runtime environment required by Zowe containerization.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-init

Error code
Exit

code
Error message

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

Error code
Exit

code
Error message

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe internal container prestop

zwe > internal > container > prestop

zwe internal container prestop [parameter [parameter]...]

Description

Actions will be executed before a service is stopped.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Parameters

Full name Alias Type Required Help message

--ha-instance -i string no Zowe high availability instance ID.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-prestop

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

Error code
Exit

code
Error message

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe internal container

zwe > internal > container

zwe internal container [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands

cleanup

init

prestop

Description

Internal commands to help manager workloads in Zowe containers.

NOTE: these internal commands are only used by Zowe Containerization use scenario.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-cleanup
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-init
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-prestop

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit

code
Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe internal start component

zwe > internal > start > component

zwe internal start component [parameter [parameter]...]

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--component -o string yes Component to start.

--run-in-background boolean no Whether to start this component in background.

Inherited from parent command

Full name Alias Type Required Help message

--ha-instance -i string no Zowe high availability instance ID.

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start-component

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

Error code
Exit

code
Error message

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe internal start prepare

zwe > internal > start > prepare

zwe internal start prepare [parameter [parameter]...]

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--ha-instance -i string no Zowe high availability instance ID.

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code
Exit

code
Error message

ZWEL0141E 141 User %s does not have write permission on %s.

ZWEL0302W
You are running the Zowe process under user id IZUSVR. This is not recommended and

may impact your z/OS MF server negatively.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start-prepare

Error code
Exit

code
Error message

ZWEL0317E Component %s commands.configure ended with rc=%s.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

Error code
Exit

code
Error message

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe internal start

zwe > internal > start

zwe internal start [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands

component

prepare

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--ha-instance -i string no Zowe high availability instance ID.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start-component
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start-prepare

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit

code
Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe internal get-launch-components

zwe > internal > get-launch-components

zwe internal get-launch-components [parameter [parameter]...]

Description

Return component list should be started in specified HA instance.

NOTE: This command only returns a list of enabled components with start command.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--ha-instance -i string no Zowe high availability instance ID.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe-internal-get-launch-components

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit

code
Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe internal

zwe > internal

zwe internal [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands

config

container

get-launch-components

start

Description

Commands will be executed internally by other Zowe commands.

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe-internal-get-launch-components
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit

code
Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe migrate for kubernetes

zwe > migrate > for > kubernetes

zwe migrate for kubernetes [parameter [parameter]...]

Description

Migrate your YAML configuration on z/OS for Kubernetes.

This script will create zowe-config ConfigMap and zowe-certificates-secret Secret for Kubernetes deployment.

To manually create zowe-config ConfigMap , the data section should contain a key zowe.yaml with string value of your

zowe.yaml used on z/OS.

To manually create zowe-certificates-secret Secret , you need 2 entries under data section:

keystore.p12 : which is base64 encoded PKCS#12 keystore,

truststore.p12 : which is base64 encoded PKCS#12 truststore.

And 3 entries under stringData section:

keystore.key : is the PEM format of certificate private key,

keystore.cer : is the PEM format of the certificate,

ca.cer : is the PEM format of the certificate authority.

In order to make certificates working in Kubernetes, the certificate you are using should have these domains defined in

certificate Subject Alt Name (SAN):

your external domains to access Zowe APIML Gateway Service running in Kubernetes cluster,

*.[k8s-namespace].svc.[k8s-cluster-name]

*.discovery-service.[k8s-namespace].svc.[k8s-cluster-name]

*.gateway-service.[k8s-namespace].svc.[k8s-cluster-name]

*.[k8s-namespace].pod.[k8s-cluster-name]

[k8s-namespace] is the Kubernetes Namespace you installed Zowe into. And [k8s-cluster-name] is the Kubernetes

cluster name, which usually should be cluster.local .

Without the additional domains in SAN, you may see warnings/errors related to certificate validation.

If you cannot add those domains into certificate Subject Alt Name (SAN), you can change zowe.verifyCertificates to

NONSTRICT mode. Zowe components will not validate domain names but will continue to validate certificate chain,

validity and whether it's trusted in Zowe truststore.

IMPORTANT: It's not recommended to disable zowe.verifyCertificates .

NOTES: With below conditions, this migration script will re-generate a new set of certificate for you with proper domain

names listed above.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/zwe-migrate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate-for
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate-for-kubernetes

you use zwe init command to initialize Zowe,

use PKCS#12 format keystore by defining zowe.setup.certificate.type: PKCS12

did not define zowe.setup.certificate.pkcs12.import.keystore and let zwe command to generate PKCS12

keystore for you

enabled STRICT mode zowe.verifyCertificates .

Parameters

Full name Alias Type Required Help message

--domains -d string no Domain list of certificate Subject Alternative Name (SAN).

--external-port string no Port number to access APIML Gateway running in Kubernetes.

--k8s-namespace string no Kubernetes namespace.

--k8s-cluster-name string no Kubernetes cluster name.

--alias -a string no Certificate alias name.

--password -p string no Password of the certificate keystore.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

Error code
Exit

code
Error message

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe migrate for

zwe > migrate > for

zwe migrate for [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands

kubernetes

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/zwe-migrate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate-for
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate-for-kubernetes

Error code
Exit

code
Error message

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

Error code
Exit

code
Error message

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe migrate

zwe > migrate

zwe migrate [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands

for

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/zwe-migrate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate-for

Error code
Exit

code
Error message

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

Error code
Exit

code
Error message

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe sample sub deep

zwe > sample > sub > deep

zwe sample sub deep [parameter [parameter]...]

Description

Sample of deep embedded sub-command.

Also inherit parameters from upper level.

NOTE: This command is to demonstrate how zwe command works. There are no real meaningful functionalities defined

in this command and sub-commands.

WARNING: This command is for experimental purposes and could be changed in the future releases.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--another-parameter -p boolean no Every command level can have their own parameters.

Inherited from parent command

Full name Alias Type Required Help message

--target-dir,--

target
-d string yes This parameter is required.

--auto-encoding -e string no
This parameter has default value. This help message has

multiple lines. - another line

--help -h boolean no Display this help.

--debug,--

verbose
-v boolean no Enable verbose mode.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/zwe-sample
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub-deep

Full name Alias Type Required Help message

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

Error code
Exit

code
Error message

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Error code
Exit

code
Error message

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe sample sub second

zwe > sample > sub > second

zwe sample sub second [parameter [parameter]...]

Description

Sample of second sub-command.

NOTE: This command is to demonstrate how zwe command works. There are no real meaningful functionalities defined

in this command and sub-commands.

WARNING: This command is for experimental purposes and could be changed in the future releases.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--target-dir,--

target
-d string yes This parameter is required.

--auto-encoding -e string no
This parameter has default value. This help message has

multiple lines. - another line

--help -h boolean no Display this help.

--debug,--

verbose
-v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/zwe-sample
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub-second

Full name Alias Type Required Help message

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

Error code
Exit

code
Error message

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe sample sub

zwe > sample > sub

zwe sample sub [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands

deep

second

Description

A sample sub-command.

NOTE: This command is to demonstrate how zwe command works. There are no real meaningful functionalities defined

in this command and sub-commands.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--target-dir,--

target
-d string yes This parameter is required.

--auto-encoding -e string no
This parameter has default value. This help message has multiple

lines. - another line

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/zwe-sample
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub-deep
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub-second

Full name Alias Type Required Help message

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

Error code
Exit

code
Error message

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

Error code
Exit

code
Error message

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe sample test

zwe > sample > test

zwe sample test [parameter [parameter]...]

Description

A sample command.

NOTE: This command is to demonstrate how zwe command works. There are no real meaningful functionalities defined

in this command and sub-commands.

WARNING: This command is for experimental purposes and could be changed in the future releases.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/zwe-sample
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/zwe-sample-test

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

Error code
Exit

code
Error message

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe sample

zwe > sample

zwe sample [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands

sub

test

Description

This is a sample command.

NOTE: This command is to demonstrate how zwe command works. There are no real meaningful functionalities defined

in this command and sub-commands.

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/zwe-sample
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/zwe-sample-test

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit

code
Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe support verify-fingerprints

zwe > support > verify-fingerprints

zwe support verify-fingerprints [parameter [parameter]...]

Description

This command will gather the hash (fingerprint) of every file in the zowe.runtimeDirectory . The result is then compared

with existing hashes.

Java is required to run the hash utility. Make sure the environment variable JAVA_HOME is set to the directory containing

bin/java .

For example, if java is at '/usr/lpp/java/current/bin/java', then set JAVA_HOME to '/usr/lpp/java/current'.

NOTE: For best results, it is recommended to set all directories in the zowe.yaml configuration file which reside outside

the zowe.runtimeDirectory . These are typically zowe.workspaceDirectory , zowe.logDirectory and certificates

directories.

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--target-dir string no
Target directory where the support package will be created. If it is

not specified, system temporary directory will be used.

--help -h boolean no Display this help.

--debug,--

verbose
-v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/support/zwe-support
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/support/zwe-support-verify-fingerprints

Error code Exit code Error message

ZWEL0113E 113 Failed to find Zowe version. Please validate your Zowe directory.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0150E 150 Failed to find file %s. Zowe runtimeDirectory is invalid.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0181E 181 Failed to verify Zowe file fingerprints.

ZWEL0320E 320 Failed to compare hashes of %s and current.

Inherited from parent command

Error code
Exit

code
Error message

ZWEL0150E 150 Failed to find file %s. Zowe runtimeDirectory is invalid.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0322E 322 %s is not a valid directory.

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

Error code
Exit

code
Error message

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

Error code
Exit

code
Error message

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe support

zwe > support

zwe support [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands

verify-fingerprints

Description

Collect and package Zowe runtime information for support purpose.

This command will collect these information:

Environment

z/OS version

Java version

Java keytool TLS information

Node.js version

zOSMF status

External Security Manager

CEE Runtime Options

Filesystem flags

ZSS Program Controlled extended attribute

Zowe configurations

Zowe manifest.json

Zowe configuration file

Zowe installation logs

Zowe PKCS#12 keystore if used

Zowe temporary configuration files under " zowe.workspaceDirectory /.env"

Zowe APIML static registration files under " zowe.workspaceDirectory /api-mediation/api-defs"

Zowe runtime

Active running Zowe processes

Zowe fingerprints and validation result

Examples

Parameters

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/support/zwe-support
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/support/zwe-support-verify-fingerprints

Full

name
Alias Type Required Help message

--target-

dir
string no

Target directory where the support package will be created. If it is not

specified, system temporary directory will be used.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0150E 150 Failed to find file %s. Zowe runtimeDirectory is invalid.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0322E 322 %s is not a valid directory.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

Error code
Exit

code
Error message

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

Error code
Exit

code
Error message

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe diagnose

zwe > diagnose

zwe diagnose [parameter [parameter]...]

Description

Display the message corresponding to the error code.

Examples

Parameters

Full name Alias Type Required Help message

--error-code -e string yes Error Code.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0102E 102 Invalid parameter %s.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-diagnose

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit

code
Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe install

zwe > install

zwe install [parameter [parameter]...]

Description

After you extract Zowe convenience build, you can run this command to install MVS data sets.

If you are using SMPE build, you can skip this command since MVS data sets are already prepared during SMPE install.

These Zowe YAML configurations showing with sample values are used:

Expected outputs:

Will create these data sets under zowe.setup.dataset.prefix definition:

SZWEAUTH contains few Zowe load modules (++PROGRAM).

SZWESAMP contains several sample configurations.

SZWEEXEC contains few utilities used by Zowe.

SZWELOAD contains config manager for REXX.

Examples

Parameters

Full name Alias Type Required Help message

--allow-overwrite,--allow-

overwritten
boolean no Allow overwritten existing MVS data set.

--dataset-prefix,--ds-prefix string no
Install Zowe to this dataset prefix. If you specify this

value, --config is not required.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-install

Full name Alias Type Required Help message

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code
Exit

code
Error message

ZWEL0157E 157 %s (%s) is not defined in Zowe YAML configuration file.

ZWEL0300W %s already exists. This %s will be overwritten.

ZWEL0301W
%s already exists and will not be overwritten. For upgrades, you must use --allow-

overwrite.

ZWEL0158E 158 %s already exists.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

Error code
Exit

code
Error message

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

Error code
Exit

code
Error message

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe start

zwe > start

zwe start [parameter [parameter]...]

Description

Start Zowe with main started task.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.security.stcs.zowe is Zowe started task name. This configuration is optional. Default value is

ZWESLSTC .

zowe.job.name is the optional customized job name to start Zowe. If it's empty, the start command will not pass

JOBNAME= option to S command.

haInstances.[ha-instance].sysname is the SYSNAME of the target HA instance. If you pass --ha-instance

parameter, this is the SYSNAME the start command will be routed to.

Note: zwe start is only identifying an already configured instance of Zowe. Any additional changes to the zowe.yaml

config could possibly require either manual changes or running related zwe commands before issuing zwe start .

Examples

Parameters

Full name Alias Type Required Help message

--ha-instance -i string no Zowe high availability instance ID.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-start

Full name Alias Type Required Help message

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0064E 64 failed to run command os.pipe - Cannot start component %

ZWEL0165E 165 Failed to start job %s: %s.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

Error code
Exit

code
Error message

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

Error code
Exit

code
Error message

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe stop

zwe > stop

zwe stop [parameter [parameter]...]

Description

Stop Zowe main job.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.security.stcs.zowe is Zowe started task name. This configuration is optional. Default value is

ZWESLSTC .

zowe.job.name is the optional customized job name to start Zowe. If it's empty, the stop command will try to use

value of zowe.setup.security.stcs.zowe as job name to stop.

haInstances.[ha-instance].sysname is the SYSNAME of the target HA instance. If you pass --ha-instance

parameter, this is the SYSNAME the start command will be routed to.

Examples

Parameters

Full name Alias Type Required Help message

--ha-instance -i string no Zowe high availability instance ID.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-stop

Full name Alias Type Required Help message

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0166E 166 Failed to stop job %s: %s.

Inherited from parent command

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

Error code
Exit

code
Error message

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

Error code
Exit

code
Error message

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

zwe version

zwe > version

zwe version [parameter [parameter]...]

Description

Display Zowe version.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0150E 150 Failed to find file %s. Zowe runtimeDirectory is invalid.

Inherited from parent command

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-version

Error code
Exit

code
Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where

zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start prepare"

command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

Error code
Exit

code
Error message

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting

z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0319E
NodeJS required but not found. Errors such as ZWEL0157E may occur as a result. The value

'node.home' in the Zowe YAML is not correct.

ZWEL0322E 322 %s is not a valid directory.

Version: v3.3.x LTS

Bill of Materials

Zowe™ uses the SPDX SBOM format to represent its bill of materials. To read more about why SBOMs and SPDX are

used, see this blog. The hash codes can be used to validate your download is authentic using a command like openssl

dgst -sha1 <downloaded_sbom.zip> . Zowe SBOMs are as follows:

Type Component
SBOM

Link
SHA-1 Hash

Artifact SBOM
Zowe z/OS Components (PAX,

SMP/E, PSWI)

SBOM

Link
3ed80afaadfdabe1112c7063fe297d5f

Artifact SBOM Zowe CLI Standalone Package
SBOM

Link
98b75ca32cc08664574da1886d28c625463cceba

Artifact SBOM
Zowe CLI Standalone Plugins

Package

SBOM

Link
7d1e06e579b4dcc69c44405a47dfebc386426b0f

Artifact SBOM Zowe Client NodeJS SDK
SBOM

Link
c61bd6b9f78ba2aa67a0f4e53874a097992d8155

Artifact SBOM Zowe Client Python SDK
SBOM

Link
637c5f90f94a88cb534bead7755fac112b509217

Source Code

SBOM

All Zowe's Source Repositories

used in final artifacts

SBOM

Link
19d2b81b0fa2955d165123871c72c2c77ddf73b7

https://www.linuxfoundation.org/blog/spdx-its-already-in-use-for-global-software-bill-of-materials-sbom-and-supply-chain-security/
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_pax_sbom.zip
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_pax_sbom.zip
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_cli_standalone_sbom.zip
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_cli_standalone_sbom.zip
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_cli_standalone_plugins_sbom.zip
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_cli_standalone_plugins_sbom.zip
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_client_node_sdk_sbom.zip
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_client_node_sdk_sbom.zip
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_client_python_sdk_sbom.zip
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_client_python_sdk_sbom.zip
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_sources_sbom.zip
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_sources_sbom.zip

